JP2000064002A - Iron-base sintered valve seat and its manufacture - Google Patents

Iron-base sintered valve seat and its manufacture

Info

Publication number
JP2000064002A
JP2000064002A JP10233249A JP23324998A JP2000064002A JP 2000064002 A JP2000064002 A JP 2000064002A JP 10233249 A JP10233249 A JP 10233249A JP 23324998 A JP23324998 A JP 23324998A JP 2000064002 A JP2000064002 A JP 2000064002A
Authority
JP
Japan
Prior art keywords
powder
mixed
iron
valve seat
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10233249A
Other languages
Japanese (ja)
Other versions
JP3862196B2 (en
Inventor
Norimasa Aoki
徳眞 青木
Koichiro Hayashi
幸一郎 林
Koichi Aonuma
浩一 青沼
Toru Tsuboi
徹 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP23324998A priority Critical patent/JP3862196B2/en
Priority to GB9918480A priority patent/GB2342925B/en
Priority to DE19938719A priority patent/DE19938719B4/en
Priority to US09/376,855 priority patent/US6251157B1/en
Publication of JP2000064002A publication Critical patent/JP2000064002A/en
Application granted granted Critical
Publication of JP3862196B2 publication Critical patent/JP3862196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve high temperature wear resistance, strength, and machinability by dispersing, through a matrix, a compound phase which consists of a mixed-grain group of Cr carbide grains and Cr sulfide grains and a ferritic phase or a mixed phase of ferrite and austenite, each of the phases surrounding the above mixed-grain group in the iron-base. SOLUTION: Mixed-grain groups, where Cr carbide grains and Cr sulfide grains are present as a mixture, are allowed to exist mixedly in the matrix of an iron-base sintered valve seat. The periphery of each grain group is surrounded by a ferritic phase or a mixed phase of ferrite and austenite to form a compound phase having the grain group as a nucleus. By dispersing the Cr sulfide grains having self-lubricity together with the hard Cr carbide grains, improved machinability as well as high wear resistance can be provided. Owing to high Cr concentration, the ferritic phase or the mixed phase of ferrite and austenite can provide excellent toughness and increased material strength and also can act as a buffer against mating parts. It is preferable that the grain groups comprise, by area ratio, 3 to 25% of the metallic structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば内燃機関
等に使用して好適な鉄基焼結バルブシートおよびその製
造方法に係り、特に、高温耐摩耗性とともに被削性を向
上させる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based sintered valve seat suitable for use in, for example, an internal combustion engine and a method for manufacturing the same, and more particularly to a technique for improving high temperature wear resistance and machinability.

【0002】[0002]

【従来の技術】近年、自動車エンジンは、高動力性能化
により作動条件が一段と厳しくなっており、バルブシー
トにおいても、従来に増して厳しい使用環境条件に耐え
ることが必要となってきている。本出願人も先に、特公
昭49−17968号公報、特公昭55−36242号
公報、特公昭57−56547号公報、特公平5−55
593号公報、特開平9−195012号公報、特開平
9−195013号公報、特開平9−195014号公
報等において、耐摩耗性に優れた焼結合金を開示してき
た。また、特願平9−34449号、特願平10−14
1976号において、耐摩耗性とともに被削性を向上さ
せた耐摩耗性焼結合金を提案している。
2. Description of the Related Art In recent years, operating conditions of automobile engines have become more severe due to higher power performance, and valve seats are required to withstand more severe operating environment conditions than ever. The applicant of the present invention has also previously disclosed Japanese Patent Publication No. 49-17968, Japanese Patent Publication No. 55-36242, Japanese Patent Publication No. 57-56547, and Japanese Patent Publication No. 5-55.
In 593, JP-A-9-195012, JP-A-9-195013, JP-A-9-195014, etc., sintered alloys having excellent wear resistance have been disclosed. Also, Japanese Patent Application No. 9-34449 and Japanese Patent Application No. 10-14.
No. 1976 proposes a wear resistant sintered alloy having improved wear resistance and machinability.

【0003】上記の本出願人が先に開示した耐摩耗性焼
結合金のうち、特公昭57−56547号公報の耐摩耗
性焼結合金は、バルブシートとしての基地を形成するた
めに、上記特公昭49−17968号公報および特公昭
55−36242号公報で開示の合金から各々黒鉛を除
いた成分を合金化して2種の合金粉末となし、黒鉛粉末
との混合粉末として用い、斑状基地組織を呈することに
より耐摩耗性を改善した焼結合金である。すなわち、重
量比で、Cr:2〜4%、Mo:0.2〜0.4%、
V:0.2〜0.4%およびFe:残部よりなるA合金
粉末と、重量比で、Ni:0.5〜3%、Mo:0.5
〜3%、Co:5.5〜7.5%およびFe:残部より
なるB合金粉末の混合粉末に黒鉛を添加した場合、A合
金粉末とB合金粉末の比が25:75〜75:25の間
で耐摩耗性が良好になることが開示されている。
Among the wear-resistant sintered alloys previously disclosed by the applicant, the wear-resistant sintered alloy disclosed in Japanese Patent Publication No. 57-56547 is used in order to form a matrix as a valve seat. The alloys disclosed in JP-B-49-17968 and JP-B-55-36242 are alloyed with the components except for graphite to form two kinds of alloy powders, which are used as a mixed powder with graphite powder, and have a mottled matrix structure. Is a sintered alloy having improved wear resistance. That is, by weight ratio, Cr: 2 to 4%, Mo: 0.2 to 0.4%,
V: 0.2 to 0.4% and Fe: A alloy powder consisting of the balance, and Ni: 0.5 to 3% and Mo: 0.5 by weight.
When graphite is added to a mixed powder of B alloy powder consisting of ˜3%, Co: 5.5 to 7.5% and Fe: balance, the ratio of A alloy powder to B alloy powder is 25:75 to 75:25. It has been disclosed that the wear resistance is improved between the two.

【0004】また、特公平5−55593号公報で開示
の耐摩耗性焼結合金は、上記特公昭55−36242号
公報で開示の合金に、Mo:26〜30%、Cr:7〜
9%、Si:1.5〜2.5%およびCo:残部の硬質
相が分散した組織を呈するものであり、上記B合金粉末
と、Mo:26〜30%、Cr:7〜9%、Si:1.
5〜2.5%およびCo:残部のC合金粉末と黒鉛粉末
の混合粉末を用いることで製造することができる。
The wear-resistant sintered alloy disclosed in Japanese Examined Patent Publication No. 5-55593 is similar to the alloy disclosed in Japanese Examined Patent Publication No. 55-36242, in which Mo: 26-30% and Cr: 7-
9%, Si: 1.5 to 2.5%, and Co: the remaining hard phase is present in a dispersed structure. The above B alloy powder, Mo: 26 to 30%, Cr: 7 to 9%, Si: 1.
5 to 2.5% and Co: The rest can be produced by using a mixed powder of C alloy powder and graphite powder.

【0005】特開平9−195012号公報で開示の耐
摩耗性焼結合金は、全体組成が、Ni:0.736〜
9.65%、Cu:0.736〜2.895%、Mo:
0.294〜0.965%、Cr:0.12〜6.25
%、C:0.508〜2.0%で、マルテンサイト
と、ソルバイトおよび/または上部ベイナイトの核を
有し、その核を取り囲むベイナイトと、Ni濃度の高
いオーステナイトと、Cr濃度の高いフェライトで覆
われた主としてCr炭化物よりなる硬質相からなる組織
を呈するものであり、Ni:1〜10%、Cu:1〜3
%、Mo:0.4〜1%をFe粉に部分拡散付着させた
粉末に、Cr:4〜25%、C:0.25〜2.4%、
残部FeのFe−Cr系合金粉末を3〜25%、黒鉛粉
を0.5〜1.4%を混合した粉末を用いることを骨子
としている。
The wear-resistant sintered alloy disclosed in JP-A-9-195012 has a total composition of Ni: 0.736 to
9.65%, Cu: 0.736 to 2.895%, Mo:
0.294 to 0.965%, Cr: 0.12 to 6.25
%, C: 0.508 to 2.0%, having martensite, sorbite and / or upper bainite nuclei, and surrounding bainite, austenite with high Ni concentration, and ferrite with high Cr concentration. It exhibits a structure composed of a hard phase mainly composed of Cr carbide, Ni: 1 to 10%, Cu: 1 to 3
%, Mo: 0.4 to 1% to a powder obtained by partially diffusing and adhering Fe powder to Cr: 4 to 25%, C: 0.25 to 2.4%,
The essence is to use a powder obtained by mixing 3 to 25% of Fe-Cr alloy powder of the balance Fe and 0.5 to 1.4% of graphite powder.

【0006】特開平9−195013号公報で開示の耐
摩耗性焼結合金は、全体組成が、Ni:0.736〜
5.79%、Cr:0.12〜6.25%、Mo:0.
294〜0.965%、C:0.508〜2.0%で、
ベイナイトあるいはベイナイトとソルバイトの混合組織
の基地中に、主としてCr炭化物よりなる硬質相の核を
有し、その核を取り囲むCr濃度の高いフェライトとそ
の周囲を更に取り囲むマルテンサイトの相が分散する組
織を呈するものであり、Ni:1〜6%、Mo:0.4
〜1%の合金粉末に、Cr:4〜25%、C:0.25
〜2.4%、残部FeのFe−Cr系合金粉末を3〜2
5%、黒鉛粉を0.5〜1.4%を混合した粉末を用い
ることを骨子としている。
The wear-resistant sintered alloy disclosed in JP-A-9-195013 has an overall composition of Ni: 0.736 to
5.79%, Cr: 0.12 to 6.25%, Mo: 0.
294 to 0.965%, C: 0.508 to 2.0%,
In the matrix of bainite or a mixed structure of bainite and sorbite, a structure having a hard phase core mainly composed of Cr carbide, in which a ferrite with a high Cr concentration surrounding the core and a martensite phase further surrounding the core are dispersed, Present: Ni: 1 to 6%, Mo: 0.4
~ 1% alloy powder, Cr: 4-25%, C: 0.25
~ 2.4%, the balance of Fe Fe-Cr alloy powder 3 ~ 2
The main point is to use a powder in which 5% and graphite powder of 0.5 to 1.4% are mixed.

【0007】特開平9−195014号公報で開示の耐
摩耗性焼結合金は、全体組成が、Ni:0.736〜
5.79%、Cr:0.12〜6.25%、Mo:0.
368〜1.93%、C:0.508〜2.0%で、
ベイナイトあるいはベイナイトとソルバイトと、マル
テンサイトと、オーステナイトの混合組織中に、主と
してCr炭化物よりなる硬質相の核を有し、その核を取
り囲むCr濃度の高いフェライトとその周囲を更に取り
囲むマルテンサイトの相が分散する組織を呈するもので
あり、Mo:0.5〜2%で残部がFeの合金粉末にN
i:1〜6%を部分拡散付着させた粉末に、Cr:4〜
25%、C:0.25〜2.4%、残部FeのFe−C
r系合金粉末を3〜25%、黒鉛粉を0.5〜1.4%
を混合した粉末を用いることを骨子としている。
The wear-resistant sintered alloy disclosed in JP-A-9-195014 has an overall composition of Ni: 0.736 to
5.79%, Cr: 0.12 to 6.25%, Mo: 0.
368 to 1.93%, C: 0.508 to 2.0%,
Bainite or bainite, sorbite, martensite, and austenite have a hard phase core composed mainly of Cr carbide in the mixed structure of ferrite, which has a high Cr concentration surrounding the core and a martensite phase which further surrounds the ferrite. Is present in the alloy powder of Mo: 0.5 to 2% with the balance being Fe.
i: 1 to 6% by partial diffusion adhesion to the powder, Cr: 4 to
25%, C: 0.25-2.4%, balance Fe-C
3-25% r-alloy powder, 0.5-1.4% graphite powder
The main point is to use a powder in which

【0008】さらに、特願平9−34449号で出願の
耐摩耗性焼結合金は、前記特公昭57−56547号で
開示の斑状組織を呈する合金をベースとして、基地強化
のためにNiを添加するとともに、前記特公平5−55
593号公報で用いたCo基合金粉末と前記特開平9−
195012号公報、前記特開平9−195013号公
報および前記特開平9−195014号公報で用いたF
e−Cr系合金粉末を硬質相形成のために添加したもの
で、全体組成が、Ni:1.35〜19.61%、C
r:0.9〜11.05%、Mo:1.44〜9.09
%、Co:3.6〜20.05%、V:0.018〜
0.26%、Si:0.1〜0.75%、C:0.35
〜1.5%で、マルテンサイトとソルバイトおよびオー
ステナイトの混合組織中に、主としてMo珪化物よりな
る硬質相を核としてその周囲をCoが拡散した拡散相が
取り囲む第1の硬質相と、主としてCr炭化物からなる
硬質相を核としてその周囲をフェライトとオーステナイ
トの混合相が取り囲む第2の硬質相とがそれぞれ分散す
る組織を呈することを骨子としている。
Further, the wear-resistant sintered alloy filed in Japanese Patent Application No. 9-34449 is based on the alloy having the mottled structure disclosed in Japanese Patent Publication No. 57-56547, and Ni is added to strengthen the matrix. In addition to the above
Co-based alloy powder used in Japanese Patent No.
F used in Japanese Patent Laid-Open No. 195012, Japanese Patent Laid-Open No. 9-195013 and Japanese Patent Laid-Open No. 9-195014
e-Cr alloy powder was added to form a hard phase, and the overall composition was Ni: 1.35 to 19.61%, C
r: 0.9 to 11.05%, Mo: 1.44 to 9.09
%, Co: 3.6 to 20.05%, V: 0.018 to
0.26%, Si: 0.1 to 0.75%, C: 0.35
In the mixed structure of martensite, sorbite, and austenite, the first hard phase, which is surrounded by the diffusion phase in which Co is diffused around the hard phase mainly composed of Mo silicide, is mainly used as Cr. The essence is to have a structure in which a hard phase made of carbide is used as a nucleus and a second hard phase surrounded by a mixed phase of ferrite and austenite is dispersed around the core.

【0009】特願平10−141976号で出願の耐摩
耗性焼結合金は、Fe粉にNi粉を添加することで強化
した基地に、前記特開平9−195012号公報、前記
特開平9−195013号公報および前記特開平9−1
95014号公報で用いたFe−Cr系合金粉末を硬質
相形成のために添加し、成形−焼結した焼結体に場合に
よって深冷処理を施すことにより組織中のオーステナイ
ト量を適正化することを骨子としている。
The wear-resistant sintered alloy filed in Japanese Patent Application No. 10-141976 is applied to the base strengthened by adding Ni powder to Fe powder to the above-mentioned Japanese Patent Laid-Open Nos. 9-195012 and 9- Japanese Patent Laid-Open No. 195013 and Japanese Patent Laid-Open No. 9-1
To optimize the amount of austenite in the structure by adding the Fe-Cr alloy powder used in Japanese Patent Publication No. 95014 for the formation of a hard phase and subjecting the formed-sintered sintered body to deep-chill treatment in some cases. Is the main point.

【0010】[0010]

【発明が解決しようとする課題】このように本出願人も
時代の要請に従い、より耐摩耗性に優れた焼結合金を提
供してきたが、自動車エンジンのさらなる高性能化によ
り作動条件が一段と厳しくなっているのが現状であり、
前記した焼結合金よりもさらに高温における耐摩耗性、
強度および被削性に優れるバルブシートが望まれてい
る。
As described above, the applicant of the present invention has also provided sintered alloys having more excellent wear resistance in accordance with the demands of the times. However, due to the further improvement in performance of automobile engines, the operating conditions become more severe. Is the current situation,
Wear resistance at higher temperature than the above-mentioned sintered alloy,
A valve seat having excellent strength and machinability is desired.

【0011】[0011]

【発明を解決するための手段】本発明の鉄基焼結バルブ
シートは、Cr炭化物粒子とCr硫化物粒子とが混在す
る粒子群およびこの粒子群を核として周囲を取り囲むフ
ェライト相もしくはフェライトとオーステナイトの混合
相からなる複合相が基地中に分散することを特徴として
いる。以下、上記構成の鉄基焼結バルブシートの作用に
ついて、図1を参照しながら説明する。
The iron-based sintered valve seat of the present invention comprises a particle group in which Cr carbide particles and Cr sulfide particles are mixed, and a ferrite phase or ferrite and austenite surrounding the particle group as a core. The composite phase consisting of the mixed phase of is dispersed in the matrix. Hereinafter, the operation of the iron-based sintered valve seat having the above structure will be described with reference to FIG.

【0012】図1は鉄基焼結バルブシートの表面をナイ
タール等で腐食した場合の金属組織を示す模式図であ
る。図1に示すように、この鉄基焼結バルブシートの基
地中には、Cr炭化物粒子とCr硫化物粒子とが混在す
る粒子群が分散している。また、粒子群の周囲をフェラ
イト相もしくはフェライトとオーステナイトの混合相が
取り囲み、こうして粒子群を核とする複合相が形成され
ている。このように、本発明の鉄基焼結バルブシートで
は、硬質なCr炭化物粒子とともに自己潤滑性のあるC
r硫化物もさらに分散させることで、基地に高い耐摩耗
性を付与すると同時に被削性も向上させることができ
る。さらに、フェライト相またはオーステナイトとフェ
ライトの混合相はCr濃度が高いため、靭性に富み材料
強度を高めるとともに、相手部品であるバルブに対して
緩衝材の役割を果たす。したがって、相手部品の摩耗を
抑制することで耐摩耗性がさらに高められる。基地組織
としては、一般に用いられている、パーライト、ソルバ
イト、ベイナイト、マルテンサイトの単一組織、あるい
は、これらにオーステナイトを加えた群より選ばれる混
合組織が用いることができ、また、前述の単一組織ある
いは混合組織中に、硬質粒子、潤滑物質等が分散する基
地組織も用いることができる。
FIG. 1 is a schematic view showing a metal structure when the surface of an iron-based sintered valve seat is corroded by Nital or the like. As shown in FIG. 1, a group of particles in which Cr carbide particles and Cr sulfide particles are mixed are dispersed in the matrix of the iron-based sintered valve seat. Further, the particle group is surrounded by a ferrite phase or a mixed phase of ferrite and austenite, thus forming a composite phase having the particle group as a nucleus. As described above, in the iron-based sintered valve seat of the present invention, hard Cr carbide particles and self-lubricating C
By further dispersing r sulfide, it is possible to impart high wear resistance to the matrix and at the same time improve machinability. Further, since the ferrite phase or the mixed phase of austenite and ferrite has a high Cr concentration, it is rich in toughness and enhances the material strength, and also plays a role of a cushioning material for the valve which is a counterpart component. Therefore, the wear resistance is further enhanced by suppressing the wear of the mating component. As the matrix structure, a generally used single structure of pearlite, sorbite, bainite, martensite, or a mixed structure selected from the group of austenite added to these can be used, and the above-mentioned single structure A matrix structure in which hard particles, a lubricant, etc. are dispersed in the structure or mixed structure can also be used.

【0013】ここで、粒子群の金属組織中に占める割合
は、面積比で3〜25%であることが望ましい。粒子群
の面積比が3%を下回ると、上記したような耐摩耗性と
被削性が得難くなる。一方、面積比が25%を上回る
と、硬さが高くなりすぎて相手部品の摩耗を促進し、摩
耗粉が砥粒として作用して耐摩耗性が低下する。なお、
粒子群の面積は、粒子群の輪郭線の内側の面積を測定し
て求められる。
Here, the ratio of the particle group in the metal structure is preferably 3 to 25% in area ratio. When the area ratio of the particle group is less than 3%, it becomes difficult to obtain the wear resistance and machinability as described above. On the other hand, if the area ratio exceeds 25%, the hardness becomes too high to accelerate the wear of the mating component, and the abrasion powder acts as abrasive grains to reduce the wear resistance. In addition,
The area of the particle group is obtained by measuring the area inside the contour line of the particle group.

【0014】また、上記鉄基焼結バルブシートには、粒
子群に、Mo,W,Vの少なくとも1種以上の炭化物粒
子を混在させると好適である。これにより、粒子群に
は、Cr炭化物およびCr硫化物に加えてMo炭化物、
V炭化物あるいはW炭化物や、CrとMo、Vあるいは
Wの金属間化合物が含まれるようになり、耐摩耗性が一
層向上される。すなわち、図1の模式図において、「C
r炭化物およびCr硫化物が混在する」粒子群を「主と
してCr炭化物およびCr硫化物が混在する粒子群」に
置き換えた金属組織となる。さらに、VおよびWは、C
と微細な炭化物を形成して耐摩耗性の向上に寄与すると
ともに、これらの金属間化合物および炭化物は、Cr炭
化物の粗大化を防止する効果を有する。粗大化したCr
炭化物は相手部品の摩耗を促進するので、粗大化の防止
によって相手部品であるバルブの摩耗が抑制され、耐摩
耗性も向上する。
In the iron-based sintered valve seat, it is preferable that at least one kind of carbide particles of Mo, W and V be mixed in the particle group. As a result, in addition to Cr carbide and Cr sulfide, Mo carbide,
The V carbide or W carbide and the intermetallic compound of Cr and Mo, V or W are contained, and the wear resistance is further improved. That is, in the schematic diagram of FIG.
A metal structure is obtained by replacing the “particle group in which r carbide and Cr sulfide are mixed” with “a particle group in which Cr carbide and Cr sulfide are mainly mixed”. Further, V and W are C
And forming a fine carbide to contribute to the improvement of wear resistance, and these intermetallic compounds and carbides have the effect of preventing Cr carbide from coarsening. Coarse Cr
Since the carbide promotes the wear of the mating component, the wear of the valve, which is the mating component, is suppressed by the prevention of coarsening, and the wear resistance is also improved.

【0015】上記のような鉄基焼結バルブシートは、C
rを重量比で4〜25%含有する粒子群形成粉末と、M
oS粉末,WS粉末,FeS粉末,CuS粉末の少
なくとも1種以上よりなる硫化物粉末とを、鉄基混合粉
末もしくはCrを含有しない鉄基合金粉末に添加し、混
合した粉末を用いるとともに、硫化物粉末を全体組成中
のS量が重量比で0.3〜1.5%となるよう添加する
ことによって製造することができる。
The iron-based sintered valve seat as described above is C
a particle group forming powder containing 4 to 25% by weight of r, M
oS 2 powder, WS 2 powder, FeS powder, and sulfide powder consisting of at least one of CuS powder are added to the iron-based mixed powder or the iron-based alloy powder not containing Cr, and the mixed powder is used, It can be produced by adding sulfide powder so that the S content in the entire composition is 0.3 to 1.5% by weight.

【0016】特に、MoS粉末やWS粉末を用いる
ことにより、基地中にMo炭化物やW炭化物が分散し、
耐摩耗性をさらに向上させることができる。また、Cu
Sを用いることにより、Cuが基地に分散して基地の強
化が促進されるのに加えて、焼入れ性が改善され、耐摩
耗性をさらに向上させることができる。
In particular, by using MoS 2 powder or WS 2 powder, Mo carbide or W carbide is dispersed in the matrix,
The wear resistance can be further improved. Also, Cu
By using S, Cu is dispersed in the matrix to promote the strengthening of the matrix, and at the same time, the hardenability is improved and the wear resistance can be further improved.

【0017】ここで、鉄基混合粉末またはCrを含有し
ない鉄基合金粉末は基地形成粉末であり、基地形成粉末
としてFe−Cr系合金粉末のみを用いると、粒子群形
成に同じくFe−Cr系合金粉末を用いているため粒子
群の周囲に高クロムのフェライト相(フェライトとオー
ステナイトの混合相)が形成されなくなり、強度の向上
による耐摩耗性の向上が達成されない。ただし、Fe−
Cr系合金粉末の他にCrを含有しない鉄基合金粉末を
併用すると、粒子群の周囲に高クロムのフェライト相
(フェライトとオーステナイトの混合相)が形成されて
耐摩耗性が向上する。
Here, the iron-based mixed powder or the iron-based alloy powder not containing Cr is a matrix-forming powder, and if only the Fe-Cr-based alloy powder is used as the matrix-forming powder, the Fe-Cr-based powder is also used for forming the particle group. Since the alloy powder is used, a high chromium ferrite phase (mixed phase of ferrite and austenite) is not formed around the particle group, and improvement in wear resistance due to improvement in strength cannot be achieved. However, Fe-
When an iron-based alloy powder that does not contain Cr is used together with the Cr-based alloy powder, a high chromium ferrite phase (mixed phase of ferrite and austenite) is formed around the particle group to improve wear resistance.

【0018】上記製造方法において、粒子群形成粉末の
Crの割合を重量比で4〜25%としたのは、4重量%
未満では形成するCr炭化物およびCr硫化物の量が不
十分で耐摩耗性および被削性の向上に寄与しなくなり、
また、25重量%を上回ると、逆にCr炭化物の量が多
くなりすぎて相手部品の摩耗を促進するとともに、粉末
の硬さが増大して圧縮性が損なわれるからである。な
お、前述のように、粒子群の金属組織中に占める面積比
を3〜25%とするには、粒子群形成粉末を粉末全体に
対して5〜25重量%添加する。
In the above manufacturing method, the ratio of Cr in the particle group forming powder is set to 4 to 25% by weight is 4% by weight.
If the amount is less than the above, the amount of Cr carbide and Cr sulfide to be formed is insufficient and it does not contribute to improvement of wear resistance and machinability.
On the other hand, if it exceeds 25% by weight, on the contrary, the amount of Cr carbide becomes too large to promote the wear of the mating component, and the hardness of the powder increases to impair the compressibility. As described above, in order to set the area ratio of the particle group in the metal structure to 3 to 25%, the particle group forming powder is added to the powder in an amount of 5 to 25% by weight.

【0019】また、全体組成中のS量が0.3〜1.5
重量%となるように硫化物粉末を添加するのは、0.3
重量%未満ではCr硫化物等の形成が不十分となって耐
摩耗性および被削性の向上が不充分となり、1.5重量
%を上回るとCr硫化物の析出が過多となって強度が低
下するからである。
The amount of S in the overall composition is 0.3 to 1.5.
Addition of sulfide powder so that the weight% is 0.3
If it is less than 1.5% by weight, the formation of Cr sulfide or the like will be insufficient and the wear resistance and machinability will be insufficiently improved. If it exceeds 1.5% by weight, the precipitation of Cr sulfide will be excessive and the strength will be poor. Because it will decrease.

【0020】さらに、粒子群形成粉末中にMo,V,W
の少なくとも1種以上を含有させることにより、粒子群
に、Mo,W,Vの少なくとも1種以上の炭化物粒子を
混在させることができ好適である。
Further, Mo, V, W is contained in the particle group forming powder.
It is preferable that at least one kind of Mo, W, and V carbide particles can be mixed in the particle group by including at least one kind of the above.

【0021】[0021]

【実施例】以下本発明の実施例を説明する。表1に示す
基地形成用の合金粉A〜E、Fe粉、Ni粉、黒鉛粉、
および硬質相形成粉末F、粒子群形成用合金粉Gと硫化
物粉末とを用意した。なお、基地形成用の合金粉Cは、
Fe粉にNiおよびMoを部分拡散付着させた部分拡散
合金粉末、合金粉EはFe−Mo完全合金粉にNiを部
分拡散付着させた部分拡散合金粉末であり、他のA、
B、D、F、G粉は完全合金粉末である。これらの粉末
を表2および表3に示す配合比で混合した後、成形圧力
6.5ton/cmでφ30×φ25×t10のバル
ブシート形状に成形し、アンモニア分解ガス雰囲気中1
180℃で60分間焼結して、表4に示す成分組成を有
する合金(試料番号1〜54)を得た。なお、本発明例
は表2および表3において硫化物粉末を添加したもので
あり、その他は比較例である。
EXAMPLES Examples of the present invention will be described below. Alloy powders A to E for forming a matrix shown in Table 1, Fe powder, Ni powder, graphite powder,
A hard phase forming powder F, a particle group forming alloy powder G and a sulfide powder were prepared. The alloy powder C for forming the matrix is
Partial diffusion alloy powder in which Ni and Mo are partially diffused and adhered to Fe powder, alloy powder E is a partial diffusion alloy powder in which Ni is partially diffused and adhered to Fe-Mo perfect alloy powder, and other A,
The B, D, F and G powders are perfect alloy powders. These powders were mixed at the compounding ratios shown in Tables 2 and 3, and then molded into a valve seat shape of φ30 × φ25 × t10 at a molding pressure of 6.5 ton / cm 2 , and the mixture was molded in an atmosphere of ammonia decomposition gas 1
Sintering was performed at 180 ° C. for 60 minutes to obtain alloys (Sample Nos. 1 to 54) having the component compositions shown in Table 4. The examples of the present invention are obtained by adding sulfide powder in Tables 2 and 3, and the others are comparative examples.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】以上の合金について、簡易摩耗試験および
被削性試験を行った。その結果を表5および図2〜12
に示す。なお、簡易摩耗試験は、アルミ合金製ハウジン
グにバルブシート形状に加工した焼結合金を圧入嵌合
し、バルブをモータ駆動による偏心カムの回転で上下ピ
ストン運動させることにより、バルブのフェース面とバ
ルブシートのシート面とを繰り返し衝突させる試験であ
る。また、この試験での温度の設定は、バルブの傘をバ
ーナーで加熱することにより行い、簡易的にエンジン室
内での使用環境を摸した試験とした。今回の試験では、
偏心カムの回転数を2700rpm、バルブシート部分
の試験温度を250℃、繰り返し時間を15時間に設定
し、試験後のバルブシートおよびバルブの摩耗量を測定
して評価を行った。また披削性試験は、卓上ボール盤を
使用して一定の荷重でドリルで試料に穴をあけ、その可
能な加工数を比較する試験であり、今回の試験では荷重
は1.0kg、使用ドリルはφ3超硬ドリル、試料の厚
さを3mmに設定して行った。
A simple wear test and a machinability test were conducted on the above alloys. The results are shown in Table 5 and FIGS.
Shown in. In the simple wear test, a sintered alloy processed into a valve seat shape is press-fitted into an aluminum alloy housing, and the valve is moved up and down by the rotation of an eccentric cam driven by a motor. This is a test in which a sheet repeatedly collides with the sheet surface. In addition, the temperature setting in this test was performed by heating the umbrella of the valve with a burner, and the test was performed simply by using the environment in the engine room. In this test,
The rotation speed of the eccentric cam was set to 2700 rpm, the test temperature of the valve seat portion was set to 250 ° C., and the repetition time was set to 15 hours, and the abrasion amount of the valve seat and the valve after the test was measured and evaluated. In addition, the machinability test is a test in which a sample is drilled with a constant load using a table-top drilling machine and the possible number of machining is compared. In this test, the load is 1.0 kg and the drill used is A φ3 carbide drill was used, and the thickness of the sample was set to 3 mm.

【0027】[0027]

【表5】 [Table 5]

【0028】まず、表2の試料番号1〜16を比較する
と、番号1,3,5,7,9,11,13,15はそれ
ぞれ従来の焼結合金であり、番号2,4,6は、それら
従来の焼結合金の混合粉末に粒子群形成粉末Gと硫化物
粉末とを、番号8,10,12,14,16は、硫化物
粉末を、混合して製造したものである。なお、番号17
〜54は全て本発明例である。図2から明らかなよう
に、硫化物粉末を混合してCr硫化物が含まれる粒子群
を有する本発明例では、従来例と比較してバルブシー
ト、バルブともに摩耗量が少ないことが確認された。ま
た、図3から明らかなように、本発明例では、従来例と
比較して加工孔数が多く被削性が良好なことが確認され
た。
First, comparing sample Nos. 1 to 16 in Table 2, Nos. 1, 3, 5, 7, 9, 9, 11, 13 and 15 are conventional sintered alloys, and Nos. 2, 4, 6 are. The mixed powder of these conventional sintered alloys is manufactured by mixing the particle group forming powder G and the sulfide powder, and the numbers 8, 10, 12, 14, and 16 are manufactured by mixing the sulfide powder. The number 17
54 are all examples of the present invention. As is clear from FIG. 2, it was confirmed that in the example of the present invention in which the sulfide powder was mixed and the particle group containing Cr sulfide was included, both the valve seat and the valve had less wear than the conventional example. . Further, as is clear from FIG. 3, it was confirmed that in the example of the present invention, the number of processed holes was large and the machinability was good as compared with the conventional example.

【0029】次に、図4は粒子群の金属組織中に占める
割合と摩耗量および加工孔数の関係を示す線図である。
図4から明らかなように、粒子群の面積割合が増加する
に伴い焼結合金の硬さが増加して加工孔数が減少する。
しかしながら、バルブシートの摩耗量は、粒子群の面積
割合が3〜25%の範囲で少なくなる。また、面積割合
が25%を超えると、バルブシートのバルブへの攻撃性
が高まってバルブが摩耗し、そのためにバルブシートの
摩耗も増加する。
Next, FIG. 4 is a diagram showing the relationship between the proportion of particles in the metal structure, the amount of wear, and the number of processed holes.
As is clear from FIG. 4, as the area ratio of the particle group increases, the hardness of the sintered alloy increases and the number of processed holes decreases.
However, the wear amount of the valve seat decreases when the area ratio of the particle group is in the range of 3 to 25%. On the other hand, if the area ratio exceeds 25%, the aggression of the valve seat on the valve is increased, and the valve is worn, so that the valve seat is also worn.

【0030】次に、図5は粒子群形成粉末の混合粉末全
体に対する割合と摩耗量および加工孔数の関係を示す線
図である。図5から明らかなように、粒子群形成粉末の
添加量が増加するに伴い焼結合金の硬さが増加して加工
孔数が減少する。しかしながら、バルブシートの摩耗量
は、粒子群形成粉末の添加量が5〜25重量%の範囲で
少なくなる。また、この場合も粒子群形成粉末の添加量
が25重量%を超えると、バルブシートのバルブへの攻
撃性が高まってバルブが摩耗し、そのためにバルブシー
トの摩耗も増加する。
Next, FIG. 5 is a diagram showing the relationship between the ratio of the particle group forming powder to the entire mixed powder, the amount of wear and the number of processed holes. As is clear from FIG. 5, the hardness of the sintered alloy increases and the number of processed holes decreases as the addition amount of the particle group forming powder increases. However, the wear amount of the valve seat decreases in the range of 5 to 25% by weight of the particle group forming powder added. Also in this case, when the addition amount of the particle group forming powder exceeds 25% by weight, the aggressiveness of the valve seat with respect to the valve is increased and the valve is worn, so that the wear of the valve seat is also increased.

【0031】次に、図6は硫化物粉末としてFeSを添
加した焼結合金中のS含有量と摩耗量および加工孔数の
関係を示す線図である。図6から明らかなように、Sの
含有量が増加するに伴い被削性が向上して加工孔数が増
加する。また、バルブシートの摩耗量は、Sの含有量が
0.3〜1.5重量%の範囲で少なくなっている。ま
た、Sの含有量が1.5重量%を超えると、Cr硫化物
の析出が過多となって強度が低下し、バルブシートおよ
びバルブの摩耗が増加する。なお、図7〜9から判るよ
うに、硫化物粉末としてMoS、WSまたはCuS
添加した焼結合金でも同等の結果となっている。
Next, FIG. 6 is a diagram showing the relationship between the S content, the wear amount and the number of processed holes in the sintered alloy to which FeS was added as the sulfide powder. As is clear from FIG. 6, as the content of S increases, the machinability improves and the number of machined holes increases. Further, the wear amount of the valve seat is small when the S content is in the range of 0.3 to 1.5% by weight. On the other hand, when the S content exceeds 1.5% by weight, the precipitation of Cr sulfide becomes excessive and the strength decreases, and the wear of the valve seat and the valve increases. As can be seen from FIGS. 7 to 9, MoS 2 , WS 2 or CuS was used as the sulfide powder.
The same result is obtained with the added sintered alloy.

【0032】次に、図10は粒子群形成粉末中のCr含
有量と摩耗量および加工孔数の関係を示す線図である。
図10から明らかなように、Crの含有量が増加するに
伴いCr炭化物の量が増え、加工孔数が減少する。しか
しながら、バルブシートの摩耗量は、Crの含有量が4
〜25重量%の範囲で少なくなっている、また、Crの
含有量が25重量%を超えると、粉末の硬さが増大して
圧縮性が損なわれる結果強度が低下するとともに、Cr
炭化物の量が多くなりすぎて相手部品の摩耗を促進し、
そのために、バルブシートおよびバルブの摩耗が増加す
る。
Next, FIG. 10 is a diagram showing the relationship between the Cr content in the particle group forming powder, the amount of wear and the number of processed holes.
As is clear from FIG. 10, as the Cr content increases, the amount of Cr carbide increases and the number of processed holes decreases. However, the wear amount of the valve seat is such that the Cr content is 4
If the Cr content exceeds 25% by weight, the hardness of the powder increases and the compressibility is impaired.
The amount of carbide becomes too large, which accelerates the wear of the mating parts,
As a result, valve seat and valve wear increases.

【0033】次に、図11は、本出願人が先に提案した
特願平10−141976号の焼結合金(番号15)
と、この焼結合金の粒子群形成粉末にMo、VおよびW
の1種以上を含有させたもの(番号48〜54)を用い
た焼結合金の摩耗量を示し、図12は加工孔数を示すも
のである。図12から判るように、各焼結合金の加工孔
数はほとんど変わらないが、本発明例のバルブシートの
摩耗量が大幅に減少し、優れた耐摩耗性を示した。な
お、比較のために、粒子群形成粉末にMo等を含有させ
ていない本発明例(番号16)の摩耗量と加工孔数も併
記した。
Next, FIG. 11 shows a sintered alloy (No. 15) of Japanese Patent Application No. 10-141976 previously proposed by the present applicant.
And Mo, V and W in the particle group forming powder of this sintered alloy.
The wear amount of the sintered alloy containing one or more of the above (Nos. 48 to 54) is shown, and FIG. 12 shows the number of processed holes. As can be seen from FIG. 12, the number of holes machined in each sintered alloy was almost unchanged, but the amount of wear of the valve seat of the present invention was greatly reduced, and excellent wear resistance was exhibited. For comparison, the wear amount and the number of processed holes of the present invention example (No. 16) in which the particle group forming powder did not contain Mo or the like are also shown.

【0034】[0034]

【発明の効果】以上説明したとおり本発明の鉄基焼結バ
ルブシートおよびその製造方法では、従来の技術と比較
して高い耐摩耗性および被削性を付与することができ
る。また、粒子群の面積割合等を規定することによっ
て、耐摩耗性および被削性をより確実に向上させること
ができる。
As described above, the iron-based sintered valve seat and the manufacturing method thereof according to the present invention can impart higher wear resistance and machinability as compared with the prior art. Further, by defining the area ratio of the particle group and the like, wear resistance and machinability can be more reliably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の耐摩耗性焼結合金の金属組織を模式
的に表す図である。
FIG. 1 is a diagram schematically showing a metal structure of a wear resistant sintered alloy of the present invention.

【図2】 試料番号1〜16における摩耗量を示した線
図である。
FIG. 2 is a diagram showing the amount of wear in sample numbers 1 to 16.

【図3】 試料番号1〜16における加工孔数を示した
線図である。
FIG. 3 is a diagram showing the number of processed holes in sample numbers 1 to 16.

【図4】 金属組織中に占める粒子群の面積割合と摩耗
量および加工孔数との関係を示す線図である。
FIG. 4 is a diagram showing the relationship between the area ratio of particle groups in the metal structure, the amount of wear, and the number of processed holes.

【図5】 粒子群形成粉末の添加量と摩耗量および加工
孔数との関係を示す線図である。
FIG. 5 is a diagram showing the relationship between the amount of particle group forming powder added, the amount of wear, and the number of processed holes.

【図6】 FeS粉末を添加した際の焼結合金中のS含
有量と摩耗量および加工孔数との関係を示す線図であ
る。
FIG. 6 is a diagram showing the relationship between the S content in a sintered alloy, the amount of wear, and the number of processed holes when FeS powder was added.

【図7】 MoS粉末を添加した際の焼結合金中のS
含有量と摩耗量および加工孔数との関係を示す線図であ
る。
FIG. 7: S in a sintered alloy when MoS 2 powder was added
It is a diagram showing the relationship between the content, the amount of wear and the number of processed holes.

【図8】 WS粉末を添加した際の焼結合金中のS含
有量と摩耗量および加工孔数との関係を示す線図であ
る。
FIG. 8 is a diagram showing the relationship between the S content in the sintered alloy, the amount of wear, and the number of processed holes when WS 2 powder was added.

【図9】 CuS粉末を添加した際の焼結合金中のS含
有量と摩耗量および加工孔数との関係を示す線図であ
る。
FIG. 9 is a diagram showing the relationship between the S content in the sintered alloy, the amount of wear, and the number of processed holes when CuS powder was added.

【図10】 粒子群形成粉末中のCr含有量と摩耗量お
よび加工孔数との関係を示す線図である。
FIG. 10 is a diagram showing the relationship between the Cr content in the particle group forming powder, the wear amount, and the number of processed holes.

【図11】 試料番号15,16,48〜54における
摩耗量を示した線図である。
11 is a diagram showing the amount of wear in sample numbers 15, 16, and 48 to 54. FIG.

【図12】 試料番号15,16,48〜54における
加工孔数を示した線図である。
FIG. 12 is a diagram showing the number of processed holes in sample numbers 15, 16, and 48 to 54.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青沼 浩一 千葉県松戸市稔台1018−2 誠和寮613号 室 (72)発明者 坪井 徹 千葉県鎌ヶ谷市南初富4−5−7 Fターム(参考) 4K018 AA34 AB05 AB07 AC01 BA16 BC20 DA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koichi Aonuma             1018-2 Minorita, Matsudo City, Chiba Prefecture Seiwa Dormitory No. 613             Room (72) Inventor Toru Tsuboi             4-5-7 Minami-Hatsutomi, Kamagaya City, Chiba Prefecture F-term (reference) 4K018 AA34 AB05 AB07 AC01 BA16                       BC20 DA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cr炭化物粒子とCr硫化物粒子とが混
在する粒子群およびこの粒子群を核として周囲を取り囲
むフェライト相もしくはフェライトとオーステナイトの
混合相からなる複合相が基地中に分散することを特徴と
する鉄基焼結バルブシート。
1. A particle group in which Cr carbide particles and Cr sulfide particles are mixed, and a ferrite phase surrounding the periphery with the particle group as a core or a composite phase composed of a mixed phase of ferrite and austenite is dispersed in a matrix. A characteristic iron-based sintered valve seat.
【請求項2】 前記粒子群の金属組織中に占める割合が
面積比で3〜25%であることを特徴する請求項1に記
載の鉄基焼結バルブシート。
2. The iron-based sintered valve seat according to claim 1, wherein the proportion of the particle group in the metal structure is 3 to 25% in area ratio.
【請求項3】 前記粒子群に、Mo,W,Vの少なくと
も1種以上の炭化物粒子が更に混在する金属組織を呈す
ることを特徴とする請求項1または2に記載の鉄基焼結
バルブシート。
3. The iron-based sintered valve seat according to claim 1, wherein the group of particles has a metal structure in which at least one kind of carbide particles of Mo, W, and V are further mixed. .
【請求項4】 Crを重量比で4〜25%含有する粒子
群形成粉末と、MoS粉末,WS粉末,FeS粉
末,CuS粉末の少なくとも1種以上よりなる硫化物粉
末とを、鉄基混合粉末もしくはCrを含有しない鉄基合
金粉末に添加し、混合した粉末を用いるとともに、前記
硫化物粉末を全体組成中のS量が重量比で0.3〜1.
5%となるよう添加することを特徴とする鉄基焼結バル
ブシートの製造方法。
4. A particle group forming powder containing 4 to 25% by weight of Cr, and a sulfide powder composed of at least one of MoS 2 powder, WS 2 powder, FeS powder, CuS powder, and an iron base. A mixed powder or an iron-based alloy powder that does not contain Cr is used as a mixed powder, and the sulfide powder has an S content of 0.3 to 1.
A method for producing an iron-based sintered valve seat, which is characterized by adding 5%.
【請求項5】 前記Crを含有する粒子群形成粉末の添
加量が5〜25%であることを特徴とする請求項4に記
載の鉄基焼結バルブシートの製造方法。
5. The method for producing an iron-based sintered valve seat according to claim 4, wherein the amount of the Cr-containing particle group forming powder added is 5 to 25%.
【請求項6】 前記Crを含有する粒子群形成粉末中に
Mo,V,Wの少なくとも1種以上が含有されている粉
末を用いることを特徴とする請求項4または5に記載の
鉄基焼結バルブシートの製造方法。
6. The iron-based baking according to claim 4, wherein a powder containing at least one of Mo, V and W in the particle group forming powder containing Cr is used. A method for manufacturing a valve seat.
JP23324998A 1998-08-19 1998-08-19 Iron-based sintered valve seat Expired - Lifetime JP3862196B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23324998A JP3862196B2 (en) 1998-08-19 1998-08-19 Iron-based sintered valve seat
GB9918480A GB2342925B (en) 1998-08-19 1999-08-06 Sintered alloy having improved wear resistance and process for producing the same
DE19938719A DE19938719B4 (en) 1998-08-19 1999-08-16 Abrasion-resistant sintered alloy and method for its production
US09/376,855 US6251157B1 (en) 1998-08-19 1999-08-18 Sintered alloy having superb wear resistance and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23324998A JP3862196B2 (en) 1998-08-19 1998-08-19 Iron-based sintered valve seat

Publications (2)

Publication Number Publication Date
JP2000064002A true JP2000064002A (en) 2000-02-29
JP3862196B2 JP3862196B2 (en) 2006-12-27

Family

ID=16952120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23324998A Expired - Lifetime JP3862196B2 (en) 1998-08-19 1998-08-19 Iron-based sintered valve seat

Country Status (1)

Country Link
JP (1) JP3862196B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238987A (en) * 2006-03-07 2007-09-20 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production method
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
CN112368409A (en) * 2018-07-11 2021-02-12 昭和电工材料株式会社 Sintered alloy and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
JP2007238987A (en) * 2006-03-07 2007-09-20 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production method
JP4693170B2 (en) * 2006-03-07 2011-06-01 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
CN112368409A (en) * 2018-07-11 2021-02-12 昭和电工材料株式会社 Sintered alloy and method for producing same
CN112368409B (en) * 2018-07-11 2022-07-26 昭和电工材料株式会社 Sintered alloy and method for producing same

Also Published As

Publication number Publication date
JP3862196B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP2957180B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3520093B2 (en) Secondary hardening type high temperature wear resistant sintered alloy
KR100796117B1 (en) Sintered valve seat and method of manufacturing the same
US5188659A (en) Sintered materials and method thereof
JP4001450B2 (en) Valve seat for internal combustion engine and manufacturing method thereof
JP3447031B2 (en) Wear resistant sintered alloy and method for producing the same
KR100499896B1 (en) A sintered member having an abrasion resistance and a method for producing the same
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2000064002A (en) Iron-base sintered valve seat and its manufacture
US6251157B1 (en) Sintered alloy having superb wear resistance and process for producing the same
JPH11335799A (en) Abrasion resistant sintered alloy and its production
JP3225649B2 (en) Wear resistant iron-based sintered alloy
JPH0555589B2 (en)
JPH0555591B2 (en)
JP2000064003A (en) Wear resistant sintered alloy and its production
JP3447032B2 (en) Wear resistant sintered alloy and method for producing the same
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JPH0456747A (en) Manufacture of wear resistant ferrous sintered alloy
JP2001214245A (en) Ferrous sintered alloy and producing method thererfor
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3068128B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPH08291376A (en) Combination of ferrous sintered alloy valve seat material with heat resistant and wear resistant alloy valve face material
JP3304805B2 (en) Iron-based sintered alloy with excellent wear resistance
KR970001323B1 (en) Sintering alloy of valve seat

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040809

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term