JP2000063857A - Method and apparatus for high-efficiency combustion of water/fossil fuel mixed emulsion - Google Patents

Method and apparatus for high-efficiency combustion of water/fossil fuel mixed emulsion

Info

Publication number
JP2000063857A
JP2000063857A JP10228383A JP22838398A JP2000063857A JP 2000063857 A JP2000063857 A JP 2000063857A JP 10228383 A JP10228383 A JP 10228383A JP 22838398 A JP22838398 A JP 22838398A JP 2000063857 A JP2000063857 A JP 2000063857A
Authority
JP
Japan
Prior art keywords
combustion
air
water
fuel
fossil fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10228383A
Other languages
Japanese (ja)
Inventor
Masahiro Mori
正弘 森
Yutaka Hashimoto
豊 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIMO KK
ZENSHIN DENRYOKU ENGINEERING K
ZENSHIN DENRYOKU ENGINEERING KK
Original Assignee
DAIMO KK
ZENSHIN DENRYOKU ENGINEERING K
ZENSHIN DENRYOKU ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIMO KK, ZENSHIN DENRYOKU ENGINEERING K, ZENSHIN DENRYOKU ENGINEERING KK filed Critical DAIMO KK
Priority to JP10228383A priority Critical patent/JP2000063857A/en
Publication of JP2000063857A publication Critical patent/JP2000063857A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Spray-Type Burners (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for combusting a water/fossil mixed emulsion at high efficiency and a high calorific value without forming much CO2, which method comprises introducing and jetting combustion air preheated to a specified or higher temperature into a combustion chamber, jetting the fuel into the combustion chamber by the help of the air stream and effecting the low oxygen concentration combustion of the fuel. SOLUTION: Combustion air is press injected from an air intake port 7 into an air heater 5 operated by electromagnetic induction heating or microwave heating at a speed of 80-100 m/sec by means of a blower 6 and heated to 1,000 deg.C or higher. The high-temperature heated air is branched at a high-temperature air header 8 and injected at a high speed from an air nozzle 10 as the combustion air of a burner 3, and it may be blown into the heater after it is branched into primary air and secondary air for promoting combustion. On the other hand, the water/fossil fuel mixed emulsion in a storage tank 1 is sprayed into the high-speed combustion air stream from the fuel nozzle 15 of the burner 3 by a fuel pump 2 and is ignited with the burner 3. The above combustion is possible in such a low oxygen concentration that the combustion air is used in a quantity of 34-23% of the theoretical air quantity necessary for combusting the fossil fuel in the emulsion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エマルジョン燃料
を用いる燃焼方法及び燃焼装置に関する。さらに詳しく
は本発明は、水−化石燃料混合エマルジョンを燃料とす
る低酸素濃度、高効率の燃焼方法及び燃焼装置に関す
る。
TECHNICAL FIELD The present invention relates to a combustion method and a combustion apparatus using emulsion fuel. More specifically, the present invention relates to a low oxygen concentration, high efficiency combustion method and a combustion apparatus using a water-fossil fuel mixed emulsion as a fuel.

【0002】[0002]

【従来の技術】従来、省エネや煤塵、窒素酸化物の低減
等の観点から、化石液体燃料に水を混合して燃料エマル
ジョンとして燃焼することが種々提案されている。さら
に近年、地球規模でCO2 (炭酸ガス)の排出削減が求
められており、一定の燃焼カロリーをできるだけ少ない
CO2 排出量で得られる燃料燃焼システムが要望されて
いる。水−化石燃料混合エマルジョンは、水を混合した
ことにより化石燃料よりも燃焼時のCO2 排出量を低減
できることから、前記の省エネ等の要請と併せて、水−
化石燃料混合エマルジョンを効率よく経済的に燃焼させ
る方法及び装置の開発が望まれていた。一方、化石液体
燃料を高効率で燃焼させる高性能工業炉は既に実用化さ
れている。この高効率燃焼を実現するには、取込空気を
1000℃以上に予熱することが必要である。従来、予
熱装置としては、蓄熱体をもつ2個のバーナーを交換燃
焼(交互燃焼)させることにより1000℃以上の予熱
空気を得る装置、例えば、日本ファーネス工業(株)製
NFK−HRSラジアントチューブバーナシステム(商
品名)、ノースアメリカン社製FDIツインベッドバー
ナー(商品名)等がある。この交換燃焼による予熱は、
一方のバーナーの燃焼による排気を他方の作動させてい
ないバーナー側から排出し、その排出部で蓄熱体に熱を
吸収させる方法であり、交互にこれを行う方法である。
しかし、これらの装置は、バーナー設置部を2か所必
要とするので、通常の構造のボイラーやガスタービンに
採用するのは困難であり、通常、炉にしか使用できな
い、バーナーの片方の作動時間中に燃焼空気を100
0℃以上に熱交換、予熱するためには大量の蓄熱体を必
要とする、といった欠点を有している。また、これは高
効率燃焼を水−化石燃料混合エマルジョンで行ったもの
ではなく、上記したように化石燃料のみの燃焼よりもさ
らに有利な点を数多く有する水−化石燃料混合エマルジ
ョンを使用しうる高効率燃焼方法及び燃焼装置の開発が
望まれていた。
2. Description of the Related Art Conventionally, various proposals have been made to mix fossil liquid fuel with water and burn it as a fuel emulsion from the viewpoint of energy saving and reduction of soot and nitrogen oxides. Further, in recent years, reduction of CO 2 (carbon dioxide) emission has been demanded on a global scale, and a fuel combustion system capable of obtaining a constant combustion calorie with a CO 2 emission as small as possible has been demanded. Since the water-fossil fuel mixed emulsion can reduce CO 2 emission at the time of combustion as compared with fossil fuel by mixing water, water-fossil fuel mixed emulsion can be used together with the above-mentioned request for energy saving.
It has been desired to develop a method and an apparatus for efficiently and economically burning a fossil fuel mixed emulsion. On the other hand, high-performance industrial furnaces that burn fossil liquid fuel with high efficiency have already been put to practical use. In order to realize this highly efficient combustion, it is necessary to preheat the intake air to 1000 ° C or higher. Conventionally, as a preheating device, a device that obtains preheated air of 1000 ° C. or more by exchanging (burning alternately) two burners having a heat storage body, for example, NFK-HRS radiant tube burner manufactured by Japan Furnace Industry Co., Ltd. System (brand name), North American FDI twin bed burner (brand name), etc. are available. The preheating by this exchange combustion is
This is a method in which the exhaust gas from the combustion of one burner is discharged from the other non-activated burner side, and the heat is absorbed by the heat storage body at the discharge portion, and this is performed alternately.
However, since these devices require two burner installation parts, it is difficult to adopt them in a boiler or a gas turbine of a normal structure, and the operating time of one of the burners, which can usually be used only in a furnace, 100 burning air inside
It has a drawback that a large amount of heat storage body is required for heat exchange and preheating at 0 ° C or higher. In addition, this is not one in which high-efficiency combustion was performed with a water-fossil fuel mixed emulsion, and as described above, a water-fossil fuel mixed emulsion having many advantages over the combustion of only fossil fuel can be used. It has been desired to develop an efficient combustion method and a combustion device.

【0003】[0003]

【発明が解決しようとする課題】したがって本発明は、
エネルギー効率よく水−化石燃料混合エマルジョンを燃
焼させ、少ないCO2 発生量で高い発熱量が得られる水
−化石燃料混合エマルジョンを用いた高効率燃焼方法及
び燃焼装置を提供することを目的とする。
Therefore, the present invention is
An object of the present invention is to provide a highly efficient combustion method and a combustion apparatus using a water-fossil fuel mixed emulsion, which can burn a water-fossil fuel mixed emulsion with energy efficiency and obtain a high calorific value with a small amount of generated CO 2 .

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題に
鑑み鋭意研究した結果、1000℃以上に予熱した燃焼
空気を燃焼室に導入して高速噴射させ、この空気流で水
−化石燃料混合エマルジョンを燃焼室内に噴射させるこ
とにより、エマルジョン燃料をコロイド微粒子として燃
焼室内に均一に分散させて低酸素、高効率燃焼が実現で
きることを見出し、この知見に基づき本発明をなすに至
った。すなわち本発明は、(1)1000℃以上に予熱
した燃焼空気を燃焼室に導入して高速噴射させ、この空
気流で水−化石燃料混合エマルジョンを燃焼室内に噴射
させ低酸素燃焼させることを特徴とする燃焼方法、
(2)燃焼空気を速度80〜100m/secで吹き込
むことを特徴とする(1)項記載の燃焼方法、(3)燃
焼空気の予熱を燃焼室の前段に設けた電磁誘導流体加熱
装置又はマイクロ波流体加熱装置で行うことを特徴とす
る(1)または(2)項記載の燃焼方法、(4)燃焼室
に、燃焼空気を高速で噴射する空気ノズルと、その空気
流中に水−化石燃料混合エマルジョンを導入しうるよう
にした燃料ノズルとを設け、この燃焼室の燃焼空気の導
入管に空気加熱装置を設けてなることを特徴とする燃焼
装置、(5)燃焼装置が、ボイラーである(4)項記載
の燃焼装置、(6)空気加熱装置が、電磁誘導流体加熱
装置である(4)または(5)項記載の燃焼装置、及び
(7)空気加熱装置が、マイクロ波流体加熱装置である
(4)または(5)項記載の燃焼装置を提供するもので
ある。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of the above problems, and as a result, introduced combustion air preheated to 1000 ° C. or higher into a combustion chamber for high-speed injection, and the air-flow produced water-fossil fuel. By injecting the mixed emulsion into the combustion chamber, it was found that the emulsion fuel can be uniformly dispersed in the combustion chamber as colloidal fine particles to realize low oxygen and high efficiency combustion, and the present invention has been completed based on this finding. That is, the present invention is characterized in that (1) combustion air preheated to 1000 ° C. or higher is introduced into a combustion chamber for high-speed injection, and a water-fossil fuel mixed emulsion is injected into the combustion chamber for low oxygen combustion. Burning method,
(2) Combustion air is blown at a velocity of 80 to 100 m / sec. (1) The combustion method according to the item (3), (3) Electromagnetic induction fluid heating device or micro in which preheating of the combustion air is provided in the preceding stage of the combustion chamber. (1) or (2), the air nozzle for injecting combustion air into the combustion chamber at high speed, and water-fossil in the air flow. A combustion device characterized by being provided with a fuel nozzle capable of introducing a fuel mixed emulsion, and an air heating device being provided in a combustion air introduction pipe of the combustion chamber. (5) The combustion device is a boiler. The combustion device according to (4), the air heating device according to (6) is an electromagnetic induction fluid heating device, and the combustion device according to (4) or (5), and the air heating device according to (7) are microwave fluids. A heating device (4) or (5 There is provided a combustion apparatus of claim wherein.

【0005】[0005]

【発明の実施の形態】本発明において燃焼させる水−化
石燃料混合エマルジョンは、水及び化石燃料液体を含ん
でなる液体燃料である。このエマルジョンとしては油中
水型エマルジョン、水中油型エマルジョン等が挙げられ
るが、このエマルジョンの型の種類については特に限定
されない。化石燃料液体としては例えば灯油、軽油、重
油などがある。水は、水道水、蒸留水など特に制限はな
い。本発明において用いることのできる水−化石燃料混
合エマルジョン中の水と化石燃料液体の混合割合は特に
制限はないが、通常、エマルジョン中の化石燃料液体の
割合は容量比で85〜40%であり、燃焼時のCO2
出量の低減の観点からは70〜40%が好ましく、50
〜40%がより好ましい。また、本発明者らの先に提案
したヒドロキシルイオン水(pH8.5〜10)を用い
て水の割合を多くした水−化石燃料混合エマルジョン
(特願平9−308958号)などを用いることができ
る。
DETAILED DESCRIPTION OF THE INVENTION The water-fossil fuel mixed emulsion to be burned in the present invention is a liquid fuel comprising water and a fossil fuel liquid. Examples of this emulsion include a water-in-oil emulsion and an oil-in-water emulsion, but the type of emulsion is not particularly limited. Examples of fossil fuel liquids include kerosene, light oil, and heavy oil. The water is not particularly limited, such as tap water and distilled water. The mixing ratio of water and fossil fuel liquid in the water-fossil fuel mixed emulsion that can be used in the present invention is not particularly limited, but the ratio of fossil fuel liquid in the emulsion is usually 85 to 40% by volume. From the viewpoint of reducing CO 2 emission during combustion, 70 to 40% is preferable and 50
-40% is more preferable. Further, it is possible to use a water-fossil fuel mixed emulsion (Japanese Patent Application No. 9-308958) in which the proportion of water is increased by using hydroxyl ion water (pH 8.5 to 10) previously proposed by the present inventors. it can.

【0006】水−化石燃料混合エマルジョンには、水と
化石燃料の他に、必要に応じて界面活性剤や電気石など
を添加することができる。例えば本発明者らの先に提案
した、アニオン系界面活性剤のアルキルエーテル硫酸エ
ステルナトリウムとアルキルベンゼンスルホン酸ナトリ
ウムとを混合均一化した合成アニオン系界面活性溶液剤
に蒸留水を投入撹拌することで得られる気泡を均一に含
有するムース状乳化剤に、石油系液体燃料材を混入撹拌
してなる濃縮エマルジョン燃料材に対して水を混入撹拌
してなる水−化石燃料混合エマルジョン燃料(特開平9
−111267号)などを好適に用いることができる。
In addition to water and fossil fuel, a surfactant and tourmaline may be added to the water-fossil fuel mixed emulsion, if necessary. For example, obtained by adding distilled water to a synthetic anionic surfactant solution agent in which sodium alkyl ether sulfate of anionic surfactant and sodium alkylbenzene sulfonate, which have been previously proposed by the present inventors, are mixed and homogenized. A water-fossil fuel mixed emulsion fuel prepared by mixing and stirring a concentrated emulsion fuel material prepared by mixing and stirring a petroleum-based liquid fuel material into a mousse-like emulsifier uniformly containing bubbles
No. -1112267) and the like can be preferably used.

【0007】本発明においては、水−化石燃料混合エマ
ルジョンは特に加熱する必要はなく、常温のままバーナ
ーノズルから燃焼空気の高速空気流中に噴霧させる。こ
れによってエマルジョン燃料を燃焼室内に効果的に拡散
させることができる。噴霧時の圧力としては特に制限は
ないが、通常0.1〜2MPa、好ましくは0.7〜
1.5MPaである。噴霧量は、使用するボイラーまた
はバーナーの能力を考慮して決定する。
In the present invention, the water-fossil fuel mixed emulsion does not need to be particularly heated and is sprayed from the burner nozzle into the high-speed air stream of combustion air at room temperature. This allows the emulsion fuel to be effectively diffused into the combustion chamber. The pressure at the time of spraying is not particularly limited, but is usually 0.1 to 2 MPa, preferably 0.7 to
It is 1.5 MPa. The spray amount is determined in consideration of the capacity of the boiler or burner used.

【0008】このように水−化石燃料混合エマルジョン
を噴霧させた燃焼空気の空気流を、バーナー付属の点火
栓により着火し、燃焼させる。本発明において用いられ
る燃焼空気は、空気取込口から取り込まれた後、空気加
熱装置によって、通常1000℃以上、好ましくは10
50〜1200℃、より好ましくは1100〜1200
℃に加熱され、バーナーの燃料噴霧部近傍に高速で噴射
される。燃焼空気は、高速空気流のための1次空気と燃
焼促進のための2次空気として分岐させて吹き込まれて
もよい。吹き込み速度は、通常80〜100m/se
c、好ましくは90〜100m/sec、より好ましく
は95〜100m/secである。分岐させて1次及び
2次空気とするときも共に同様の範囲である。また、本
発明では、低酸素濃度の燃焼を行うことができる。低酸
素濃度の燃焼とは化石燃料のみの場合、例えば4.8%
の酸素濃度の燃焼が挙げられる。通常、大気中には酸素
が21%含まれるので、4.8%の燃焼は、取り込み空
気量を理論空気量の23%とすることで行うことができ
る。本発明ではエマルジョン燃料を使用するので、燃焼
空気は、使用するエマルジョン中の化石燃料分の理論空
気量の、例えば34〜23%、好ましくは32〜23
%、より好ましくは30〜23%にすることで低酸素濃
度の燃焼を行うことができ、燃焼による窒素酸化物の排
出をさらに抑制することができる。
The air stream of the combustion air thus sprayed with the water-fossil fuel mixed emulsion is ignited and burned by the spark plug attached to the burner. The combustion air used in the present invention, after being taken in from the air intake, is usually heated to 1000 ° C. or higher, preferably 10 ° C., by an air heating device.
50 to 1200 ° C., more preferably 1100 to 1200
It is heated to ℃ and injected at high speed near the fuel spray section of the burner. Combustion air may be branched and blown as primary air for high speed air flow and secondary air for combustion promotion. Blowing speed is usually 80 to 100 m / se
c, preferably 90 to 100 m / sec, more preferably 95 to 100 m / sec. The range is the same when branched to form primary and secondary air. Further, in the present invention, it is possible to perform combustion with a low oxygen concentration. Low-oxygen combustion means only fossil fuel, for example 4.8%
Combustion of oxygen concentration. Normally, 21% oxygen is contained in the atmosphere, so that 4.8% combustion can be performed by setting the intake air amount to 23% of the theoretical air amount. Since the emulsion fuel is used in the present invention, the combustion air is, for example, 34 to 23%, preferably 32 to 23% of the theoretical air amount of the fossil fuel component in the emulsion to be used.
%, More preferably 30 to 23%, combustion with a low oxygen concentration can be performed, and the emission of nitrogen oxides due to combustion can be further suppressed.

【0009】本発明で用いられる空気加熱装置として
は、1000℃以上に加熱可能で、省エネルギーの観点
から有利なものであれば特に限定されないが、例えば、
電磁誘導流体加熱装置、マイクロ波流体加熱装置などが
挙げられる。
The air heating device used in the present invention is not particularly limited as long as it can be heated to 1000 ° C. or higher and is advantageous from the viewpoint of energy saving.
Examples include an electromagnetic induction fluid heating device and a microwave fluid heating device.

【0010】電磁誘導流体加熱装置としては例えば、第
1段階の加熱を行う金属発熱体、第2段階の加熱を行う
カーボンセラミックス発熱体の組み合わせからなり、こ
れら発熱体を高周波電磁誘導ワークコイルによって発生
した渦電流によって発熱させるものが挙げられる。この
場合ワークコイルに供給する高周波電力は、アクティブ
フィルター付きの高周波インバータユニットが生産する
ことが好ましく、商用周波を50〜100kHzにアッ
プできるものが好ましい。
The electromagnetic induction fluid heating device comprises, for example, a combination of a metal heating element for performing the first stage heating and a carbon ceramic heating element for performing the second stage heating, and these heating elements are generated by a high frequency electromagnetic induction work coil. An example is a device that generates heat by the generated eddy current. In this case, the high frequency power supplied to the work coil is preferably produced by a high frequency inverter unit with an active filter, and one capable of increasing the commercial frequency to 50 to 100 kHz is preferable.

【0011】マイクロ波流体加熱装置としては例えば、
石英管の内部にカーボン粉末とアルミナ粉末との混合物
を真空で封入し、石英管の両端部には石英ウールが混合
物を封止するために詰められ、石英管の両端が熱封止さ
れているものに、通常、電子レンジ等で使用されている
マイクロ波である2450MHzの電波を照射すること
で、主としてカーボン粉末が誘電加熱され高温度となる
特許第2525506号明細書に記載の高温発熱体や、
同様にマイクロ波照射により発熱する、カーボン粉末を
円筒状に圧縮成型してなる特許第2017565号明細
書に記載の高温発熱体等が利用できる。
As the microwave fluid heating device, for example,
A mixture of carbon powder and alumina powder is sealed in a vacuum inside a quartz tube, quartz wool is packed at both ends of the quartz tube to seal the mixture, and both ends of the quartz tube are heat-sealed. A high-temperature heating element described in Japanese Patent No. 2525506, in which carbon powder is mainly dielectrically heated to a high temperature by irradiating a thing with a microwave of 2450 MHz which is a microwave used in a microwave oven or the like, ,
Similarly, the high-temperature heating element described in Japanese Patent No. 2017765, which is formed by compression-molding carbon powder into a cylindrical shape and which generates heat by microwave irradiation, can be used.

【0012】空気加熱装置として電磁誘導流体加熱装置
又はマイクロ波流体加熱装置を用いる場合、加熱エネル
ギー源は電力であるので、省エネルギーのためにその電
力消費量を抑えることが求められる。本発明では燃焼室
の前段で導入する空気を加熱するので、加熱対象は取込
空気のみであり、空気自体の比熱が小さいことから加熱
効率が高い。さらに取込空気量を絞ることができるの
で、加熱空気量は通常の燃焼に比べて少量である。従っ
て、省エネルギーの観点から有利である。また、これら
の空気加熱装置はボイラー等の燃焼装置の燃焼室の前段
に設ければよく、燃焼装置の構造(例えば縦型(燃焼空
気が垂直方向に噴出されるもの)、横型(燃焼空気が水
平方向に噴出されるもの)等)に制限されることなく設
けることができる。
When an electromagnetic induction fluid heating apparatus or a microwave fluid heating apparatus is used as the air heating apparatus, since the heating energy source is electric power, it is required to suppress the electric power consumption in order to save energy. In the present invention, since the air introduced in the previous stage of the combustion chamber is heated, the heating target is only the intake air, and the heating efficiency is high because the specific heat of the air itself is small. Furthermore, since the amount of intake air can be reduced, the amount of heating air is smaller than that in normal combustion. Therefore, it is advantageous from the viewpoint of energy saving. In addition, these air heating devices may be provided in front of a combustion chamber of a combustion device such as a boiler, and have a structure of the combustion device (for example, vertical type (combustion air is ejected in the vertical direction)) or horizontal type (combustion air is It can be provided without being limited to (the one ejected in the horizontal direction)).

【0013】本発明の装置の構造上、前記の空気加熱装
置により加熱された1000℃以上の高温空気がバーナ
ー表面に接触することになるので、バーナーの耐熱対策
が必要となるが、その一例としてバーナーの構造材の表
面に1400℃以上に耐えるセラミック・コーティング
塗料処理を施すことが挙げられる。
Due to the structure of the device of the present invention, the high temperature air of 1000 ° C. or higher heated by the air heating device comes into contact with the surface of the burner. Therefore, it is necessary to take a heat resistance measure for the burner. The surface of the structural material of the burner may be treated with a ceramic coating paint that can withstand temperatures of 1400 ° C or higher.

【0014】本発明で用いられる燃焼装置に放射エネル
ギー吸収用の水管を設ける場合、水管に供給する水とし
ては特に制限はなく、水道水でも地下水でもよいが、水
処理装置で一般処理することにより水管内壁へのスケー
ル付着を抑えることができる。
When a water pipe for absorbing radiant energy is provided in the combustion device used in the present invention, the water supplied to the water pipe is not particularly limited and may be tap water or ground water. Adhesion of scale to the inner wall of the water pipe can be suppressed.

【0015】本発明では、水−化石燃料混合エマルジョ
ンを燃料として使用することにより、燃焼時に燃料中の
水の一部が化学反応を起こしエネルギーの放出が起こる
と考えられる。このため、化石液体燃料のみの場合に比
べて同じ熱量を得るのに要する燃料は少量でよい。ま
た、前記のように化石液体燃料のみで燃焼を行う場合よ
り取込空気量を減少させることが可能なため、燃焼空気
の加熱に要するエネルギーを節減でき、煤塵は勿論、高
温燃焼による窒素酸化物の発生を抑制することができ
る。本発明では水−化石燃料エマルジョン中に含まれる
水分が超高温スチーム化することにより、炎の燃焼温度
が化石燃料のみを用いた場合より700℃程度上昇する
ため放射エネルギーが増大する。また、本発明では、炎
の容積も数倍から数十倍に拡大しエネルギー放射面積が
増大する。また一般に放射エネルギーの放出率はCO2
より水蒸気が大きく、N2 は実質的に放出しないことが
知られているが、本発明では水−化石燃料混合エマルジ
ョンを用いているので、燃焼ガス中の水蒸気の割合が高
く、CO2 の割合は低くなっており、放射エネルギーの
放出が大きくなる。また、取込空気量を減少させた場合
にはN2 の割合も低くなっているので、さらに放射エネ
ルギーの放出が大きくなる。以上の点を考慮すると、本
発明によれば、煤塵や窒素酸化物等は抑制し、炎の放射
エネルギーの量は従来の燃焼に比べて増大させることが
できる。
In the present invention, it is considered that when the water-fossil fuel mixed emulsion is used as a fuel, a part of the water in the fuel undergoes a chemical reaction during combustion to release energy. Therefore, a small amount of fuel is required to obtain the same amount of heat as in the case of using only fossil liquid fuel. Further, as described above, since it is possible to reduce the amount of intake air compared to the case where combustion is performed only with fossil liquid fuel, the energy required for heating the combustion air can be saved, and not only soot dust but also nitrogen oxides due to high temperature combustion Can be suppressed. In the present invention, the water contained in the water-fossil fuel emulsion is steamed at an extremely high temperature, so that the combustion temperature of the flame rises by about 700 ° C. as compared with the case where only fossil fuel is used, so that the radiant energy increases. Further, in the present invention, the volume of flame is expanded from several times to several tens of times, and the energy radiating area is increased. Generally, the emission rate of radiant energy is CO 2
It is known that water vapor is larger and N 2 is not substantially released. However, since the present invention uses the water-fossil fuel mixed emulsion, the proportion of water vapor in the combustion gas is high and the proportion of CO 2 is Is low and the emission of radiant energy is high. Further, when the amount of intake air is reduced, the proportion of N 2 is also low, so that the emission of radiant energy is further increased. In consideration of the above points, according to the present invention, soot and nitrogen oxides can be suppressed, and the amount of radiant energy of the flame can be increased as compared with conventional combustion.

【0016】すなわち、本発明の燃焼方法及び燃焼装置
は、水−化石燃料混合エマルジョンを燃料として用いて
高い燃焼カロリーを得ることができるため、化石液体燃
料のみで燃焼を行う場合に比べて、経済的かつ省エネル
ギーであり、公害等の原因となる排出ガスもはるかに少
なくすることができる。
That is, since the combustion method and the combustion apparatus of the present invention can obtain high combustion calories by using the water-fossil fuel mixed emulsion as a fuel, it is economical compared with the case where the combustion is performed only with the fossil liquid fuel. It is efficient and energy-saving, and the emission gas that causes pollution can be reduced significantly.

【0017】次に、本発明の燃焼方法及び燃焼装置につ
いて図面を参照してさらに詳細に説明する。なお、図中
同符号は同じものを示す。図1及び図2は本発明の装置
の実施態様の構成を示す説明図である。図1の実施態様
において、燃焼空気はブロワー6によって空気取込口7
から空気加熱装置5に圧入され、1000℃以上に加熱
される。この高温加熱空気は、高温空気ヘッダー8によ
って分岐され、燃焼装置9の上部に設けられたバーナー
3の燃焼空気として空気ノズル10から高速で噴射され
る。図2は、燃焼室内に水管を有し、1次及び2次空気
として分岐させる別の実施態様を示す。1次空気は空気
ノズル30から、2次空気は空気ノズル31から噴射さ
れる。また、これらの態様において噴出速度を高める目
的で、空気加熱装置5または29から空気ノズル10も
しくは30および31までの間で管の内径を小さくして
もよい。図2では空気加熱装置として電磁誘導流体加熱
装置の例であるDPH(商品名)気体加熱部を用いてい
るが、例えば前記の特許第2525506号明細書等に
記載のマイクロ波流体加熱装置なども利用でき、特に限
定するものではない。なお、燃焼空気は空気取込口7の
ブロワー6に付属しているダンパー(図示しない)によ
って、理論空気量よりも減少させて燃焼室4に供給され
うる。一方、水−化石燃料混合エマルジョンは、貯蔵タ
ンク1より燃料ポンプ2によってバーナー3の燃料ノズ
ル15から燃焼空気の高速空気流中に噴霧される。噴霧
された水−化石燃料混合エマルジョンは、バーナー3に
付属している点火栓(図示しない)によって着火され、
燃焼する。排気口25から出る排ガスがもつ熱量は、一
般的に用いられる熱回収装置で回収し、ボイラー効率を
上げることができる。
Next, the combustion method and combustion apparatus of the present invention will be described in more detail with reference to the drawings. The same reference numerals in the drawings indicate the same things. 1 and 2 are explanatory diagrams showing the configuration of an embodiment of the apparatus of the present invention. In the embodiment of FIG. 1, the combustion air is blown by the blower 6 into the air intake 7.
Is press-fitted into the air heating device 5 and heated to 1000 ° C. or higher. This high-temperature heated air is branched by the high-temperature air header 8 and is jetted at high speed from the air nozzle 10 as combustion air for the burner 3 provided above the combustion device 9. FIG. 2 shows another embodiment in which a water pipe is provided in the combustion chamber and is branched as primary and secondary air. The primary air is ejected from the air nozzle 30 and the secondary air is ejected from the air nozzle 31. Further, in these embodiments, the inner diameter of the pipe may be reduced between the air heating device 5 or 29 and the air nozzle 10 or 30 and 31 for the purpose of increasing the ejection speed. In FIG. 2, a DPH (trade name) gas heating section, which is an example of an electromagnetic induction fluid heating apparatus, is used as the air heating apparatus. However, for example, the microwave fluid heating apparatus described in the above-mentioned Japanese Patent No. 2525506 may also be used. It can be used and is not particularly limited. Note that the combustion air can be supplied to the combustion chamber 4 with a damper (not shown) attached to the blower 6 of the air intake port 7, the amount of which is less than the theoretical air amount. On the other hand, the water-fossil fuel mixed emulsion is sprayed from the storage tank 1 by the fuel pump 2 from the fuel nozzle 15 of the burner 3 into the high speed air flow of the combustion air. The sprayed water-fossil fuel mixed emulsion is ignited by a spark plug (not shown) attached to the burner 3,
To burn. The heat quantity of the exhaust gas emitted from the exhaust port 25 can be recovered by a heat recovery device that is generally used, and the boiler efficiency can be improved.

【0018】図3は本発明の燃焼装置9において、放射
エネルギーを水管で吸収する場合の火炎11と水管12
との模式的な配置図を断面で示したものであるが、火炎
に対する水管の方向や水管の本数を制限するものではな
く、例えば水管を2重に配置させてもよい。火炎11か
ら放射されたエネルギーは水管12によって吸収され、
スチーム17として取り出され、利用される。この場合
の本発明の装置の態様は図2に示す通りである。これら
の水管はその上部及び下部でそれぞれ上部ヘッダー2
3、下部ヘッダー24によって接続されている。ここで
は水処理装置13で処理した水を圧入給水ポンプ14で
水管12へ送り、発生した気水混合体を気水分離器16
で分離し、スチーム17として取り出している。分離し
た水は水管供給用として再び利用することができる。
FIG. 3 shows a flame 11 and a water pipe 12 when the radiant energy is absorbed by the water pipe in the combustion apparatus 9 of the present invention.
Although a schematic layout drawing of and is shown in cross section, it does not limit the direction of the water pipe with respect to the flame or the number of water pipes, and for example, the water pipes may be arranged in double. The energy emitted from the flame 11 is absorbed by the water pipe 12,
It is taken out as steam 17 and used. The aspect of the apparatus of the present invention in this case is as shown in FIG. These water pipes have an upper header 2 at their upper and lower parts, respectively.
3, connected by the lower header 24. Here, the water treated by the water treatment device 13 is sent to the water pipe 12 by the press-fitting water supply pump 14, and the generated steam mixture is separated by the steam separator 16.
Separated in and taken out as steam 17. The separated water can be reused for water pipe supply.

【0019】図4は電磁誘導流体加熱装置の一例を示す
説明図である。図4において、取込空気は温度センサ1
9の制御下、金属発熱体18により第一段階の加熱を受
け、次にカーボンセラミックス発熱体20によって、温
度センサ21の制御下、目的温度まで加熱される。発熱
体18、20は共にインバータユニット22から電力の
供給を受け、前述したように電磁誘導によって発熱す
る。なお、この装置では加熱を二段階で行っているが、
特に本発明に用いる加熱装置を多段階で加熱を行う装置
に制限するものではない。
FIG. 4 is an explanatory view showing an example of the electromagnetic induction fluid heating device. In FIG. 4, the intake air is the temperature sensor 1
Under the control of 9, the metal heating element 18 receives the first-stage heating, and then the carbon ceramic heating element 20 heats it to the target temperature under the control of the temperature sensor 21. Both the heating elements 18 and 20 are supplied with electric power from the inverter unit 22 and generate heat by electromagnetic induction as described above. In addition, although heating is performed in two steps in this device,
In particular, the heating device used in the present invention is not limited to a device that performs heating in multiple stages.

【0020】本発明の燃焼方法及び燃焼装置は、温風や
スチームなどによって稼働する種々のシステムに利用す
ることができ、例えば上記のボイラーに温風発生機、ガ
スタービン発電機などを接続して用いることができる。
INDUSTRIAL APPLICABILITY The combustion method and combustion apparatus of the present invention can be used in various systems that operate by hot air or steam. For example, a hot air generator, a gas turbine generator, etc. are connected to the above boiler. Can be used.

【0021】[0021]

【実施例】次に、本発明を実施例に基づいてさらに詳細
に説明するが、本発明はこれらに限定されるものではな
い。 実施例1 図2に示した構成のボイラーシステムを構成し運転し、
発生熱量等を測定した。28は蒸気ボイラー(荏原製作
所社製、エハラ蒸気ボイラーST200)を基本とする
本体を示す。このボイラーシステムは蒸気ボイラー28
に水−化石燃料混合エマルジョン供給部と電磁誘導流体
加熱装置としてDPH(商品名)高温気体加熱部29と
を設けることにより、水−化石燃料混合エマルジョン高
効率放射エネルギー吸収型蒸気ボイラーに改造した一例
である。水−化石燃料混合エマルジョンとしては、水道
水を処理した処理水とA重油を容量比で50:50用
い、界面活性剤としてはα−オレフィンスルホン酸塩
(AOS)とそれと同容量の硫酸アルキルポリオキシエ
チレンエーテル塩(AES)とを用い、これらを前記の
特開平9−111267号明細書に従って油中水型エマ
ルジョンとしたものを用いた。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited thereto. Example 1 A boiler system having the configuration shown in FIG. 2 was constructed and operated,
The amount of heat generated and the like were measured. Reference numeral 28 denotes a main body based on a steam boiler (Ehara Steam Boiler ST200, manufactured by EBARA CORPORATION). This boiler system is a steam boiler 28
An example in which a water-fossil fuel mixed emulsion high efficiency radiant energy absorption type steam boiler is modified by providing a water-fossil fuel mixed emulsion supply section and a DPH (trade name) high temperature gas heating section 29 as an electromagnetic induction fluid heating device Is. As the water-fossil fuel mixed emulsion, treated water obtained by treating tap water and heavy oil A were used at a volume ratio of 50:50, and as the surfactant, α-olefin sulfonate (AOS) and an alkyl sulfate polypolyether of the same volume. Oxyethylene ether salt (AES) was used, and these were made into water-in-oil emulsions according to the above-mentioned JP-A No. 9-111267.

【0022】水−A重油混合エマルジョンは常温のま
ま、ポンプ2によってバーナーノズル(図示しない)か
ら0.7MPa、14.1リットル/時間で10時間燃
焼空気の高速空気流中に噴霧させることで燃焼室4内に
吹き込んだ。燃焼空気は、DPH高温気体加熱部29に
よって1100℃に加熱し、バーナー3へ1次および2
次空気としてそれぞれ空気ノズル30、31から100
m/secの速度で10時間供給した。インバータユニ
ットを含めたDPH高温気体加熱部の加熱効率ηheat
85%であった。取込空気量はダンパー(図示しない)
でエマルジョン中に含まれるA重油の理論空気量の23
%に絞って供給し、燃焼を低酸素燃焼とした。エマルジ
ョン燃料を噴霧した高速空気流に点火栓(図示しない)
で着火したところ、高温の1次および2次空気によっ
て、従来より5倍以上の容積のある、最高温度2000
℃の火炎11として燃焼した。火炎11による放射エネ
ルギーは、水管12で吸収し、気水分離器16によって
スチーム17として取り出した。この水管12には、水
処理装置13で一般処理した水をポンプ14によって供
給した。
The water-A heavy oil mixed emulsion is burned at room temperature by spraying it from a burner nozzle (not shown) at 0.7 MPa and 14.1 liters / hour for 10 hours in a high-speed air stream of combustion air at room temperature. It was blown into the chamber 4. Combustion air is heated to 1100 ° C. by the DPH high temperature gas heating unit 29, and the primary and secondary burner 3
Next air as air nozzles 30, 31 to 100 respectively
It was supplied at a speed of m / sec for 10 hours. The heating efficiency η heat of the DPH high temperature gas heating unit including the inverter unit was 85%. The intake air amount is a damper (not shown)
The theoretical air amount of heavy oil A contained in the emulsion is 23
%, And the combustion was low oxygen combustion. Spark plug (not shown) for high-speed air flow sprayed with emulsion fuel
When ignited at, the high temperature of primary and secondary air, the maximum temperature 2000 times more than 5 times the volume of the conventional
It burned as a flame 11 of ℃. The radiant energy from the flame 11 was absorbed by the water pipe 12 and taken out as steam 17 by the steam separator 16. To this water pipe 12, water that was generally treated by the water treatment device 13 was supplied by a pump 14.

【0023】水−A重油混合エマルジョンを燃料とした
このボイラーシステムにおける発熱量を、入口水の熱量
と出口蒸気の熱量より発熱量を自動計測する蒸気熱計測
システムにより測定したところ約11220kcal/
kgであった。また、燃焼排気中の煤塵と窒素酸化物の
量を測定したところ、煤塵は発生せず、窒素酸化物も従
来の化石燃料を用いた高温空気燃焼の1/8以下である
7ppm以下に抑えることができた。
The calorific value of this boiler system using a water-A heavy oil mixed emulsion as a fuel was measured by a steam heat measuring system which automatically measures the calorific value from the calorific value of the inlet water and the calorific value of the outlet steam.
It was kg. In addition, when the amount of soot and nitrogen oxides in the combustion exhaust was measured, no soot was generated, and nitrogen oxides should be kept to 7ppm or less, which is 1/8 or less of high temperature air combustion using conventional fossil fuels. I was able to.

【0024】A重油(低位発熱量約10200kcal
/kg)と同一の燃焼カロリーを上記ボイラーシステム
において発生する水−A重油混合エマルジョン(発熱量
約11220kcal/kg)の、A重油に対するコス
トの比を各原料のコストを入れて計算すると燃料コスト
は約50%削減できる。CO2 の発生量はエマルジョン
燃料を用いていることにより、A重油に対し、同一の発
熱量で考えて約55%削減できることになる。また、1
時間当り発生したスチームの熱出力は125kWである
のに対し、外部入力は空気予熱電力として6kWを要
し、この入力の約21倍の熱出力があった。比較とし
て、水:A重油が容量比で50:50の水−A重油混合
エマルジョンを通常のボイラーで燃焼させると、エマル
ジョン燃料自体により、ある程度の排気中の窒素酸化物
やCO2 の削減及びコストダウンはあったが、上記のよ
うな水の化学反応によると考えられる発熱量の増加や、
低酸素燃焼を行うことでより効果的になる煤塵や窒素酸
化物の大幅な削減は不可能であった。
Heavy oil A (Lower calorific value of about 10200 kcal
/ Kg), the fuel cost is calculated by adding the cost of each raw material to the ratio of the cost of water-A heavy oil mixed emulsion (calorific value about 11220 kcal / kg) generated in the above boiler system to A heavy oil. It can be reduced by about 50%. By using emulsion fuel, the amount of CO 2 generated can be reduced by about 55% with respect to A heavy oil, assuming the same amount of heat generation. Also, 1
The heat output of steam generated per hour was 125 kW, whereas the external input required 6 kW as air preheating power, and the heat output was about 21 times that of this input. As a comparison, when a water-A heavy oil mixed emulsion having a volume ratio of water: A heavy oil of 50:50 is burned in a normal boiler, the emulsion fuel itself reduces the amount of nitrogen oxides and CO 2 in the exhaust gas to some extent and reduces the cost. Although there was a down, the increase in calorific value that is thought to be due to the chemical reaction of water as described above,
It was not possible to achieve significant reductions in soot and nitrogen oxides that would be more effective by performing low-oxygen combustion.

【0025】比較例1 燃料の水−A重油混合エマルジョンをA重油のみに代え
た以外は実施例1と全く同様にして燃焼させ発熱量の測
定を行ったところ、11000kcal/kgであっ
た。また、燃焼排気中の煤塵及び窒素酸化物の量は、従
来の高温空気燃焼と同程度であり、改善は認められなか
った。
Comparative Example 1 The calorific value was measured in the same manner as in Example 1 except that the water-A heavy oil mixed emulsion of the fuel was changed to A heavy oil only, and the calorific value was measured and found to be 11000 kcal / kg. Further, the amounts of soot dust and nitrogen oxides in the combustion exhaust gas were similar to those in conventional high temperature air combustion, and no improvement was observed.

【0026】[0026]

【発明の効果】本発明によれば、水−化石燃料混合エマ
ルジョンをコロイド微粒子として、高温の燃焼室内で均
一に分散させエネルギー効率よく燃焼させて、公害等の
原因となるCO2 、窒素酸化物、煤塵の発生量を抑え、
高い発熱量を得ることができる。さらに、本発明は燃焼
空気の予熱を燃焼室の前段に設けた空気加熱装置で行う
ので、燃焼装置の構造に限定されないという優れた効果
を奏する。
According to the present invention, water-fossil fuel mixed emulsion is uniformly dispersed in a high temperature combustion chamber as colloidal fine particles and burned with high energy efficiency to cause pollution such as CO 2 and nitrogen oxides. , Suppress the generation of soot and dust,
A high calorific value can be obtained. Further, according to the present invention, the preheating of the combustion air is performed by the air heating device provided in the preceding stage of the combustion chamber, and therefore, there is an excellent effect that the structure of the combustion device is not limited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃焼装置の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of a combustion device of the present invention.

【図2】本発明の、水管並びに1次及び2次空気ノズル
を有し、空気加熱装置が電磁誘導流体加熱装置である燃
焼装置の構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a combustion device having a water pipe and primary and secondary air nozzles and an air heating device being an electromagnetic induction fluid heating device of the present invention.

【図3】本発明の燃焼装置の火炎と水管との配置を示す
模式図である。
FIG. 3 is a schematic diagram showing an arrangement of a flame and a water pipe of the combustion apparatus of the present invention.

【図4】電磁誘導流体加熱装置の一例を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing an example of an electromagnetic induction fluid heating device.

【符号の説明】[Explanation of symbols]

1 水−化石燃料混合エマルジョンの貯蔵タンク 2 燃料ポンプ 3 点火栓付属バーナー 4 燃焼室 5 空気加熱装置 6 ブロワー 7 空気取込口 8 高温空気ヘッダー 9 燃焼装置 10、30、31 空気ノズル 11 火炎 12 水管 13 水処置装置 14 圧入給水ポンプ 15 バーナーの燃料ノズル 16 気水分離器 17 スチーム 18 金属発熱体 19、21 温度センサ 20 カーボンセラミックス発熱体 22 インバータユニット 23 上部ヘッダ 24 下部ヘッダ 25 排気口 28 蒸気ボイラー 29 DPH高温気体加熱部 1 Water-fossil fuel mixed emulsion storage tank 2 fuel pump 3 Burner with spark plug 4 Combustion chamber 5 Air heating device 6 Blower 7 Air intake 8 hot air header 9 Combustion device 10, 30, 31 Air nozzle 11 flames 12 water tubes 13 Water treatment device 14 Press fit water supply pump 15 burner fuel nozzle 16 steam separator 17 steam 18 Metal heating element 19, 21 Temperature sensor 20 Carbon ceramic heating element 22 Inverter unit 23 Upper header 24 Lower header 25 exhaust port 28 steam boilers 29 DPH High temperature gas heating unit

フロントページの続き (72)発明者 橋本 豊 埼玉県川口市赤井4丁目28番3号 ダイモ 株式会社内 Fターム(参考) 3K052 GA05 GA06 GB01 GB04 GC01 GD03 GD08 GE01 GE07 HA01 4H013 DC07 Continued front page    (72) Inventor Yutaka Hashimoto             4-28 Akai, Kawaguchi City, Saitama Prefecture Daimo             Within the corporation F term (reference) 3K052 GA05 GA06 GB01 GB04 GC01                       GD03 GD08 GE01 GE07 HA01                 4H013 DC07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1000℃以上に予熱した燃焼空気を燃
焼室に導入して高速噴射させ、この空気流で水−化石燃
料混合エマルジョンを燃焼室内に噴射させ低酸素燃焼さ
せることを特徴とする燃焼方法。
1. Combustion characterized by introducing combustion air preheated to 1000 ° C. or higher into a combustion chamber for high-speed injection and injecting a water-fossil fuel mixed emulsion into the combustion chamber for low oxygen combustion. Method.
【請求項2】 燃焼空気を速度80〜100m/sec
で吹き込むことを特徴とする請求項1記載の燃焼方法。
2. The velocity of combustion air is 80 to 100 m / sec.
The combustion method according to claim 1, wherein the combustion method is performed by blowing.
【請求項3】 燃焼空気の予熱を燃焼室の前段に設けた
電磁誘導流体加熱装置又はマイクロ波流体加熱装置で行
うことを特徴とする請求項1または2記載の燃焼方法。
3. The combustion method according to claim 1, wherein the combustion air is preheated by an electromagnetic induction fluid heating device or a microwave fluid heating device provided in the preceding stage of the combustion chamber.
【請求項4】 燃焼室に、燃焼空気を高速で噴射する空
気ノズルと、その空気流中に水−化石燃料混合エマルジ
ョンを導入しうるようにした燃料ノズルとを設け、この
燃焼室の燃焼空気の導入管に空気加熱装置を設けてなる
ことを特徴とする燃焼装置。
4. The combustion chamber is provided with an air nozzle for injecting combustion air at a high speed and a fuel nozzle adapted to introduce a water-fossil fuel mixed emulsion into the air flow. Combustion device, characterized in that an air heating device is provided in the introduction pipe of.
【請求項5】 燃焼装置が、ボイラーである請求項4記
載の燃焼装置。
5. The combustion device according to claim 4, wherein the combustion device is a boiler.
【請求項6】 空気加熱装置が、電磁誘導流体加熱装置
である請求項4または5記載の燃焼装置。
6. The combustion device according to claim 4, wherein the air heating device is an electromagnetic induction fluid heating device.
【請求項7】 空気加熱装置が、マイクロ波流体加熱装
置である請求項4または5記載の燃焼装置。
7. The combustion device according to claim 4, wherein the air heating device is a microwave fluid heating device.
JP10228383A 1998-08-12 1998-08-12 Method and apparatus for high-efficiency combustion of water/fossil fuel mixed emulsion Pending JP2000063857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10228383A JP2000063857A (en) 1998-08-12 1998-08-12 Method and apparatus for high-efficiency combustion of water/fossil fuel mixed emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10228383A JP2000063857A (en) 1998-08-12 1998-08-12 Method and apparatus for high-efficiency combustion of water/fossil fuel mixed emulsion

Publications (1)

Publication Number Publication Date
JP2000063857A true JP2000063857A (en) 2000-02-29

Family

ID=16875616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10228383A Pending JP2000063857A (en) 1998-08-12 1998-08-12 Method and apparatus for high-efficiency combustion of water/fossil fuel mixed emulsion

Country Status (1)

Country Link
JP (1) JP2000063857A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076843A1 (en) * 2003-02-18 2004-09-10 Noaz, Inc. Fuel, fuel additive, method for adding fuel additive, method for enhancing combustion efficiency of liquid fuel, structure for supplying fuel, fuel filter, combustion filter, burner, internal combustion engine and method for combusting fluid fuel
JP2009293874A (en) * 2008-06-06 2009-12-17 Doshigawa Kamemibashi Kokusai Masu Tsuriba:Kk Water added fuel combustion device
CN102260555A (en) * 2011-06-28 2011-11-30 浙江大学 Method for changing specific physical and chemical characteristics of coal by utilizing microwave for improving slurry forming performance
US20120040296A1 (en) * 2010-08-10 2012-02-16 Air Products And Chemicals, Inc. Combustion of Oil Floating on Water
WO2019196045A1 (en) * 2018-04-12 2019-10-17 同济大学 Method and system for reducing concentration of pollutants in smoke generated by combustion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076843A1 (en) * 2003-02-18 2004-09-10 Noaz, Inc. Fuel, fuel additive, method for adding fuel additive, method for enhancing combustion efficiency of liquid fuel, structure for supplying fuel, fuel filter, combustion filter, burner, internal combustion engine and method for combusting fluid fuel
JP2009293874A (en) * 2008-06-06 2009-12-17 Doshigawa Kamemibashi Kokusai Masu Tsuriba:Kk Water added fuel combustion device
US20120040296A1 (en) * 2010-08-10 2012-02-16 Air Products And Chemicals, Inc. Combustion of Oil Floating on Water
US8366439B2 (en) * 2010-08-10 2013-02-05 Air Products And Chemicals, Inc. Combustion of oil floating on water
CN102260555A (en) * 2011-06-28 2011-11-30 浙江大学 Method for changing specific physical and chemical characteristics of coal by utilizing microwave for improving slurry forming performance
CN102260555B (en) * 2011-06-28 2014-03-19 浙江大学 Method for changing specific physical and chemical characteristics of coal by utilizing microwave for improving slurry forming performance
WO2019196045A1 (en) * 2018-04-12 2019-10-17 同济大学 Method and system for reducing concentration of pollutants in smoke generated by combustion

Similar Documents

Publication Publication Date Title
CA2410251A1 (en) Apparatus and method for combined generation of heat and electricity
CN201138061Y (en) Direct heating type hot-air stove
CN104864392A (en) Total-oxygen coal powder MILD combustion method and device used by same
RU2007137496A (en) MULTI-TUBE HEAT TRANSFER SYSTEM FOR FUEL BURNING AND HEATING OF TECHNOLOGICAL FLUID AND ITS USE
JPH11166705A (en) Method and apparatus for combusting emulsion of water/ fossil fuel mixture
US20080131823A1 (en) Homogeous Combustion Method and Thermal Generator Using Such a Method
CN203442823U (en) Self-suction top-mounted round nitrogen oxide gas burner with low flame fuel staging
JP2000063857A (en) Method and apparatus for high-efficiency combustion of water/fossil fuel mixed emulsion
JPH064171Y2 (en) Radiant chives
CN101413674A (en) Oxygen-enriched air mixed blowing combustion adjuvant boiler energy-saving method and employed equipment thereof
CN107420890A (en) A kind of alcohol radical combusting vaporization burner
EP0074823B1 (en) Liquid fuel combustion apparatus
CN206055643U (en) A kind of organic waste liquid burning device
CN207019054U (en) A kind of alcohol radical combusting vaporization burner
JP2002115812A (en) Combustion method and apparatus for water-fossile fuel mixed emulsion
CN201396776Y (en) Oxygen-enriched air mixed-blowing combustion improver boiler energy-saving device
CN102829481A (en) Oil-gas-fired comprehensive energy-saving environment-friendly engineering system
JPS6248779B2 (en)
SU1588987A1 (en) Burner arrangement for furnace
JP3936160B2 (en) Gas turbine power generator and mixed gas combustion apparatus used therefor
JPH07158875A (en) Gas hot-water supplier
JP2631593B2 (en) Radioactive organic waste liquid incinerator
KR101258634B1 (en) The apparatus burn after mix oil and water
CN107763601A (en) A kind of air wetting superheater
CN212841621U (en) Rubber waste water exhaust treatment device