JP2000065712A - Method for manufacturing silver probe of scanning tunnel microscope - Google Patents

Method for manufacturing silver probe of scanning tunnel microscope

Info

Publication number
JP2000065712A
JP2000065712A JP10234269A JP23426998A JP2000065712A JP 2000065712 A JP2000065712 A JP 2000065712A JP 10234269 A JP10234269 A JP 10234269A JP 23426998 A JP23426998 A JP 23426998A JP 2000065712 A JP2000065712 A JP 2000065712A
Authority
JP
Japan
Prior art keywords
probe
silver
methyl alcohol
electrolytic
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10234269A
Other languages
Japanese (ja)
Other versions
JP4354548B2 (en
Inventor
Masayuki Iwami
正之 岩見
Shisho Shioda
資勝 潮田
Yoichi Uehara
洋一 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP23426998A priority Critical patent/JP4354548B2/en
Publication of JP2000065712A publication Critical patent/JP2000065712A/en
Application granted granted Critical
Publication of JP4354548B2 publication Critical patent/JP4354548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable method for manufacturing the silver probe of a scanning tunnel microscope through the use of methyl alcohol as the solvent of an electrolyte, electrolytic grinding, and electrolytic etching. SOLUTION: A silver wire 4 is immersed in an electrolyte 2, and an A.C. voltage is impressed between the probe 4 and a parallel plate electrode 3 from an A.C. power source 5 to perform electrolytic grinding. This is automatically completed at a point of time when a part of the silver wire 4 immersed in the electrolyte 2 is completely dissolved. Next, the tip part of the probe 4 is returned in the electrolyte 2, and a D.C. voltage is impressed for a few seconds to perform electrolytic etching with the probe 4 as an anode. Finally, it is cleaned in methyl alcohol and naturally dried. Methyl alcohol is used as a solvent of the electrolyte 2. This is because methyl alcohol has a smaller surface tension and viscosity coefficient than water, and the tip part of the probe can be speedily isolated from the electrolyte 2 at the time of the completion of grinding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子分解能を有す
る走査トンネル顕微鏡(STM)装置に係り、特にST
M観察のときに、STM探針と測定物質の相互作用によ
る発光(STM発光)の分光学的知見を得るために用い
る銀探針の製作方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning tunneling microscope (STM) device having an atomic resolution, and more particularly to a ST device.
The present invention relates to a method for manufacturing a silver probe used for obtaining spectroscopic knowledge of luminescence (STM luminescence) due to interaction between an STM probe and a measurement substance during M observation.

【0002】[0002]

【従来の技術】このような分野の技術としては、例え
ば、以下に示すようなものがあった。 (1)A.A.Gorbunov,B.Wolf an
d J.Edelmann:Rev.Sci.Inst
rum.64(1993)2393. (2)K.Dickmann,F.Demming a
nd J.Jersch:Rev.Sci.Instr
um.67(1996)845. すなわち、上記文献(1)では、クエン酸溶液を電解液
として用いた交流腐蝕により、銀探針の製作を行うよう
にしている。
2. Description of the Related Art There are, for example, the following techniques in such a field. (1) A. A. Gorbunov, B .; Wolf an
d J. Edelmann: Rev. Sci. Inst
rum. 64 (1993) 2393. (2) K. Dickmann, F.C. Demming a
nd J.J. Jersch: Rev. Sci. Instr
um. 67 (1996) 845. That is, in the above reference (1), a silver probe is manufactured by AC corrosion using a citric acid solution as an electrolytic solution.

【0003】また、上記文献(2)では、アンモニア水
を電解液として用いた直流腐蝕により、銀探針の製作を
行うようにしている。上記探針製作方法(1)において
は、探針腐蝕過程は二段階からなる。第1段階は、図5
に示すような製作装置を使用している。すなわち、電解
槽100内の電解液101として濃度が40%のクエン
酸溶液を使用し、探針となる銀線(純度99.9%)1
03と、その対向電極となる平板電極(ステンレス製)
102との間に交流電源104から交流100Vを印加
し、電解腐蝕を行う。なお、図5において、105は探
針ホルダーである。
Further, in the above-mentioned document (2), a silver probe is manufactured by direct current corrosion using aqueous ammonia as an electrolytic solution. In the probe manufacturing method (1), the probe corrosion process includes two steps. The first stage is shown in FIG.
The manufacturing apparatus shown in Fig. 1 is used. That is, a citric acid solution having a concentration of 40% is used as the electrolytic solution 101 in the electrolytic cell 100, and a silver wire (purity 99.9%) 1 serving as a probe is used.
03 and a flat plate electrode (made of stainless steel) as the opposite electrode
An AC voltage of 100 V is applied from an AC power supply 104 to the electrode 102 to perform electrolytic corrosion. In FIG. 5, reference numeral 105 denotes a probe holder.

【0004】次に、第2段階として、図6に示すよう
に、銀探針(純度99.9%)203の先端部分の曲率
を小さくするために、スライドガラス205上に電解液
201として、40%のクエン酸溶液を滴下し、線電極
(ステンレス線)202を半円状に配し、銀探針203
の先端部分のみ、交流電源204から交流100Vを印
加し、再度電解腐蝕を行う。なお、このときの電解液及
び印加電圧等腐蝕条件は、第1段階と同一である。
Next, as a second step, as shown in FIG. 6, in order to reduce the curvature of the tip of the silver probe (purity 99.9%), an electrolytic solution 201 A 40% citric acid solution is dropped, a wire electrode (stainless steel wire) 202 is arranged in a semicircle, and a silver probe 203 is provided.
Is applied from the AC power supply 204 and electrolytic corrosion is performed again. At this time, the corrosion conditions such as the electrolytic solution and the applied voltage are the same as those in the first stage.

【0005】上記した探針製作方法(2)においては、
図7に示すような装置を使用し、探針となる銀線(純度
99.9%)303を陽極、平板電極(ステンレス製)
302を陰極として直流10Vを印加し、電解腐蝕を行
う。電解液301として濃度が10〜35%のアンモニ
ア水を使用している。なお、300は電解槽、304は
電圧制御回路、305は探針ホルダー、306はリレー
スイッチである。
[0005] In the above-described probe manufacturing method (2),
Using a device as shown in FIG. 7, a silver wire (purity 99.9%) 303 serving as a probe is used as an anode and a flat plate electrode (made of stainless steel).
A direct current of 10 V is applied using 302 as a cathode to perform electrolytic corrosion. As the electrolyte 301, aqueous ammonia having a concentration of 10 to 35% is used. In addition, 300 is an electrolytic cell, 304 is a voltage control circuit, 305 is a probe holder, and 306 is a relay switch.

【0006】ここで、探針先端部分の曲率を小さくする
目的で、詳細は省略するが、電圧制御回路304を用
い、電解腐蝕終了と同時に探針陽極・ステンレス陰極間
にかかる電圧をオフにする機能を付加する。
Here, for the purpose of reducing the curvature of the tip portion of the probe, although not described in detail, a voltage control circuit 304 is used to turn off the voltage applied between the probe anode and the stainless steel cathode simultaneously with the completion of electrolytic corrosion. Add functions.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の探針製作方法(1)では、トポグラフ像の分解
能は高々数nm程度であり、原子分解能を得るには至っ
ていない。また、探針製作方法(2)においても、電流
像においてのみ熱分解高配向グラファイト(HOPG)
に対し原子分解能が得られただけでトポグラフ像につい
ては位置分解能は高々1nm程度である。これらは探針
先端部分の曲率が大きいためと考えられる。
However, in the above-mentioned conventional method (1) for producing a probe, the resolution of a topographic image is at most about several nm, and the atomic resolution has not been obtained. Also in the probe manufacturing method (2), thermally decomposed highly oriented graphite (HOPG) is used only in the current image.
In contrast, only the atomic resolution was obtained, and the positional resolution of the topographic image was at most about 1 nm. These are considered to be due to the large curvature of the tip portion of the probe.

【0008】このように従来の技術で製作された探針を
利用したのでは、STM発光の分光学的知見を得るのに
有効と考えられる銀探針でSTM観察において電子分解
能が得られないという欠点があった。本発明は、上記し
た従来の問題点を解決するために、電解液の溶媒として
メチルアルコールを使用し、電解研磨及び又は電解腐蝕
により、信頼性の高い走査トンネル顕微鏡の銀探針製作
方法を提供することを目的とする。
[0008] As described above, the use of the probe manufactured by the conventional technique does not provide electronic resolution in the STM observation with a silver probe which is considered to be effective for obtaining spectroscopic knowledge of STM emission. There were drawbacks. SUMMARY OF THE INVENTION The present invention provides a method for fabricating a silver probe for a scanning tunneling microscope with high reliability by using methyl alcohol as a solvent for an electrolytic solution and performing electrolytic polishing and / or electrolytic corrosion in order to solve the above-mentioned conventional problems. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (1)走査トンネル顕微鏡で使用する銀探針製作方法に
おいて、メチルアルコールを電解液の溶媒として用い電
解研磨により、銀探針の製作を行うようにしたものであ
る。 (2)走査トンネル顕微鏡で使用する銀探針製作方法に
おいて、メチルアルコールを電解液の溶媒として用い電
解腐蝕により、銀探針の製作を行うようにしたものであ
る。 (3)走査トンネル顕微鏡で使用する銀探針製作方法に
おいて、メチルアルコールを電解液の溶媒として用い電
解研磨と電解腐蝕とを組み合わせることにより銀探針の
製作を行うようにしたものである。 (4)上記(1)、(2)又は(3)記載の走査トンネ
ル顕微鏡の銀探針製作方法において、走査トンネル顕微
鏡配置における電界蒸発法を組み合わせるようにしたも
のである。
According to the present invention, there is provided a method for manufacturing a silver probe used in a scanning tunneling microscope, wherein methyl alcohol is used as a solvent for an electrolytic solution by electropolishing. It is designed to produce silver probes. (2) In a method for manufacturing a silver probe used in a scanning tunneling microscope, a silver probe is manufactured by electrolytic corrosion using methyl alcohol as a solvent for an electrolytic solution. (3) In a method for manufacturing a silver probe used in a scanning tunneling microscope, a silver probe is manufactured by combining electrolytic polishing and electrolytic corrosion using methyl alcohol as a solvent for an electrolytic solution. (4) In the method for producing a silver probe of a scanning tunneling microscope according to the above (1), (2) or (3), an electric field evaporation method in a scanning tunneling microscope arrangement is combined.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。図1は本発明の第1実施例を示す銀
探針製造のための電解研磨・腐蝕装置の模式図である。
この図において、1は電解槽、2は電解液(過塩素酸を
メチルアルコールで4倍に希釈したもの)、3は平行平
板電極、4は探針の素材となる銀線、5は交流電源、6
は直流電源、7は探針ホルダーである。
Embodiments of the present invention will be described below in detail. FIG. 1 is a schematic view of an electrolytic polishing / corrosion apparatus for manufacturing a silver probe according to a first embodiment of the present invention.
In this figure, 1 is an electrolytic tank, 2 is an electrolytic solution (perchloric acid diluted 4 times with methyl alcohol), 3 is a parallel plate electrode, 4 is a silver wire used as a material for a probe, and 5 is an AC power supply. , 6
Is a DC power supply, and 7 is a probe holder.

【0011】探針の素材として直径0.5mmの銀線
(純度99.99%)4を使用し、電解液2として過塩
素酸(HClO4 )をメチルアルコールにより四倍に希
釈したものを用いる。探針にかかる電場を一様にする目
的のため、対向電極3として二枚のステンレス板(平行
平板電極)を使用し、探針としての素材である銀線4は
その中間に配置できるように探針ホルダー7の位置を手
動で調整可能な機構を有する。
A silver wire (purity: 99.99%) 4 having a diameter of 0.5 mm is used as a material for the probe, and a perchloric acid (HClO 4 ) diluted four-fold with methyl alcohol is used as an electrolytic solution 2. . For the purpose of making the electric field applied to the probe uniform, two stainless steel plates (parallel plate electrodes) are used as the counter electrode 3, and the silver wire 4, which is a material for the probe, can be arranged in the middle. A mechanism capable of manually adjusting the position of the probe holder 7 is provided.

【0012】まず、銀線4を数mm程度電解液2中に浸
し、探針4・平行平板電極3間に交流電源5から19V
を印加し電解研磨を行う。これは、銀線4の電解液2中
に浸った部分が溶け終わった時点で自動的に終了する。
次に、探針4の先端部分を電解液2中に戻し、探針4を
陽極とし直流電源6から直流5Vを数秒間印加し電解腐
蝕を行う。最後に、メチルアルコール中で洗浄し自然乾
燥させる。ここまでの操作で得られた銀探針を使用した
STM観察の結果を以下に示す。
First, a silver wire 4 is immersed in the electrolytic solution 2 by about several mm, and a 19 V AC power is applied between the probe 4 and the parallel plate electrode 3.
Is applied to perform electropolishing. This automatically ends when the portion of the silver wire 4 immersed in the electrolytic solution 2 is completely melted.
Next, the tip portion of the probe 4 is returned into the electrolytic solution 2, and 5 V DC is applied from the DC power supply 6 for several seconds using the probe 4 as an anode to perform electrolytic corrosion. Finally, it is washed in methyl alcohol and air dried. The results of STM observation using the silver probe obtained by the above-described operation are shown below.

【0013】図2は試料としてHOPGを用いた場合の
トポグラフ像であり、原子分解能が得られたことを示し
ている。このことは電解液の溶媒としてメチルアルコー
ルを使用することが探針の質向上に有効であることを示
している。なお、トポグラフ像観察時の走査条件はバイ
アス電圧0.05V(試料側が正)、トンネル電流は1
nAである。
FIG. 2 is a topographic image when HOPG is used as a sample, and shows that atomic resolution was obtained. This indicates that the use of methyl alcohol as the solvent for the electrolytic solution is effective for improving the quality of the probe. The scanning conditions for observing the topographic image were a bias voltage of 0.05 V (positive on the sample side) and a tunnel current of 1
nA.

【0014】次に、本発明の第2実施例について説明す
る。この実施例では、第1実施例の操作にSTM配置に
おける電界蒸発の操作が加わる。銀探針の電解研磨・腐
蝕の手順は第1実施例と同一である。図3は本発明の第
2実施例を示すSTM配置における電界蒸発法の模式図
である。
Next, a second embodiment of the present invention will be described. In this embodiment, the operation of the first embodiment is added to the operation of the field evaporation in the STM arrangement. The procedure of electrolytic polishing and corrosion of the silver probe is the same as that of the first embodiment. FIG. 3 is a schematic view of an electric field evaporation method in an STM arrangement showing a second embodiment of the present invention.

【0015】この図において、11は試料表面、12は
走査中の探針(フィードバック・オン)、13は高バイ
アス印加時の探針(フィードバック・オフ)、14は電
界蒸発実施位置である。この実施例では、試料として抵
抗率が約0.5Ωcmのn型シリコン単結晶基板(面方
位〈111〉)を使用する。まず、探針をバイアス電圧
−2V、トンネル電流2nAという条件で走査速度10
00nm/sで0.63msだけ走査する。
In this figure, 11 is a sample surface, 12 is a probe (feedback on) during scanning, 13 is a probe (feedback off) when a high bias is applied, and 14 is a position where electric field evaporation is performed. In this embodiment, an n-type silicon single crystal substrate (plane orientation <111>) having a resistivity of about 0.5 Ωcm is used as a sample. First, the probe was scanned at a scanning speed of 10 under the conditions of a bias voltage of −2 V and a tunnel current of 2 nA.
Scan at 0.6 nm for 00 nm / s.

【0016】次に、探針の走査を中断し、フィードバッ
クをオフ13にした後、探針・試料間に−10Vのパル
ス電圧を210μs印加する。その後、フィードバック
をオン12にして走査を再開するという操作を四万回繰
り返す。図4にSTM配置における電界蒸発操作前後の
トポグラフ像の観察結果を示す。電界蒸発操作以前のト
ポグラフ像は、図4(1)に示すように、探針の状態が
不安定であり、原子分解能を得るのは困難である。この
ことはシリコンに対しては電解研磨(腐蝕)のみでは原
子分解能を得るためには不十分であることを示してい
る。
Next, after the scanning of the probe is interrupted and the feedback is turned off 13, a pulse voltage of −10 V is applied between the probe and the sample for 210 μs. Thereafter, the operation of turning on the feedback 12 and restarting the scanning is repeated 40,000 times. FIG. 4 shows observation results of topographic images before and after the electric field evaporation operation in the STM arrangement. As shown in FIG. 4A, the state of the tip of the topographic image before the electric field evaporation operation is unstable, and it is difficult to obtain atomic resolution. This indicates that electrolytic polishing (corrosion) alone is not enough to obtain atomic resolution for silicon.

【0017】一方、電界蒸発操作後は、図4(2)に示
す通り、原子分解能を有し、トポグラフ像に7×7再配
列構造を観察することができるという利点がある。な
お、トポグラフ像観察時の走査条件は、バイアス電圧2
V、トンネル電流は2nAである。本発明によれば、上
記したように、電解液の溶媒としてメチルアルコールを
用いる。これはメチルアルコールが水と比較して小さな
表面張力及び粘性係数を持ち、研磨終了時に探針先端部
分を電解液から素早く分離できるからである。
On the other hand, after the electric field evaporation operation, as shown in FIG. 4 (2), there is an advantage that it has an atomic resolution and a 7 × 7 rearranged structure can be observed in a topographic image. The scanning conditions at the time of observing the topographic image are bias voltage 2
V, the tunnel current is 2 nA. According to the present invention, as described above, methyl alcohol is used as a solvent for the electrolytic solution. This is because methyl alcohol has a smaller surface tension and a lower viscosity coefficient than water, and can quickly separate the tip of the probe from the electrolyte at the end of polishing.

【0018】また、交流による電解研磨と直流による電
解腐蝕を組み合わせることにより、電解液中において探
針表面に生成される化合物を除去する。さらに、STM
配置における電界蒸発を行い電解研磨・腐蝕時の反応の
不均一性に起因すると考えられる突起物を取り除き探針
部分を尖鋭化する。すなわち、探針走査中にフィードバ
ックをオフにし、探針・試料間にパルス状の高バイアス
電圧を印加するという操作を繰り返すようにする。
Further, by combining electrolytic polishing with alternating current and electrolytic corrosion with direct current, compounds generated on the surface of the probe in the electrolytic solution are removed. In addition, STM
Electric field evaporation in the arrangement is performed to remove projections considered to be caused by non-uniformity of the reaction during electrolytic polishing and corrosion, and to sharpen the probe portion. That is, the operation of turning off the feedback during the scanning of the probe and applying a pulsed high bias voltage between the probe and the sample is repeated.

【0019】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0020】[0020]

【発明の効果】本発明によれば、以下のような効果を奏
することができる。 (A)電解液の溶媒として、水と比較して小さな表面張
力及び粘性係数を持つメチルアルコールを用いる。これ
により、研磨終了時に探針先端部分を電解液から素早く
分離することができる。
According to the present invention, the following effects can be obtained. (A) Methyl alcohol having a smaller surface tension and a lower viscosity than water is used as a solvent for the electrolytic solution. Thus, the tip of the probe can be quickly separated from the electrolytic solution at the end of polishing.

【0021】(B)交流による電解研磨と直流による電
解腐蝕とを組み合わせることにより、電解液中において
探針表面に生成される化合物を除去することができる。
つまり、メチルアルコールを電解液の溶媒として交流に
よる電解研磨法、直流による電解腐蝕法又はその両者を
組み合わせることにより、産業上重要なシリコン表面を
原子分解能をもって観察できる銀製STM探針を製作す
ることができる。
(B) By combining the electrolytic polishing with alternating current and the electrolytic corrosion with direct current, it is possible to remove the compound formed on the probe surface in the electrolytic solution.
In other words, it is possible to manufacture a silver STM probe capable of observing an industrially important silicon surface with an atomic resolution by using an electropolishing method using AC, an electrolytic corrosion method using DC, or a combination of both using methyl alcohol as a solvent for an electrolytic solution. it can.

【0022】(C)STM配置における電界蒸発を行い
電解研磨・腐蝕時の反応の不均一性に起因すると考えら
れる突起物を取り除き、探針先端部分を尖鋭化すること
ができる。すなわち、探針走査中にフィードバックをオ
フにし、探針・試料間にパルス状の高バイアス電圧を印
加するという操作を繰り返すことにより、探針先端部分
を尖鋭化することができる。つまり、容易に高電場を得
ることができるSTM配置電界蒸発法を付加することに
よって、産業上重要なシリコン表面を原子分解能をもっ
て観察することができる、探針先端部の尖鋭化を図った
銀製STM探針を製作することができる。
(C) By performing the electric field evaporation in the STM arrangement, it is possible to remove a projection which is considered to be caused by the non-uniformity of the reaction at the time of electrolytic polishing and corrosion, and to sharpen the tip portion of the probe. That is, by repeating the operation of turning off the feedback during the scanning of the probe and applying a pulsed high bias voltage between the probe and the sample, the tip of the probe can be sharpened. In other words, by adding an STM field-evaporation method that can easily obtain a high electric field, it is possible to observe an industrially important silicon surface with atomic resolution, and to use a silver STM with a sharpened tip of the probe. A probe can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す銀探針製造のための
電解研磨・電解腐蝕装置の模式図である。
FIG. 1 is a schematic view of an electrolytic polishing / electrolytic corrosion apparatus for manufacturing a silver probe according to a first embodiment of the present invention.

【図2】試料としてHOPGを用いた場合のトポグラフ
像である。
FIG. 2 is a topographic image when HOPG is used as a sample.

【図3】本発明の第2実施例を示すSTM配置における
電界蒸発法の模式図である。
FIG. 3 is a schematic diagram of an electric field evaporation method in an STM arrangement showing a second embodiment of the present invention.

【図4】STM配置における電界蒸発操作前後のトポグ
ラフ像の観察結果を示す図である。
FIG. 4 is a diagram showing observation results of topographic images before and after an electric field evaporation operation in an STM arrangement.

【図5】従来の銀探針製造のための電解腐蝕装置の模式
図である。
FIG. 5 is a schematic view of a conventional electrolytic corrosion apparatus for manufacturing a silver probe.

【図6】従来の銀探針製造のための電解腐蝕装置の模式
図である。
FIG. 6 is a schematic view of a conventional electrolytic corrosion apparatus for manufacturing a silver probe.

【図7】従来の銀探針製造のための電解腐蝕装置の模式
図である。
FIG. 7 is a schematic view of a conventional electrolytic corrosion apparatus for manufacturing a silver probe.

【符号の説明】[Explanation of symbols]

1 電解槽 2 電解液(過塩素酸をメチルアルコールで4倍に希
釈したもの) 3 平行平板電極 4 探針の素材となる銀線 5 交流電源 6 直流電源 7 探針ホルダー 11 試料表面 12 走査中の探針(フィードバック・オン) 13 高バイアス印加時の探針(フィードバック・オ
フ) 14 電界蒸発実施位置
DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Electrolyte (Perchloric acid diluted 4 times with methyl alcohol) 3 Parallel plate electrode 4 Silver wire used as a material of a probe 5 AC power supply 6 DC power supply 7 Probe holder 11 Sample surface 12 Scanning Probe (feedback on) 13 Probe when high bias is applied (feedback off) 14 Electric field evaporation position

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 走査トンネル顕微鏡で使用する銀探針製
作方法において、 メチルアルコールを電解液の溶媒として用い電解研磨に
より、銀探針の製作を行うことを特徴とする走査トンネ
ル顕微鏡の銀探針製作方法。
1. A method for manufacturing a silver probe for use in a scanning tunneling microscope, wherein the silver probe is manufactured by electropolishing using methyl alcohol as a solvent for an electrolytic solution. Production method.
【請求項2】 走査トンネル顕微鏡で使用する銀探針製
作方法において、 メチルアルコールを電解液の溶媒として用い電解腐蝕に
より、銀探針の製作を行うことを特徴とする走査トンネ
ル顕微鏡の銀探針製作方法。
2. A method for producing a silver probe for use in a scanning tunneling microscope, wherein the silver probe is produced by electrolytic corrosion using methyl alcohol as a solvent for an electrolytic solution. Production method.
【請求項3】 走査トンネル顕微鏡で使用する銀探針製
作方法において、 メチルアルコールを電解液の溶媒として用い電解研磨と
電解腐蝕とを組み合わせることにより銀探針の製作を行
うことを特徴とする走査トンネル顕微鏡の銀探針製作方
法。
3. A method for manufacturing a silver probe for use in a scanning tunneling microscope, wherein the silver probe is manufactured by combining electrolytic polishing and electrolytic corrosion using methyl alcohol as a solvent for an electrolytic solution. How to make a silver probe for a tunnel microscope.
【請求項4】 請求項1、2又は3記載の走査トンネル
顕微鏡の銀探針製作方法において、走査トンネル顕微鏡
配置における電界蒸発法を組み合わせることを特徴とす
る走査トンネル顕微鏡の銀探針製作方法。
4. The method for producing a silver probe of a scanning tunnel microscope according to claim 1, 2 or 3, wherein an electric field evaporation method in a scanning tunnel microscope arrangement is combined.
JP23426998A 1998-08-20 1998-08-20 How to make a silver probe for a scanning tunneling microscope Expired - Fee Related JP4354548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23426998A JP4354548B2 (en) 1998-08-20 1998-08-20 How to make a silver probe for a scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23426998A JP4354548B2 (en) 1998-08-20 1998-08-20 How to make a silver probe for a scanning tunneling microscope

Publications (2)

Publication Number Publication Date
JP2000065712A true JP2000065712A (en) 2000-03-03
JP4354548B2 JP4354548B2 (en) 2009-10-28

Family

ID=16968330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23426998A Expired - Fee Related JP4354548B2 (en) 1998-08-20 1998-08-20 How to make a silver probe for a scanning tunneling microscope

Country Status (1)

Country Link
JP (1) JP4354548B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101738A (en) * 2014-07-10 2014-10-15 华中科技大学 Preparation device and preparation method of nanometer probe controllable and large in length to diameter ratio
CN107102174A (en) * 2017-05-16 2017-08-29 中国计量科学研究院 A kind of preparation method for the extraordinary probe that micro-measurement apparatus is scanned for needlepoint type
CN113341179A (en) * 2021-06-18 2021-09-03 中国科学院大连化学物理研究所 Device and method for preparing scanning tunnel microscope needle tip based on liquid film electrochemical corrosion
WO2023048254A1 (en) * 2021-09-24 2023-03-30 ニプロ株式会社 Production method for conical hollow needle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101738A (en) * 2014-07-10 2014-10-15 华中科技大学 Preparation device and preparation method of nanometer probe controllable and large in length to diameter ratio
CN107102174A (en) * 2017-05-16 2017-08-29 中国计量科学研究院 A kind of preparation method for the extraordinary probe that micro-measurement apparatus is scanned for needlepoint type
CN113341179A (en) * 2021-06-18 2021-09-03 中国科学院大连化学物理研究所 Device and method for preparing scanning tunnel microscope needle tip based on liquid film electrochemical corrosion
WO2023048254A1 (en) * 2021-09-24 2023-03-30 ニプロ株式会社 Production method for conical hollow needle

Also Published As

Publication number Publication date
JP4354548B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
Nagahara et al. Preparation and characterization of STM tips for electrochemical studies
Iwami et al. Preparation of silver tips for scanning tunneling microscopy imaging
JP4242832B2 (en) Fabrication method and activation treatment of nanostructured composite field emission cathode
Ekvall et al. Preparation and characterization of electrochemically etched W tips for STM
Lin et al. High resolution photoelectrochemical etching of n-GaAs with the scanning electrochemical and tunneling microscope
Cavallini et al. Electrochemically etched nickel tips for spin polarized scanning tunneling microscopy
Zu et al. Studies on silicon etching using the confined etchant layer technique
JP2000031462A (en) Nano-structure and manufacture thereof, electron emission element and manufacture of carbon nano-tube device
JP2000065712A (en) Method for manufacturing silver probe of scanning tunnel microscope
JP2003025298A (en) Structure having pore and its manufacturing method
Meza et al. Reverse electrochemical etching method for fabricating ultra-sharp platinum/iridium tips for combined scanning tunneling microscope/atomic force microscope based on a quartz tuning fork
JPH11160209A (en) Preparation of sample for transmission electron microscope
Nishimura et al. Electrochemical etching of metal wires in low-stress electric contact using a liquid metal electrode to fabricate tips for scanning tunneling microscopy
Qian et al. Note: A simple, convenient, and reliable method to prepare gold scanning tunneling microscope tips
Hara et al. Morphology control of Cu clusters formed on H-Si (111) surface in solution by Si potential
JPH06224275A (en) Apparatus for preparation of analytical sample and its operating method
JP2005244089A (en) Anode forming device, treatment method, and manufacturing method of semiconductor substrate
JP3756470B2 (en) Cantilever having a plurality of electrodes and manufacturing method thereof
JP2000356643A (en) Manufacture of niobium probe for scanning tunneling microscope
JP4111833B2 (en) Method for forming fine structure
Wang Electrochemical scanning tunneling microscopy
JP2004034270A (en) Method for manufacturing semiconductor member formed with recessed structure and semiconductor member formed with recessed structure
Kaneshiro et al. Nanoscale etching of GaAs surfaces in electrolytic solutions by hole injection from a scanning tunneling microscope tip
Surganov et al. Array of niobium nanotips formed in porous anodic alumina matrix
JP3916879B2 (en) Manufacturing method of iridium probe for scanning tunneling microscope observation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees