JP2000068343A - Method and equipment for judging conductivity type of semiconductor material - Google Patents

Method and equipment for judging conductivity type of semiconductor material

Info

Publication number
JP2000068343A
JP2000068343A JP10232996A JP23299698A JP2000068343A JP 2000068343 A JP2000068343 A JP 2000068343A JP 10232996 A JP10232996 A JP 10232996A JP 23299698 A JP23299698 A JP 23299698A JP 2000068343 A JP2000068343 A JP 2000068343A
Authority
JP
Japan
Prior art keywords
semiconductor material
measured
voltage
conductivity type
metal probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10232996A
Other languages
Japanese (ja)
Inventor
Tadanobu Yuki
忠信 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAPUSON KK
Original Assignee
NAPUSON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAPUSON KK filed Critical NAPUSON KK
Priority to JP10232996A priority Critical patent/JP2000068343A/en
Publication of JP2000068343A publication Critical patent/JP2000068343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to judge the conductivity type with stability by applying a voltage between the semiconductor material to be measured and a metal probe electrode through an electrostatic coupling electrode, and judging the conductivity type of the semiconductor material to be measured by inspecting the rectification characteristic at the contact. SOLUTION: An electrostatic coupling electrode 3 is fabricated in form of a flat plate and is so installed as to be electrostatic coupled with the semiconductor material 1 to be measured while being connected to a rectangular wave generator 4. On the other hand, a metal probe electrode 2 is fabricated in form of a needle and is so installed as to be Schottky bonded with the semiconductor material 1 to be measured. The rectification characteristic in the metal probe electrode 2 is judged by a judging means 5 constituted of an amplifier 6, a (positive) peak value detection circuit 7, a (negative) peak value detection circuit 8, a differential amplifier 9, and a conductivity type detector 10. As a result, ohmic bonding between electrodes which has been used in the conventional method for judging the rectification characteristic is eliminated and therefore a stable and reliable bonding can be secured and stable judgement is possible. Moreover, an easy method for judgement can be established.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコンウエハーや
シリコン単結晶棒等の半導体材料の、P型、N型の導電
型を判別するための方法とその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for determining the P-type and N-type conductivity types of semiconductor materials such as silicon wafers and silicon single crystal bars.

【0002】[0002]

【従来の技術】シリコンウエハーやシリコン単結晶棒等
の半導体材料には、周知の様にP型とN型とがある。こ
のP型とN型の判別方法には、熱起電力判別方法、光起
電力判別方法、ホール効果判別方法、整流判別方法等、
種々の方法がある。
2. Description of the Related Art Semiconductor materials such as silicon wafers and silicon single crystal rods include P-type and N-type as is well known. The P-type and N-type discrimination methods include a thermoelectromotive force discrimination method, a photoelectromotive force discrimination method, a Hall effect discrimination method, a rectification discrimination method, and the like.
There are various methods.

【0003】整流判別方法とは金属と半導体のショット
キー接合を利用する導電判別法である。金属と半導体と
を接触させると整流特性を示すことが知られている。こ
こで、金属の仕事関数をφm 、半導体の仕事関数をφs
で表すとき、金属とn 型半導体ではφm >φs の場合
に、金属とp 型半導体ではφm <φs の場合に、夫々整
流効果が生じ、この整流効果が生じる接合をショットキ
ー接合という。金属と半導体の仕事関数の関係が逆にな
る場合、即ち、オーミック接合となる場合は整流特性を
生じない。
The rectification determination method is a conduction determination method using a Schottky junction between a metal and a semiconductor. It is known that when a metal and a semiconductor are brought into contact, rectification characteristics are exhibited. Here, the work function of metal is φm, and the work function of semiconductor is φs
When a metal and an n-type semiconductor satisfy φm> φs, and when a metal and a p-type semiconductor satisfy φm <φs, a rectifying effect occurs. A junction in which this rectifying effect occurs is called a Schottky junction. When the relationship between the work functions of the metal and the semiconductor is reversed, that is, when an ohmic junction is formed, no rectification characteristics are generated.

【0004】このショットキー接合(効果)を利用した
導電型判別方法では、図4に示すように2つの電極A、
Bを被測定用半導体材料Cの表面に接触させ、このう
ち、一方の電極Aは整流特性が得られるように金属探針
とし、もう一方の電極Bは整流特性のない金属板とし
て、これら電極A、B間に交流電源から変圧器Dを通し
て電圧を印加し、その時の整流方向を零検出器Eで判別
することにより、被測定用半導体材料CがP型である
か、N型であるかを判別している。この場合、電極Aに
は整流特性が発生しやすい様にステンレスが用いられ、
電極Bにはオスミウム等が用いられる。
In the conductivity type discriminating method utilizing the Schottky junction (effect), as shown in FIG.
B is brought into contact with the surface of the semiconductor material C to be measured. One of the electrodes A is a metal probe so as to obtain rectification characteristics, and the other electrode B is a metal plate having no rectification characteristics. A voltage is applied between A and B from an AC power supply through a transformer D, and the rectification direction at that time is determined by a zero detector E, so that the semiconductor material C to be measured is P-type or N-type. Is determined. In this case, stainless steel is used for the electrode A so that rectification characteristics easily occur,
Osmium or the like is used for the electrode B.

【0005】[0005]

【発明が解決しようとする課題】前記整流判別方法は、
電極Aの接触所で整流特性が生じ、電極Bの接触所では
整流特性が生じない様にすることが良好な性能を得るた
めのポイントとなるが、電極Bを被測定用半導体材料C
にオーミック接合するのは困難な場合が多い。その一例
としては、半導体材料Cの表面には、薄いが絶縁性の高
い酸化膜が存在することがある。良好なオーミック接合
を得るためにはこの酸化膜を突き破って電極Bを被測定
用半導体材料Cに接触させなければならないが、このた
めに電極Bを半導体材料Cに強く押し付けると、シリコ
ンウエハーとか、拡散層やエピ(エピタキシャル)層が
形成された半導体材料Cでは破損や傷が問題となり難し
い。しかし良好なオーム接触が得られないと、安定して
半導体材料Cの導電型を判別することが難しいため、被
測定用半導体材料Cへの電極Bの接触方法の改善が求め
られていた。
SUMMARY OF THE INVENTION The rectification determination method includes:
The point for obtaining good performance is to prevent the rectification characteristic from occurring at the contact point of the electrode A and the rectification characteristic at the contact point of the electrode B.
In many cases, it is difficult to make an ohmic junction. As an example, a thin but highly insulating oxide film may be present on the surface of the semiconductor material C. In order to obtain a good ohmic junction, it is necessary to break through this oxide film and bring the electrode B into contact with the semiconductor material C to be measured. The semiconductor material C on which a diffusion layer or an epi (epitaxial) layer is formed is difficult to be damaged and damaged. However, if good ohmic contact cannot be obtained, it is difficult to stably determine the conductivity type of the semiconductor material C. Therefore, there is a need for an improved method of contacting the electrode B with the semiconductor material C to be measured.

【0006】[0006]

【課題を解決するための手段】本件発明の目的は、整流
判別方法ではあるが、被測定用半導体材料と金属板との
間にオーム接触が不要である半導体材料の導電型判別方
法とその装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is a method of determining the conductivity type of a semiconductor material which does not require ohmic contact between a semiconductor material to be measured and a metal plate. Is to provide.

【0007】本発明のうち請求項1記載の半導体材料の
導電型判別方法は、被測定用半導体材料1に接触させた
金属探針電極2と、当該被測定用半導体材料1に静電容
量結合させた静電容量結合電極3との間に電圧を印加し
て、被測定用半導体材料1と金属探針電極2との接触部
における整流特性を調べて被測定用半導体材料1の導電
型を判別するようにしたことを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for determining the conductivity type of a semiconductor material, comprising: a metal probe electrode in contact with a semiconductor material to be measured; A voltage is applied between the capacitance-coupled electrode 3 and the rectification characteristic at the contact portion between the semiconductor material 1 for measurement and the metal probe electrode 2 to check the conductivity type of the semiconductor material 1 for measurement. It is characterized in that it is determined.

【0008】本発明のうち請求項2記載の半導体材料の
導電型判別装置は、被測定用半導体材料1と点接触され
る針状の金属探針電極2と、当該被測定用半導体材料1
と静電容量結合される静電容量結合電極3と、両電極
2、3間に電圧を印加する電圧を発生する電圧発生器4
と、被測定用半導体材料1と金属探針電極2との接触部
における整流特性を調べて被測定用半導体材料1の導電
型を判別する判別手段5とを備えたものである。
According to a second aspect of the present invention, there is provided an apparatus for determining the conductivity type of a semiconductor material, comprising: a needle-shaped metal probe electrode which is in point contact with the semiconductor material to be measured;
And a voltage generator 4 for generating a voltage for applying a voltage between the electrodes 2 and 3
And a determination means 5 for determining the conductivity type of the semiconductor material 1 to be measured by examining rectification characteristics at a contact portion between the semiconductor material 1 to be measured and the metal probe electrode 2.

【0009】本発明のうち請求項3記載の半導体材料の
導電型判別装置は、前記判別手段5が、金属探針電極2
で検出される電圧を増幅する増幅器6と、増幅された電
圧のプラス値のピーク電圧を保持する+ピーク値検出回
路7と、増幅された電圧のマイナス値のピーク電圧を保
持する−ピーク値検出回路8と、両検出回路7、8の偏
差を増幅する偏差増幅器9と、偏差増幅器9から出力さ
れる電圧の極性を表示する極性表示器10とから構成さ
れるものである。
According to a third aspect of the present invention, there is provided an apparatus for determining the conductivity type of a semiconductor material, wherein the determining means 5 includes a metal probe electrode
, An amplifier 6 for amplifying the voltage detected by the above, a + peak value detection circuit 7 for holding a positive peak voltage of the amplified voltage, and a-peak value detection for holding a negative peak voltage of the amplified voltage. It comprises a circuit 8, a deviation amplifier 9 for amplifying the deviation between the two detection circuits 7, 8, and a polarity display 10 for displaying the polarity of the voltage output from the deviation amplifier 9.

【0010】[0010]

【発明の実施の形態】まず、本発明の導電型判別方法に
ついて説明する。この導電型判別方法では図2に示す等
価回路のように、被測定用半導体材料1に、同半導体材
料1と静電容量結合する様に平板状の静電容量結合電極
3を設け、また当該半導体材料1との間にショットキー
効果が生じる様に金属探針電極2を設けて、これら両電
極2、3間に電圧を印加する。このとき図2の被測定用
半導体材料1と金属探針電極2との間には同半導体材料
1の導電型に応じて互いに異なる整流効果が生じる。こ
の整流効果の違いは抵抗器11の両端に現われる電圧値
を計測することにより識別することができる。例えば両
電極2、3間に図3(a)に示す矩形波電圧を印加する
と、被測定用半導体材料1がP型であるときは、電圧が
立ち上がるときに整流方向と電流方向とが一致し、電圧
が立ち下がるときは整流方向と電流方向とが一致しない
ために図3(b)に示す電圧パターンが生じ、逆にN型
であるときは図3(c)に示す電圧パターンが生じる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the conductivity type discriminating method of the present invention will be described. In this conductivity type discriminating method, as shown in an equivalent circuit shown in FIG. 2, a flat capacitive coupling electrode 3 is provided on a semiconductor material 1 to be measured so as to be capacitively coupled to the semiconductor material 1. A metal probe electrode 2 is provided so as to generate a Schottky effect between the semiconductor material 1 and a voltage is applied between the electrodes 2 and 3. At this time, different rectifying effects occur between the semiconductor material 1 for measurement and the metal probe electrode 2 in FIG. 2 according to the conductivity type of the semiconductor material 1. This difference in the rectification effect can be identified by measuring the voltage value appearing across the resistor 11. For example, when a rectangular wave voltage shown in FIG. 3A is applied between the electrodes 2 and 3, when the semiconductor material 1 to be measured is a P-type, the rectification direction and the current direction match when the voltage rises. When the voltage falls, the rectification direction and the current direction do not coincide with each other, so that the voltage pattern shown in FIG. 3B is generated, and when the voltage is N-type, the voltage pattern shown in FIG. 3C is generated.

【0011】本発明において印加する電圧の波形パター
ンは図3(a)に示すような矩形波に限定されず、必要
に応じて所望パターンの電圧を印加することができる。
また、静電容量を高めたいときは静電容量結合電極3と
被測定用半導体材料1との間に誘電体を配置することも
できる。
The waveform pattern of the voltage applied in the present invention is not limited to a rectangular wave as shown in FIG. 3A, and a voltage of a desired pattern can be applied as needed.
When it is desired to increase the capacitance, a dielectric can be arranged between the capacitance coupling electrode 3 and the semiconductor material 1 to be measured.

【0012】図1は本発明の導電型判別装置の実施形態
を示したものである。図1の静電容量結合電極3は平板
状に作成され、被測定用半導体材料1と静電容量結合が
可能なるように設けられ、金属探針電極2は針状に作成
され、被測定用半導体材料1とショットキー接合可能な
るように設けられている。前記静電容量結合電極3は例
えば図3(a)に示される矩形波電圧を発生するる矩形
波発振器(電圧発生器)4に接続されて、被測定用半導
体材料1に矩形波電圧を印加することができるようにな
っている。一方、金属探針電極2は増幅器6に接続され
ており、さらに並列接続された+ピーク値検出回路7及
び−ピーク値検出回路8と接続され、両検出回路7、8
は偏差増幅器9を介して導電型検出器10と接続されて
いる。前記増幅器6は金属探針電極2で検出された電圧
を増幅するものであり、+ピーク値検出器7、−ピーク
値検出器8は夫々入力された電圧から+(プラス)のピ
ーク電圧値、−(マイナス)のピーク電圧値を保持でき
るようにした回路である。偏差増幅器(差動増幅器)9
は+ピーク値検出回路7と−ピーク値検出回路8の双方
の出力の偏差をとり、結果として金属探針電極2におけ
る電圧値の極性を出力するものである。導電型検出器
(極性表示器)10は偏差増幅器9で得られた極性を表
示するためのものであり、例えば、電圧の正負によって
針の振れ方向が逆転する零検出器や、正負に応じて点灯
色が変化するLED 等が使用される。
FIG. 1 shows an embodiment of the conductivity type discriminating apparatus of the present invention. The capacitance coupling electrode 3 shown in FIG. 1 is formed in a plate shape and provided so as to be capable of capacitive coupling with the semiconductor material 1 to be measured. The metal probe electrode 2 is formed in a needle shape and used for measurement. The semiconductor material 1 is provided so as to be capable of Schottky bonding. The capacitive coupling electrode 3 is connected to a rectangular wave oscillator (voltage generator) 4 for generating a rectangular wave voltage shown in FIG. 3A, for example, and applies a rectangular wave voltage to the semiconductor material 1 to be measured. You can do it. On the other hand, the metal probe electrode 2 is connected to an amplifier 6 and further connected to a + peak value detection circuit 7 and a −peak value detection circuit 8 which are connected in parallel.
Is connected to a conductivity type detector 10 via a deviation amplifier 9. The amplifier 6 amplifies the voltage detected by the metal probe electrode 2. The + peak value detector 7 and the -peak value detector 8 generate a + (plus) peak voltage value from the input voltage. This is a circuit capable of holding a peak voltage value of-(minus). Deviation amplifier (differential amplifier) 9
Is to take the deviation of the outputs of both the + peak value detection circuit 7 and the −peak value detection circuit 8 and output the polarity of the voltage value at the metal probe electrode 2 as a result. The conductivity type detector (polarity display) 10 is for displaying the polarity obtained by the deviation amplifier 9, and is, for example, a zero detector in which the direction of movement of the needle is reversed by the positive or negative of the voltage, or according to the positive or negative. An LED or the like whose lighting color changes is used.

【0013】図1の実施形態では金属探針電極2におけ
る整流特性が、増幅器6、+ピーク値検出回路7、−ピ
ーク値検出回路8、偏差増幅器9、導電型検出器10か
らなる判別手段5で判別されるようにしたが、この判別
手段5には他の回路を用いることもできる。
In the embodiment shown in FIG. 1, the rectifying characteristic of the metal probe electrode 2 is determined by an amplifier 6, a + peak value detection circuit 7, a −peak value detection circuit 8, a deviation amplifier 9, and a conductivity type detector 10. However, other circuits can be used for the determination means 5.

【0014】[0014]

【発明の効果】本件発明の導電型判別方法及び判別装置
によれば、従来の整流判別方法において使用されていた
電極のオーミック接合が不要となり、結合が安定且つ確
実になり、安定した判別が可能となる。また、半導体材
料への接触は針圧が数グラムの金属探針のみであるた
め、薄いシリコンウエハーはもちろんのこと、拡散層や
エピ層を形成した半導体材料の判別も可能である。
According to the conductivity type discriminating method and discriminating apparatus of the present invention, the ohmic junction of the electrodes used in the conventional rectification discriminating method becomes unnecessary, the coupling becomes stable and reliable, and stable discrimination is possible. Becomes Further, since the contact with the semiconductor material is made only by the metal probe having a stylus pressure of several grams, it is possible to determine not only the thin silicon wafer but also the semiconductor material on which the diffusion layer and the epi layer are formed.

【0015】また、本件発明の導電型判別装置によれ
ば、前記判別方法を容易に実現することができる。
According to the conductivity type discriminating apparatus of the present invention, the discriminating method can be easily realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体材料の導電型判別装置の実施形
態を示した回路図。
FIG. 1 is a circuit diagram showing an embodiment of an apparatus for determining the conductivity type of a semiconductor material according to the present invention.

【図2】本発明の半導体材料の導電型判別方法の原理を
説明する回路図。
FIG. 2 is a circuit diagram illustrating the principle of the method for determining the conductivity type of a semiconductor material according to the present invention.

【図3】(a)〜(c)は本発明の導電型判別方法によ
るP型とN型の判別方法の一例を示した説明図。
FIGS. 3A to 3C are explanatory diagrams showing an example of a P-type and N-type discrimination method according to the conductivity type discrimination method of the present invention.

【図4】従来の整流判別装置の一例を示した回路図。FIG. 4 is a circuit diagram showing an example of a conventional rectification determination device.

【符号の説明】[Explanation of symbols]

1 被測定用半導体材料 2 金属探針電極 3 静電容量結合電極 4 電圧発生器 5 判別手段 6 増幅器 7 +ピーク値検出回路 8 −ピーク値検出回路 9 偏差増幅器 10 極性表示器 Reference Signs List 1 semiconductor material to be measured 2 metal probe electrode 3 capacitance coupling electrode 4 voltage generator 5 determination means 6 amplifier 7 + peak value detection circuit 8-peak value detection circuit 9 deviation amplifier 10 polarity display

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被測定用半導体材料(1)に接触させた金
属探針電極(2)と、当該被測定用半導体材料(1)に
静電容量結合させた静電容量結合電極(3)との間に電
圧を印加して、被測定用半導体材料(1)と金属探針電
極(2)との接触部における整流特性を調べて被測定用
半導体材料(1)の導電型を判別するようにしたことを
特徴とする半導体材料の導電型判別方法。
A metal probe electrode (2) in contact with a semiconductor material (1) to be measured and a capacitance coupling electrode (3) capacitively coupled to the semiconductor material (1) to be measured. To determine the conductivity type of the semiconductor material to be measured (1) by examining the rectification characteristics at the contact portion between the semiconductor material to be measured (1) and the metal probe electrode (2). A method for determining the conductivity type of a semiconductor material, characterized in that:
【請求項2】被測定用半導体材料(1)と点接触される
針状の金属探針電極(2)と、当該被測定用半導体材料
(1)と静電容量結合される静電容量結合電極(3)
と、両電極(2、3)間に電圧を印加する電圧を発生す
る電圧発生手段(4)と、被測定用半導体材料(1)と
金属探針電極(2)との接触部における整流特性を調べ
て被測定用半導体材料(1)の導電型を判別する判別手
段(5)とを備えたことを特徴とする半導体材料の導電
型判別装置。
2. A needle-shaped metal probe electrode (2) that is in point contact with a semiconductor material (1) to be measured, and a capacitive coupling that is capacitively coupled to the semiconductor material (1) to be measured. Electrode (3)
A voltage generating means (4) for generating a voltage for applying a voltage between the two electrodes (2, 3); and a rectification characteristic at a contact portion between the semiconductor material to be measured (1) and the metal probe electrode (2). And a determination means (5) for determining the conductivity type of the semiconductor material to be measured (1) by examining the semiconductor material to be measured.
【請求項3】前記判別手段(5)は、金属探針電極
(2)で検出される電圧を増幅する増幅器(6)と、増
幅された電圧のプラス値のピーク電圧を保持する+ピー
ク値検出回路(7)と、増幅された電圧のマイナス値の
ピーク電圧を保持する−ピーク値検出回路(8)と、両
検出回路(7、8)の偏差を増幅する偏差増幅器(9)
と、偏差増幅器(9)から出力される電圧の極性を表示
する極性表示器(10)とから構成されるものであるこ
とを特徴とする請求項2記載の半導体材料の導電型判別
装置。
3. An amplifier (6) for amplifying a voltage detected by a metal probe electrode (2), and a + peak value for holding a positive peak voltage of the amplified voltage. A detection circuit (7), a minus peak value detection circuit (8) for holding a peak voltage of a negative value of the amplified voltage, and a deviation amplifier (9) for amplifying a deviation between the two detection circuits (7, 8).
3. The apparatus according to claim 2, further comprising a polarity indicator (10) for displaying the polarity of the voltage output from the deviation amplifier (9).
JP10232996A 1998-08-19 1998-08-19 Method and equipment for judging conductivity type of semiconductor material Pending JP2000068343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10232996A JP2000068343A (en) 1998-08-19 1998-08-19 Method and equipment for judging conductivity type of semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10232996A JP2000068343A (en) 1998-08-19 1998-08-19 Method and equipment for judging conductivity type of semiconductor material

Publications (1)

Publication Number Publication Date
JP2000068343A true JP2000068343A (en) 2000-03-03

Family

ID=16948177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10232996A Pending JP2000068343A (en) 1998-08-19 1998-08-19 Method and equipment for judging conductivity type of semiconductor material

Country Status (1)

Country Link
JP (1) JP2000068343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165832A (en) * 2009-01-15 2010-07-29 Shin Etsu Handotai Co Ltd Method of measuring conductivity type and resistivity of semiconductor silicon substrate and method of manufacturing the semiconductor silicon substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165832A (en) * 2009-01-15 2010-07-29 Shin Etsu Handotai Co Ltd Method of measuring conductivity type and resistivity of semiconductor silicon substrate and method of manufacturing the semiconductor silicon substrate

Similar Documents

Publication Publication Date Title
JP4607753B2 (en) Voltage measuring device and power measuring device
US7804294B1 (en) Non contact method and apparatus for measurement of sheet resistance of P-N junctions
CN102692427A (en) Nano-thermoelectric multi-parameter in-situ quantitative characterization device based on atomic force microscope
US10073151B2 (en) Fast hall effect measurement system
CN103344790A (en) Nano thermoelectrical Seebeck coefficient in-situ characterization device based on scanning thermal microscope
US6888135B2 (en) Scanning probe microscope with probe formed by single conductive material
EP1612570A2 (en) Apparatus and method for detecting breakdown of a dielectric layer of a semiconductor wafer
JP2000068343A (en) Method and equipment for judging conductivity type of semiconductor material
JPH01213579A (en) Method and device for measuring surface resistance
JP2001296326A (en) Method and apparatus for inspection of defect
JP3766261B2 (en) Measuring method and measuring apparatus using scanning capacitance microscope
JP2606706B2 (en) Semiconductor checker
US4213086A (en) Selector device for the determination of the type of electroconductivity in semiconductor wafers
JPH0712824A (en) Scanning tunnel microscope having potential distribution measuring function
JP2007132926A (en) Voltage measuring device and electric power measuring device
JP2000162294A (en) Magnetic field sensor
Sun et al. Enhanced flaw detection using an eddy current probe with a linear array of hall sensors
JP2002277379A (en) Method and instrument for measurement by scanning type capacitance microscope
JP2986008B2 (en) Voltage distribution observation device, voltage probe, and method of manufacturing voltage probe
JP2004349342A (en) Method for measuring capacitance of depletion layer
KR20060124076A (en) Micro electric field sensor
JPH01182764A (en) Short-circuiting position detector for printed wiring board
US3366879A (en) Method for measuring the specific resistance of a silicon crystal by measuring the breakdown voltage
KR100253356B1 (en) Method for measuring dopant profile with high resolution using scm
JPS5928369Y2 (en) Interface potential measuring device