JP2000061591A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JP2000061591A
JP2000061591A JP10237539A JP23753998A JP2000061591A JP 2000061591 A JP2000061591 A JP 2000061591A JP 10237539 A JP10237539 A JP 10237539A JP 23753998 A JP23753998 A JP 23753998A JP 2000061591 A JP2000061591 A JP 2000061591A
Authority
JP
Japan
Prior art keywords
tundish
casting
molten steel
slab
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10237539A
Other languages
Japanese (ja)
Inventor
Hironori Yamamoto
裕則 山本
Toshiaki Ishige
俊朗 石毛
Noriko Kubo
典子 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10237539A priority Critical patent/JP2000061591A/en
Publication of JP2000061591A publication Critical patent/JP2000061591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a continuous casting method of a steel, with which the abnormality of quality caused by cleaning of a bottom cast slab can be prevented from occurring. SOLUTION: In the continuous casting method of the steel in which pouring into a mold 11 is started after storing the molten steel 12 in a tundish 1, the pickup rate of total oxygen concn. in the cast slab at the time of starting the casting and the separating ratio of oxide base inclusion, are pre-measured in the casting condition decided with the combination of three casting factors of whether or not molten steel in the tundish is heated, whether or not molten steel in the tundish is stirred and the molten steel stuck quantity in the tundish. Based on these measured results, the total oxygen concn. in the cast slab at the time of starting the casting and the separating ratio of the oxide base inclusion in the individual casting condition, are estimated and based on these estimated values, the surface cleaning method on the cast slab and the operating method at the time of starting the casting are decided for each product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋳造条件から鋳造
開始時の鋳片の品質水準を推定し、この推定値に基づ
き、前記鋳片の表面手入れ方法と運用方法とを決め、清
浄性に起因する品質異常を防止することのできる鋼の連
続鋳造方法に関するものである。
TECHNICAL FIELD The present invention estimates the quality level of a slab at the start of casting from casting conditions, and determines a surface care method and an operating method for the slab based on the estimated value to improve cleanliness. The present invention relates to a continuous casting method for steel capable of preventing the resulting quality abnormality.

【0002】[0002]

【従来の技術】近年、自動車用鋼板、食缶用鋼板、石油
搬送用鋼管、ガス搬送用鋼管、及び高張力鋼線材等の材
質特性に対する要求は益々厳しさを増し、均質で清浄な
鋼材が求められている。反面、需要家ニーズの多様化
は、大ロット製造に適した連続鋳造方法に対し、小ロッ
ト化により、鋳造開始時や鋳造終了時及び異鋼種連々鋳
時での品質水準の劣った非定常部鋳片の増加という問題
を生じさせている。
2. Description of the Related Art In recent years, the demands on the material characteristics of steel plates for automobiles, steel plates for food cans, steel pipes for oil transport, steel pipes for gas transport, and high-strength steel wire rods have become increasingly severe, and homogeneous and clean steel strips have been required. It has been demanded. On the other hand, the diversification of customer needs is due to the continuous casting method suitable for large-lot production, but the smaller lots make it possible to use unsteady parts with poor quality levels at the start of casting, at the end of casting, and when casting different steel types one after another. It causes a problem of increase of slabs.

【0003】これらの非定常部鋳片の内、特に品質的に
問題となるのは鋳造開始時の鋳片(以下、「ボトム鋳
片」と記す)である。鋳造開始時は、空気及びタンディ
ッシュ内に残留する地金やスラグにより溶鋼が酸化し、
溶鋼中に酸化物系介在物(以下、「介在物」と記す)が
増加すると共に、タンディッシュ耐火物への伝導熱や空
気への輻射熱により溶鋼温度が低下し、この温度低下に
伴い、溶鋼中の介在物の浮上・分離が阻害され、多くの
介在物が残留して清浄性が劣るからである。そのため、
ボトム鋳片の清浄性を改善する技術が多数開示されてい
る。
Of these unsteady-section cast pieces, the one that is particularly problematic in terms of quality is the cast piece at the start of casting (hereinafter referred to as "bottom cast piece"). At the start of casting, molten steel is oxidized by the metal and slag remaining in the air and tundish,
Oxide inclusions (hereinafter referred to as “inclusions”) increase in the molten steel, and the temperature of the molten steel decreases due to conduction heat to the tundish refractory and radiant heat to the air. This is because the floating and separation of the inclusions inside is hindered, and many inclusions remain, resulting in poor cleanability. for that reason,
Many techniques have been disclosed for improving the cleanability of bottom slabs.

【0004】例えば、特開昭53−115617号公報
には、鋳型への注入開始前にタンディッシュ内で溶鋼高
さが400mm以上になるまで溜め置きし、介在物を浮
上させて清浄性を改善する方法が開示されており、又、
特開平1−107948号公報には、タンディッシュ内
に付着する地金及びスラグをバーナーにより溶解除去す
ると共に、タンディッシュ予熱時に地金及びスラグがタ
ンディッシュから鋳型への流出孔内へ流入することを防
止してタンディッシュを再使用し、ボトム鋳片の清浄性
を改善する方法が開示されている。
[0004] For example, in Japanese Patent Laid-Open No. 53-115617, before the start of injection into a mold, the tundish is pooled until the height of molten steel reaches 400 mm or more, and the inclusions are floated to improve cleanliness. Is disclosed, and
JP-A-1-107948 discloses that the metal and slag adhering to the inside of the tundish are dissolved and removed by a burner, and the metal and the slag flow into the outflow hole from the tundish to the mold during preheating of the tundish. A method of preventing the above and reusing the tundish to improve the cleanability of the bottom slab is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の従来技
術ではボトム鋳片の清浄性が十分に改善されず、却って
悪化したり、時には鋳造作業が続行不能となる等の問題
点がある。例えば、特開昭53−115617号公報に
よる方法では、溶鋼の溜め置き高さを高くするほど鋳片
の清浄性が向上するが、タンディッシュ内溶鋼の温度が
低下するため、溶鋼の凝固により流出孔が閉塞して鋳造
が不可能となったり、又、鋳型内溶鋼の温度低下により
モールドパウダーの滓化が損なわれ、鋳片に表面欠陥が
多発する。この溶鋼温度低下の影響は、通常の鋳造開始
方法の場合よりも長く続き、結果的に鋳造開始時の品質
の劣る範囲を長くすることになる。又、特開平1−10
7948号公報による方法では、地金付着量やスラグ付
着量の影響を考慮し、その無害化を図らなければ、タン
ディッシュ内に付着した地金やスラグが汚染源となり、
汚染状態が長く続いて鋳造開始時の品質の劣る範囲を増
大させる。
However, in the above-mentioned prior art, there is a problem that the cleanliness of the bottom slab is not sufficiently improved, rather deteriorates, and sometimes the casting operation cannot be continued. For example, according to the method disclosed in Japanese Patent Laid-Open No. 53-115617, the cleanliness of the slab is improved as the height of the molten steel stored is increased, but the temperature of the molten steel in the tundish is lowered, so that the molten steel flows out due to solidification. The holes are closed to make casting impossible, and the temperature of molten steel in the mold is lowered, so that the slag of the mold powder is impaired, resulting in frequent occurrence of surface defects on the slab. The effect of the lowering of the molten steel temperature lasts longer than in the case of the usual casting start method, and as a result, the range of poor quality at the start of casting is lengthened. In addition, JP-A-1-10
In the method according to Japanese Patent Publication No. 7948, the influence of the amount of adhered metal and the amount of adhered slag is taken into consideration, and if it is not made harmless, the metal or slag adhered in the tundish becomes a pollution source,
Contamination is continued for a long time to increase the range of poor quality at the start of casting.

【0006】本発明者等は、従来技術における上記問題
点の原因を調査・検討した結果、従来技術では、問題と
する介在物の大きさや介在物の量、及び、各種の対策に
よる介在物低減効果が十分に定量化されておらず、これ
らに起因して上記問題点が発生することを確認した。
As a result of investigating and examining the causes of the above problems in the prior art, the inventors of the present invention have found that in the prior art, the size and amount of inclusions in question, and reduction of inclusions by various measures are taken. It was confirmed that the effects were not sufficiently quantified and that the above problems were caused by these.

【0007】本発明は上記事情に鑑みなされたもので、
その目的とするところは、ボトム鋳片の清浄性に起因す
る品質異常を未然に防止することのできる鋼の連続鋳造
方法を提供することである。
The present invention has been made in view of the above circumstances,
An object of the object is to provide a continuous casting method for steel capable of preventing a quality abnormality due to cleanliness of a bottom slab in advance.

【0008】[0008]

【課題を解決するための手段】第1の発明による鋼の連
続鋳造方法は、タンディッシュ内で溶鋼を溜め置きした
後、鋳型への注入を開始する鋼の連続鋳造方法におい
て、タンディッシュ内での溶鋼加熱の有無、タンディッ
シュ内での溶鋼攪拌の有無、及び、タンディッシュ内で
の地金付着量の3つの鋳造因子の組み合せにより定まる
鋳造条件で、鋳造開始時の鋳片での総酸素濃度のピック
アップ量と酸化物系介在物の分離率とを予め測定し、こ
の測定結果に基づいて個別の鋳造条件での鋳造開始時の
鋳片の総酸素濃度と酸化物系介在物の分離率とを推定
し、この推定値に基づいて鋳造開始時の鋳片の表面手入
れ方法と運用方法とを製品別に決めることを特徴とする
ものである。
According to a first aspect of the present invention, there is provided a continuous casting method for steel in which a molten steel is stored in a tundish and then injection into a mold is started. The total oxygen in the slab at the start of casting under the casting conditions determined by the combination of the three casting factors, namely, whether the molten steel is heated in the tundish, whether the molten steel is stirred in the tundish, and the amount of metal deposit in the tundish. The concentration pick-up amount and the separation rate of oxide inclusions were measured in advance, and based on the measurement results, the total oxygen concentration of the slab and the separation rate of oxide inclusions at the start of casting under individual casting conditions. It is characterized in that the surface maintenance method and the operating method of the slab at the start of casting are determined for each product based on this estimated value.

【0009】又、第2の発明による鋼の連続鋳造方法
は、タンディッシュ内で溶鋼を溜め置きした後、鋳型へ
の注入を開始する鋼の連続鋳造方法において、溜め置き
中のタンディッシュ内溶鋼の温度変化を予め測定し、こ
の測定結果に基づいてタンディッシュへの注入直後の溶
鋼温度の測定値からタンディッシュ内での溜め置き時間
を決めると共に、タンディッシュ内での溶鋼加熱の有
無、タンディッシュ内での溶鋼攪拌の有無、及び、タン
ディッシュ内での地金付着量の3つの鋳造因子の組み合
せにより定まる鋳造条件で、鋳造開始時の鋳片での総酸
素濃度のピックアップ量と酸化物系介在物の分離率とを
予め測定し、この測定結果に基づいて個別の鋳造条件で
の鋳造開始時の鋳片の総酸素濃度と酸化物系介在物の分
離率とを推定し、この推定値に基づいて鋳造開始時の鋳
片の表面手入れ方法と運用方法とを製品別に決めること
を特徴とするものである。
The continuous casting method for steel according to the second aspect of the invention is a continuous casting method for steel in which molten steel is stored in a tundish and then poured into a mold to start casting. Temperature change in advance, based on this measurement result to determine the pooling time in the tundish from the measured value of the molten steel temperature immediately after injection into the tundish, and whether or not the molten steel is heated in the tundish. Under the casting conditions that are determined by the combination of the three casting factors of the presence or absence of molten steel stirring in the dish and the amount of metal adhesion in the tundish, the total oxygen concentration pick-up amount and oxide in the slab at the start of casting The separation rate of the system inclusions is measured in advance, and the total oxygen concentration of the slab and the separation rate of the oxide inclusions at the start of casting under the individual casting conditions are estimated based on the measurement result, and It is characterized in that determining the surface UPKEEP and operational methods of the casting starting slab based on value by product.

【0010】本発明者等は、ボトム鋳片の清浄性に起因
する品質異常を未然に防止するために調査・検討を開始
した。そして先ず、製品別に欠陥となる介在物のサイズ
を調査し、各製品別の介在物の許容サイズを以下のよう
に定めた。即ち、薄鋼板を深絞り加工して製造される
DI缶では、直径が50μmを越えるAl23系介在物
によりフランジクラックが発生しており、フランジクラ
ックを防止するために介在物の許容サイズを直径50μ
m以下とし、薄鋼板を曲げ加工して突き合わせ部を溶
接して製造される電縫管では、介在物に起因する超音波
探傷欠陥を防止するために介在物の許容サイズを直径1
00μm以下とし、汎用薄鋼板では直径200μm以
下、汎用厚鋼板では直径300μm以下とした。
The inventors of the present invention have started investigations and studies in order to prevent abnormal quality due to cleanliness of bottom slabs. First, the size of inclusions that would be defective for each product was investigated, and the allowable size of inclusions for each product was determined as follows. That is, in a DI can manufactured by deep-drawing a thin steel plate, a flange crack is generated by an Al 2 O 3 -based inclusion having a diameter of more than 50 μm, and the allowable size of the inclusion is set to prevent the flange crack. The diameter is 50μ
In the electric resistance welded pipe manufactured by bending a thin steel plate and welding the abutted portions, the allowable size of the inclusion is 1 mm or less in order to prevent ultrasonic flaws caused by the inclusion.
The diameter was 200 μm or less, the diameter was 200 μm or less for the general-purpose thin steel plate, and the diameter was 300 μm or less for the general-purpose thick steel plate.

【0011】又、鋳片の介在物の総含有量と製品での欠
陥とは必ずしも対応しないが、本発明者等の経験上、介
在物の総含有量が多いものは許容サイズ以上の介在物が
含まれる確率が高いことから、介在物の総含有量を鋳片
の総酸素濃度(「T.[O]」とも称す)で表わすこと
とし、総酸素濃度の許容値を、DI缶では15ppm
以下、電縫管では25ppm以下、汎用薄鋼板では
25ppm以下、汎用厚鋼板では35ppm以下とし
た。このようにして決めた製品別の介在物許容サイズ及
び総酸素濃度許容値を表1に示す。
Further, although the total content of inclusions in the cast slab does not necessarily correspond to the defect in the product, from the experience of the present inventors, those with a large total content of inclusions are inclusions of an allowable size or more. Therefore, the total content of inclusions is expressed by the total oxygen concentration of the slab (also referred to as “T. [O]”), and the allowable total oxygen concentration is 15 ppm for DI cans.
Hereinafter, it was set to 25 ppm or less for the electric resistance welded pipe, 25 ppm or less for the general-purpose thin steel plate, and 35 ppm or less for the general-purpose thick steel plate. Table 1 shows the allowable size of inclusions and the allowable value of total oxygen concentration determined for each product.

【0012】[0012]

【表1】 [Table 1]

【0013】本発明者等は、空気酸化等によるボトム鋳
片各部位の総酸素濃度のピックアップ量は、タンディッ
シュ内でのプラズマトーチや誘導加熱等による溶鋼加熱
の有無と、タンディッシュ内での不活性ガスや電磁攪拌
等による溶鋼攪拌の有無と、タンディッシュ内での地金
付着量との3つの鋳造因子を同一とすると、タンディ
ッシュ内での溶鋼の溜め置き時間と、鋳型への溶鋼の
注ぎ上げ時間と、ボトム鋳片各部位の鋳片引抜き開始
からの経過時間との3つの時間を足した総時間(以下、
「総経過時間」と記す)で整理されることを見出した。
The present inventors have found that the amount of total oxygen concentration picked up at each site of bottom slab due to air oxidation or the like depends on whether or not the molten steel is heated by a plasma torch or induction heating in the tundish, and whether it is in the tundish. If the three casting factors, that is, the presence or absence of molten steel agitation with an inert gas or electromagnetic agitation, and the amount of metal in the tundish are the same, the molten steel storage time in the tundish and the molten steel in the mold The total time of adding three times of the pouring time and the elapsed time from the start of slab drawing of each part of the bottom slab (hereinafter,
It was found that they are organized by "total elapsed time").

【0014】即ち、ボトム鋳片各部位における総酸素濃
度のピックアップ量は、上記3つの鋳造因子を決めれ
ば、鋳片サイズや鋳片引抜き速度等の鋳造因子によらず
総経過時間で整理できるので、本発明では、上記3つの
鋳造因子の組み合せにより定まる鋳造条件別にボトム鋳
片における総酸素濃度のピックアップ量を予め測定して
おき、その結果に基づき、個別の鋳造条件でのボトム鋳
片各部位の総酸素濃度を総経過時間から推定する。
That is, the pickup amount of the total oxygen concentration in each part of the bottom cast piece can be arranged by the total elapsed time regardless of the cast factors such as the cast piece size and the cast piece drawing speed if the above three casting factors are determined. In the present invention, the pickup amount of the total oxygen concentration in the bottom slab is measured in advance for each casting condition determined by the combination of the above three casting factors, and based on the result, each part of the bottom slab under the individual casting conditions is measured. The total oxygen concentration of is estimated from the total elapsed time.

【0015】又、本発明では、上記3つの鋳造因子の組
み合せにより定まる鋳造条件別にタンディッシュ内溶鋼
での介在物のサイズ別の分離率を予め測定しておき、そ
の結果に基づき、個別の鋳造条件でのボトム鋳片の介在
物分布を推定する。
Further, according to the present invention, the separation rate by size of inclusions in the molten steel in the tundish is measured in advance for each casting condition determined by the combination of the above three casting factors, and the individual casting is performed based on the result. The distribution of inclusions in the bottom slab under the conditions is estimated.

【0016】このようにして、ボトム鋳片における総酸
素濃度と介在物分布とを推定することが可能となり、そ
して、これらの推定値と表1に示す製品別の総酸素濃度
の許容値及び介在物許容サイズとを比較し、総酸素濃度
の推定値が許容値を越える範囲のボトム鋳片は、鋳片の
表面手入れ方法を変更する、若しくは、予定した製品以
外に運用変更することができるので、ボトム鋳片での清
浄性に起因する品質異常が未然に防止される。
In this way, it becomes possible to estimate the total oxygen concentration and the distribution of inclusions in the bottom slab, and these estimated values and the permissible values and the inclusions of total oxygen concentration for each product shown in Table 1. For the bottom slabs in which the estimated value of the total oxygen concentration exceeds the permissible value by comparing the allowable size of the product, the surface care method of the slab can be changed, or the operation can be changed to other than the planned product. The quality abnormality caused by the cleanliness of the bottom slab is prevented in advance.

【0017】又、本発明では、溜め置き中の溶鋼温度の
変化を予め測定し、この測定結果に基づいてタンディッ
シュへの注入直後の溶鋼温度の測定値からタンディッシ
ュ内での溜め置き時間を決めるので、溶鋼の凝固を防止
しつつ、最長の溜め置き時間を確保して介在物の分離を
促進させることができる。尚、本発明におけるタンディ
ッシュ内での溶鋼の溜め置き時間とは、溶鋼をタンディ
ッシュ内へ注入開始した時間から鋳型への注入を開始す
るまでの時間であり、又、鋳型への溶鋼の注ぎ上げ時間
とは、溶鋼を鋳型へ注入開始した時間から鋳片の引抜き
を開始するまでの時間である。
Further, in the present invention, the change in molten steel temperature during storage is measured in advance, and based on this measurement result, the storage time in the tundish is determined from the measured value of the molten steel temperature immediately after injection into the tundish. Since it is determined, it is possible to prevent the solidification of the molten steel and to secure the longest storage time and promote the separation of inclusions. Incidentally, the storage time of the molten steel in the tundish in the present invention is the time from the start of pouring the molten steel into the tundish until the start of pouring into the mold, and the pouring of the molten steel into the mold The raising time is the time from the start of pouring molten steel into the mold to the start of withdrawing the slab.

【0018】[0018]

【発明の実施の形態】以下に本発明を図面に基づき説明
する。図1は、本発明を適用した鋳片断面が矩形型の2
ストランドの連続鋳造設備の正面断面の概要図である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 shows a slab having a rectangular cross section according to the present invention.
It is an outline figure of the front section of the continuous casting equipment of a strand.

【0019】図において、内部を耐火物で構築されたタ
ンディッシュ1が、タンディッシュカー(図示せず)に
搭載され、鋳型11の上方所定位置に配置されている。
タンディッシュ1の底部には、タンディッシュ耐火物に
嵌合する上ノズル17と、上ノズル17の下面側に接続
する、固定板18及び摺動板19からなるスライディン
グノズル3と、スライディングノズル3の下面側に接続
する浸漬ノズル2とが設けられ、タンディッシュ1から
鋳型11への流出孔20が形成される。そして、タンデ
ィッシュ1の中央部には下部に排出用の孔を有する一対
の堰4が設置されており、この一対の堰4で囲まれる範
囲内に取鍋15の底部に設けたロングノズル16を位置
するように、内部に溶鋼12を収納する取鍋15がタン
ディッシュ1の上方に設置されている。
In the figure, a tundish 1 having a refractory material inside is mounted on a tundish car (not shown) and is arranged at a predetermined position above a mold 11.
At the bottom of the tundish 1, an upper nozzle 17 fitted to the tundish refractory, a sliding nozzle 3 connected to the lower surface side of the upper nozzle 17 and composed of a fixed plate 18 and a sliding plate 19, and a sliding nozzle 3 An immersion nozzle 2 connected to the lower surface side is provided, and an outflow hole 20 from the tundish 1 to the mold 11 is formed. A pair of weirs 4 having discharge holes at the bottom is installed in the center of the tundish 1, and a long nozzle 16 provided at the bottom of the ladle 15 is surrounded by the pair of weirs 4. A ladle 15 for accommodating the molten steel 12 therein is installed above the tundish 1 so as to be located at.

【0020】タンディッシュ1の上方には、タンディッ
シュ1内の溶鋼12の加熱手段として、プラズマ加熱装
置5が設置されている。このプラズマ加熱装置5のプラ
ズマトーチ6は、一対の堰4で囲まれたタンディッシュ
1内を上下移動可能であり、プラズマトーチ6とタンデ
ィッシュ1内の溶鋼12とでプラズマを発生して溶鋼1
2を加熱することができる。又、堰4と上ノズル17と
の間のタンディッシュ1の底部には、タンディッシュ1
内の溶鋼12を攪拌する手段として、不活性ガス吹き込
み用のポーラス煉瓦7が設置されている。ポーラス煉瓦
7は、不活性ガス配管(図示せず)に接続され、Ar等
の不活性ガスを吹き込み、タンディッシュ1内の溶鋼1
2を攪拌することができる。尚、溶鋼の加熱手段や溶鋼
の攪拌手段は本発明にとって必ずしも必要ではない。
A plasma heating device 5 is installed above the tundish 1 as a means for heating the molten steel 12 in the tundish 1. The plasma torch 6 of the plasma heating device 5 can move up and down in the tundish 1 surrounded by the pair of weirs 4, and plasma is generated by the plasma torch 6 and the molten steel 12 in the tundish 1 to generate molten steel 1.
2 can be heated. Also, at the bottom of the tundish 1 between the weir 4 and the upper nozzle 17, the tundish 1
As a means for stirring the molten steel 12 therein, a porous brick 7 for blowing an inert gas is installed. The porous brick 7 is connected to an inert gas pipe (not shown), blows an inert gas such as Ar, and melts the molten steel 1 in the tundish 1.
2 can be stirred. The heating means for molten steel and the stirring means for molten steel are not always necessary for the present invention.

【0021】タンディッシュ1の上方には、消耗型熱電
対9をタンディッシュ1内の溶鋼12に浸漬させて溶鋼
温度を測定する測温装置8が設置され、又、タンディッ
シュ1はロードセル10で支持され、タンディッシュ1
内の溶鋼12の重量、及びタンディッシュ1を再使用す
る場合にはタンディッシュ1内の地金付着量が、タンデ
ィッシュ1の風袋重量を基にしてロードセル10で測定
される。
Above the tundish 1, a consumable thermocouple 9 is installed in a molten steel 12 in the tundish 1, and a temperature measuring device 8 for measuring the molten steel temperature is installed. The tundish 1 is a load cell 10. Supported, Tundish 1
The weight of the molten steel 12 therein and, in the case of reusing the tundish 1, the amount of metal adhered in the tundish 1 are measured by the load cell 10 based on the tare weight of the tundish 1.

【0022】このような連続鋳造設備における操業は、
先ず、スライディングノズル3を閉として取鍋15から
ロングノズル16を介してタンディッシュ1内に溶鋼1
2を注入し、必要に応じてプラズマ加熱装置5での溶鋼
加熱や、ポーラス煉瓦7での溶鋼攪拌を行いつつ溶鋼1
2をタンディッシュ1内で所定時間溜め置きし、次い
で、スライディングノズル3を開として、浸漬ノズル2
を介して溶鋼12を鋳型11内に注入する。鋳型11内
に注入された溶鋼12は冷却されて凝固シェル14を形
成する。そして、鋳型11内に注入した溶鋼湯面が鋳型
11内の所定位置に達するまで注ぎ上げし、溶鋼湯面が
所定位置に達した時点でダミーバー(図示せず)と共に
凝固シェル14を下方に引抜き、鋳片の引抜きを開始す
る。鋳型11内には溶鋼12の保温剤や鋳型11と凝固
シェル14との潤滑剤等としてモールドパウダー13を
添加する。鋳型11の下方に引き抜かれた凝固シェル1
4は内部まで凝固して鋳片となり、引抜き方向下方に設
置された鋳片切断機(図示せず)により切断され、連続
鋳造が行なわれる。
The operation in such a continuous casting facility is as follows.
First, the sliding nozzle 3 is closed and the molten steel 1 is put into the tundish 1 from the ladle 15 through the long nozzle 16.
2 is injected, and molten steel 1 is heated while the molten steel is heated by the plasma heating device 5 and the molten steel is stirred by the porous brick 7 as needed.
2 is stored in the tundish 1 for a predetermined time, then the sliding nozzle 3 is opened, and the immersion nozzle 2
The molten steel 12 is poured into the mold 11 via the. The molten steel 12 poured into the mold 11 is cooled to form a solidified shell 14. Then, the molten steel surface poured into the mold 11 is poured up until it reaches a predetermined position in the mold 11, and when the molten steel surface reaches a predetermined position, the solidification shell 14 is pulled downward together with a dummy bar (not shown). , Start drawing the slab. Mold powder 13 is added into the mold 11 as a heat retaining agent for the molten steel 12 and a lubricant for the mold 11 and the solidified shell 14. Solidified shell 1 pulled out below the mold 11
No. 4 solidifies to the inside to form a cast piece, which is cut by a cast piece cutting machine (not shown) installed below the drawing direction, and continuous casting is performed.

【0023】このような構成及び操業を行う連続鋳造設
備における本発明の適用方法を以下に説明する。
A method of applying the present invention to a continuous casting facility having such a structure and operation will be described below.

【0024】先ず、各種の鋳造条件において、タンディ
ッシュ1内での溶鋼12中の介在物の浮上による分離率
を把握しておく。具体的には、タンディッシュ1内での
溶鋼加熱の有無、タンディッシュ1内での溶鋼攪拌の有
無、及び、タンディッシュ1内での地金付着量の3つの
鋳造因子の組み合せにより定まる鋳造条件別に、タンデ
ィッシュ1内での溜め置き時間による介在物の分離率を
予め把握しておく。以下に本発明者等の把握した介在物
の分離率の例を示す。
First, under various casting conditions, the separation rate due to the floating of inclusions in the molten steel 12 in the tundish 1 is understood. Specifically, the casting conditions determined by the combination of three casting factors, namely, whether or not the molten steel is heated in the tundish 1, whether or not the molten steel is stirred in the tundish 1, and the amount of metal adhered in the tundish 1. Separately, the separation rate of inclusions depending on the storage time in the tundish 1 is grasped in advance. The following is an example of the separation rate of inclusions as understood by the present inventors.

【0025】図2は、容量が40トンで未使用の図1に
示すタンディッシュ1を用い、鋳造条件としてはポーラ
ス煉瓦7からのArガス吹き込みによる溶鋼攪拌の有無
で比較し、タンディッシュ1内での溶鋼12の溜め置き
時間を2分、5分、及び10分として介在物の分離率を
調査した結果を示す図である。吹き込むArガス量はス
トランド当たり50Nl/分であり、図中、実線は溶鋼
攪拌を行なわない場合を、又、破線はArガスによる溶
鋼攪拌を行なった場合を示す。図2に示すように、介在
物の直径が大きくなるほど、又、溜め置き時間が長くな
るほど、介在物の分離率は大きくなり、例えば、直径2
00μmの介在物は5分の溜め置き時間で90%以上が
浮上して分離することが分かる。又、Arガスによる溶
鋼攪拌により、介在物の分離が促進されることが分か
る。
In FIG. 2, the tundish 1 shown in FIG. 1 having a capacity of 40 tons and not used is compared, and the casting conditions are compared by comparing the presence or absence of molten steel agitation by blowing Ar gas from the porous brick 7. It is a figure which shows the result of having investigated the isolation | separation rate of the inclusion by making the storage time of the molten steel 12 in 2 minutes, 5 minutes, and 10 minutes in. The amount of Ar gas blown in is 50 Nl / min per strand. In the figure, the solid line shows the case where molten steel stirring is not performed, and the broken line shows the case where molten steel stirring with Ar gas is performed. As shown in FIG. 2, the greater the diameter of the inclusions and the longer the storage time, the greater the separation rate of the inclusions.
It can be seen that at least 90% of the inclusions of 00 μm float and separate in a storage time of 5 minutes. Further, it is understood that the stirring of molten steel with Ar gas promotes the separation of inclusions.

【0026】図3は、上記と同一のタンディッシュ1を
用いて、プラズマ加熱装置5により溶鋼12を加熱しつ
つ、溜め置き時間を2分、5分、及び10分として介在
物の分離率を調査した結果を示す図である。図3に示す
ように、タンディッシュ1内の溶鋼12を加熱すること
で介在物の分離率が向上し、特に、直径が50μmの小
型の介在物が短時間の溜め置き時間で効率良く分離され
ることが分かる。このようにして、上記3つの鋳造因子
により定まる鋳造条件別に介在物の分離率を予め把握し
ておく。
In FIG. 3, using the same tundish 1 as described above, while the molten steel 12 is being heated by the plasma heating apparatus 5, the storage time is set to 2 minutes, 5 minutes, and 10 minutes to separate the inclusions. It is a figure which shows the result of investigation. As shown in FIG. 3, heating the molten steel 12 in the tundish 1 improves the separation rate of inclusions, and in particular, small inclusions with a diameter of 50 μm are efficiently separated in a short storage time. I understand that. In this way, the separation rate of inclusions is grasped in advance for each casting condition determined by the above three casting factors.

【0027】次いで、各種の鋳造条件において、ボトム
鋳片の総酸素濃度のピックアップ量を把握しておく。具
体的には、タンディッシュ1内での溶鋼加熱の有無、タ
ンディッシュ1内での溶鋼攪拌の有無、及び、タンディ
ッシュ1内での地金付着量の3つの鋳造因子の組み合せ
により定まる鋳造条件別に、ボトム鋳片各部位の総酸素
濃度のピックアップ量を把握する。以下に本発明者等の
把握した総酸素濃度のピックアップ量の例を示す。
Next, under various casting conditions, the pickup amount of the total oxygen concentration of the bottom slab is grasped. Specifically, the casting conditions determined by the combination of three casting factors, namely, whether or not the molten steel is heated in the tundish 1, whether or not the molten steel is stirred in the tundish 1, and the amount of metal adhered in the tundish 1. Separately, the pickup amount of the total oxygen concentration at each part of the bottom slab is grasped. The following is an example of the pickup amount of the total oxygen concentration as understood by the present inventors.

【0028】図4は、容量が40トンで未使用の図1に
示すタンディッシュ1を用いてポーラス煉瓦7からスト
ランド当たり50Nl/分のArガス吹き込みによる溶
鋼攪拌を行い、タンディッシュ1内の溜め置き時間を2
5秒、90秒、2分、及び10分の4水準とし、ボトム
クロップとの切断位置を起点とした鋳片長さ毎に総酸素
濃度のピックアップ量を調査した結果を示す図である。
図4に示すように、溜め置き時間が長くなるほど、ボト
ム鋳片での総酸素濃度のピックアップ量が減少している
ことが分かる。尚、総酸素濃度のピックアップ量は、タ
ンディッシュ1への注入開始前に取鍋15内の溶鋼12
から採取した試料の総酸素濃度の分析値(以下、「初期
総酸素濃度」と記す)を基準とし、鋳片での総酸素濃度
との差から求めたものである。
FIG. 4 shows that the tundish 1 shown in FIG. 1 having a capacity of 40 tons, which is unused, is used to stir molten steel by pouring 50 Nl / min of Ar gas per strand from the porous brick 7 and the pool in the tundish 1 is agitated. Place time 2
It is a figure which shows the result of having investigated the pick-up amount of the total oxygen concentration for every slab length which made 5 seconds, 90 seconds, 4 minutes, and 4 levels, and the cutting position with a bottom crop the starting point.
As shown in FIG. 4, it can be seen that the pickup amount of the total oxygen concentration in the bottom slab decreases as the storage time increases. In addition, the total oxygen concentration pick-up amount is the molten steel 12 in the ladle 15 before the start of injection into the tundish 1.
It was obtained from the difference from the total oxygen concentration in the cast slab, with the analytical value of the total oxygen concentration of the sample (hereinafter referred to as "initial total oxygen concentration") as a reference.

【0029】又、溜め置き時間が25秒の鋳造方法は、
タンディッシュ1に25秒間で5トンの溶鋼12を注入
し、直ちに鋳型11へ注入を開始したものであり、同様
に溜め置き時間が90秒の鋳造方法は、タンディッシュ
1に90秒間で20トンの溶鋼12を注入し、直ちに鋳
型11への注入を開始したもの、又、溜め置き時間が2
分の鋳造方法は、タンディッシュ1に2分間で30トン
の溶鋼12を注入し、直ちに鋳型11へ注入を開始した
ものである。これに対して、溜め置き時間が10分の鋳
造方法は、タンディッシュ1に20トンの溶鋼12を9
0秒間で注入し、10分後に40トンとなるように絞り
注入を行なったものである。
Further, the casting method in which the storage time is 25 seconds is
5 tonne of molten steel 12 was injected into the tundish 1 in 25 seconds, and the injection into the mold 11 was started immediately. Similarly, the casting method in which the pooling time was 90 seconds was 20 tonne in 90 seconds in the tundish 1. The molten steel 12 was poured into the mold 11 immediately, and the storage time was 2
In the casting method of 30 minutes, 30 tons of molten steel 12 was poured into the tundish 1 in 2 minutes and the casting was immediately started into the mold 11. On the other hand, in the casting method in which the storage time is 10 minutes, 9 tons of molten steel 12 is added to the tundish 1.
The injection was performed in 0 seconds, and the injection was performed so as to be 40 tons after 10 minutes.

【0030】図4の横軸の鋳片長さを、各鋳造条件にお
ける溜め置き時間、鋳型11への注ぎ上げ時間、及び、
鋳片引抜き開始からの経過時間に基づき、前述の総経過
時間に変換し、この総経過時間を横軸とし、総酸素濃度
のピックアップ量を縦軸として両者の関係を示したもの
が図5である。図5に示すように、ボトム鋳片の総酸素
濃度のピックアップ量は総経過時間と良い相関性を示し
ている。
The slab length on the horizontal axis in FIG. 4 is defined as the storage time under each casting condition, the pouring time into the mold 11, and
Based on the elapsed time from the start of slab drawing, it is converted into the total elapsed time described above, and the total elapsed time is shown on the horizontal axis and the total oxygen concentration pickup amount is shown on the vertical axis. is there. As shown in FIG. 5, the pickup amount of the total oxygen concentration of the bottom slab shows a good correlation with the total elapsed time.

【0031】このように、タンディッシュ1内での溶鋼
加熱の有無、タンディッシュ1内での溶鋼攪拌の有無、
及びタンディッシュ1内での地金付着量の3つの鋳造因
子を同一条件とすれば、ボトム鋳片の総酸素濃度のピッ
クアップ量を容易に推定することができる。尚、溶鋼攪
拌のない場合や溶鋼加熱のある場合には、図2及び図3
に基づき、総経過時間とボトム鋳片の総酸素濃度のピッ
クアップ量との関係を別途求めておくこととする。
Thus, whether or not the molten steel is heated in the tundish 1, whether or not the molten steel is stirred in the tundish 1,
Also, if the three casting factors of the amount of metal adhered in the tundish 1 are set under the same condition, the pickup amount of the total oxygen concentration of the bottom slab can be easily estimated. 2 and 3 when the molten steel is not stirred or the molten steel is heated.
Based on the above, the relationship between the total elapsed time and the pickup amount of the total oxygen concentration of the bottom slab will be separately obtained.

【0032】又、図5には熱間状態のタンディッシュ1
を再使用する際のタンディッシュ1内の地金付着量の影
響を破線及び一点鎖線で併せて示す。地金付着量が多い
場合には、次回鋳造までに地金が酸化して次回鋳造時の
汚染源になるが、その影響は前回の鋳造終了時にタンデ
ィッシュ1内に残存した地金付着量を測定しておくこと
で、図5に示すように、定量化することができる。
Further, FIG. 5 shows the tundish 1 in a hot state.
The influence of the amount of metal adhered in the tundish 1 when reusing is indicated by a broken line and a dashed line. When there is a large amount of metal deposit, the metal is oxidized by the next casting and becomes a pollution source at the time of the next casting. The effect is to measure the amount of metal deposit remaining in the tundish 1 at the end of the previous casting. By doing so, it is possible to quantify as shown in FIG.

【0033】更に、各種の鋳造条件において、溜め置き
中の溶鋼温度の経時変化を把握しておく。本発明者等の
経験では、タンディッシュ1内の溶鋼過熱度(過熱度と
は溶鋼温度と凝固温度との差である)が15℃以下にな
ると、浸漬ノズル2やスライディングノズル3における
溶鋼12の凝固によりノズル閉塞が発生し、鋳造が不可
能になることを確認している。タンディッシュ1内での
溶鋼12の溜め置き時間を長くすれば、介在物の分離が
促進され清浄性が向上するが、一方で溶鋼温度が低下し
て溶鋼過熱度が確保されなくなる。そこで、15℃を越
える溶鋼過熱度を確保するため、予め溜め置き時間と溶
鋼温度変化との関係を把握しておく。尚、プラズマ加熱
装置5等の加熱装置がある場合には、溜め置き時間は任
意に選択することができる。以下に本発明者等の把握し
た溜め置き中の温度降下の例を示す。
Further, under various casting conditions, the change with time of the molten steel temperature during storage is grasped. According to the experience of the present inventors, when the molten steel superheat degree in the tundish 1 (the superheat degree is the difference between the molten steel temperature and the solidification temperature) becomes 15 ° C. or less, the molten steel 12 in the immersion nozzle 2 and the sliding nozzle 3 is It has been confirmed that solidification causes nozzle blockage, making casting impossible. If the storage time of the molten steel 12 in the tundish 1 is lengthened, the separation of inclusions is promoted and the cleanability is improved, but on the other hand, the molten steel temperature is lowered and the superheating degree of molten steel cannot be ensured. Therefore, in order to secure the superheated degree of molten steel exceeding 15 ° C., the relationship between the storage time and the change in molten steel temperature is grasped in advance. If there is a heating device such as the plasma heating device 5, the storage time can be arbitrarily selected. The following is an example of the temperature drop during storage that the present inventors have grasped.

【0034】図6は、容量が40トンで未使用の図1に
示すタンディッシュ1を用いてポーラス煉瓦7からスト
ランド当たり50Nl/分のArガス吹き込みによる溶
鋼攪拌を行い、プラズマ加熱装置5による溶鋼加熱の有
無で、タンディッシュ1内の溶鋼温度の変化を測温装置
8にて調査した結果を示す図である。図6に示すよう
に、溶鋼加熱のない場合には、溶鋼温度は溜め置き時間
が5分で9℃、溜め置き時間が10分で14℃低下する
ので、この温度降下を加味して溜め置き時間を決める必
要がある。尚、図6の溜め置き時間0分のデータは溜め
置き時間30秒、1分、及び2分のデータから類推した
ものである。
FIG. 6 shows a molten steel stirred by the plasma heating device 5 using the tundish 1 shown in FIG. 1 having a capacity of 40 tons and stirring the molten steel by blowing Ar gas at 50 Nl / min per strand from the porous brick 7. It is a figure which shows the result of having investigated the change of the molten steel temperature in the tundish 1 with the temperature measuring device 8 with or without heating. As shown in FIG. 6, when the molten steel is not heated, the molten steel temperature decreases by 9 ° C. in the pooling time of 5 minutes and by 14 ° C. in the pooling time of 10 minutes. You need to decide the time. The data of 0 minutes of storage time in FIG. 6 is an analogy from the data of 30 seconds, 1 minute, and 2 minutes of storage time.

【0035】このようにして、タンディッシュ1内での
溶鋼加熱の有無、タンディッシュ1内での溶鋼攪拌の有
無、及び、タンディッシュ1内での地金付着量の3つの
鋳造因子の組み合せにより定まる鋳造条件において、溜
め置き中の溶鋼温度の変化、及びボトム鋳片での総酸素
濃度のピックアップ量と酸化物系介在物の分離率を予め
把握しておき、そして、個別の鋳造の際には、先ず、タ
ンディッシュ1への注入開始直後に測温装置8にて溶鋼
温度を測定し、この測定値と予め把握した鋳造条件別の
溜め置き中の溶鋼温度の降下(例えば図6)とを対比し
てタンディッシュ1内での溜め置き時間を決める。尚、
プラズマ加熱装置5を備えた設備では、溜め置き時間を
任意に決めることができる。
In this way, by combining the three casting factors of whether or not the molten steel is heated in the tundish 1, whether or not the molten steel is stirred in the tundish 1, and the amount of metal adhered in the tundish 1, Under the casting conditions that are determined, the change in molten steel temperature during storage, the total oxygen concentration pickup amount in the bottom slab, and the separation rate of oxide inclusions are known in advance, and when individual casting is performed. First, immediately after starting the injection into the tundish 1, the temperature of the molten steel is measured by the temperature measuring device 8, and the measured value and the drop in the molten steel temperature during the pooling according to the casting conditions that is grasped in advance (for example, FIG. 6). Contrast with, and determine the storage time in Tundish 1. still,
In the equipment provided with the plasma heating device 5, the storage time can be arbitrarily determined.

【0036】次に、予め把握した鋳造条件別のボトム鋳
片の総酸素濃度のピックアップ量(例えば図5)と測定
した初期総酸素濃度とで、個別の鋳造におけるボトム鋳
片の総酸素濃度の分布を推定し、表1で定めた製品別の
総酸素濃度の許容値と対比して、総酸素濃度が許容値を
越える位置に対応する総経過時間を求める。そして、こ
の総経過時間を、個別の鋳造における溜め置き時間と鋳
型11への注ぎ上げ時間と鋳片引抜き速度から求まる引
抜き開始からの経過時間とに基づいて鋳片位置に変換
し、ボトムクロップの長さを加味して総酸素濃度が許容
値を越える鋳片の鋳造方向の長さ位置を求める。そし
て、総酸素濃度が許容値を越える鋳片部位において、表
1で定めた製品別の介在物許容サイズに該当する大きさ
の介在物の残留量及び分布を、予め把握した鋳造条件別
の介在物の分離率(例えば図2)から推定し、推定した
介在物の残留量や分布から、その鋳片の表面手入れ方法
及び鋳片の運用方法を決める。ボトム鋳片は最初に凝固
する鋳片表層部が特に清浄性が劣るので、鋳片表層部を
コールドスカーファー等により溶削することで、清浄性
を改善することができる。
Next, the total oxygen concentration of the bottom slab in the individual casting is determined by the pickup amount (for example, FIG. 5) of the total oxygen concentration of the bottom slab for each casting condition and the measured initial total oxygen concentration. The distribution is estimated and compared with the allowable value of the total oxygen concentration for each product defined in Table 1, and the total elapsed time corresponding to the position where the total oxygen concentration exceeds the allowable value is obtained. Then, this total elapsed time is converted into a slab position based on the pooling time in individual casting, the pouring time into the mold 11, and the elapsed time from the start of drawing determined from the slab drawing speed, and the bottom crop Taking the length into consideration, the length position in the casting direction of the slab in which the total oxygen concentration exceeds the allowable value is determined. Then, in the cast slab where the total oxygen concentration exceeds the allowable value, the residual amount and distribution of the inclusions having a size corresponding to the allowable inclusion size for each product defined in Table 1 are preliminarily grasped for each casting condition. It is estimated from the separation rate of the product (for example, FIG. 2), and the surface maintenance method of the slab and the operating method of the slab are determined from the estimated residual amount and distribution of inclusions. Since the bottom slab has particularly poor cleanliness in the surface layer of the slab that solidifies first, the cleanability can be improved by fusing the surface layer of the slab with a cold scarf or the like.

【0037】このようにして連続鋳造を行うことで、最
適な溜め置き時間で鋳造することが可能となると共に、
ボトム鋳片の長さ方向の部位毎に総酸素濃度と介在物残
留量とを推定することが可能となり、要求される製品別
にボトム鋳片のどの部位から適用可能かを判断すること
ができるので、ボトム鋳片の清浄性に起因する品質異常
を未然に防止することができる。
By carrying out continuous casting in this way, it becomes possible to perform casting with an optimum storage time, and
It is possible to estimate the total oxygen concentration and residual amount of inclusions for each part of the bottom slab in the lengthwise direction, and it is possible to determine from which part of the bottom slab the applicable product can be applied for each required product. Therefore, it is possible to prevent a quality abnormality due to the cleanliness of the bottom slab.

【0038】尚、上記説明では、加熱する際の溶鋼温度
を均一とするため、タンディッシュ1内に一対の堰4を
設けているが、堰4は本発明にとって必ずしも必要では
なく、設置しなくても良い。又、ストランド数も2つに
限るものではなく、1つ若しくは3つ以上であっても上
記に準じて本発明を行うことができる。更に、溶鋼加熱
手段や溶鋼攪拌手段、及び測温手段も上記に限るもので
はないことは言うまでもない。
In the above description, a pair of weirs 4 are provided in the tundish 1 in order to make the molten steel temperature during heating uniform, but the weirs 4 are not always necessary for the present invention and need not be provided. May be. Further, the number of strands is not limited to two, and the present invention can be carried out according to the above even if the number of strands is one or three or more. Further, it goes without saying that the molten steel heating means, the molten steel stirring means, and the temperature measuring means are not limited to the above.

【0039】[0039]

【実施例】[実施例1]図1に示す2ストランドの連続
鋳造設備における電縫管用鋼種での実施例を説明する。
タンディッシュは未使用で、その容量は40トンであ
り、ポーラス煉瓦から1ストランド当たり50Nl/分
のArガスを吹き込んだ。鋳片引抜き速度v(m/分)
を(1)式、及び(2)式のようにして鋳造した。但
し、(1)式及び(2)式において、tは鋳片引抜き開
始からの経過時間(分)である。 v= 0.3+ 0.1×t 但し、t<5.5 分……(1) v=0.85 但し、t≧5.5 分……(2)
[Examples] [Example 1] Examples of steel types for electric resistance welded pipes in the two-strand continuous casting equipment shown in Fig. 1 will be described.
The tundish was unused and had a capacity of 40 tons and was blown with 50 Nl / min of Ar gas per strand from the porous brick. Slab drawing speed v (m / min)
Was cast as in equations (1) and (2). However, in the equations (1) and (2), t is the elapsed time (minutes) from the start of drawing the cast slab. v = 0.3 + 0.1 × t where t <5.5 minutes …… (1) v = 0.85 where t ≧ 5.5 minutes …… (2)

【0040】取鍋から採取した試料での初期総酸素濃度
は20ppmであり、電縫管用鋼種での総酸素濃度のピ
ックアップ量の許容量は、表1の許容値から5ppmと
なる。又、タンディッシュへの注入開始直後のタンディ
ッシュ内での溶鋼過熱度は25℃であり、図6から溜め
置き時間を5分とすることが可能であることが判明した
ので、5分間タンディッシュに溜め置きした後、鋳型へ
の注入を開始した。鋳型での溶鋼の注ぎ上げ時間は1分
間であり、この1分間に鋳片長さとして0.3mの高さ
分を注ぎ上げ、次いで、上記の鋳片引抜き速度で鋳片の
引抜きを開始した。鋳片切断に当たってはボトムクロッ
プ長さを0.6mとした。尚、プラズマ加熱装置は使用
していない。
The initial total oxygen concentration in the sample collected from the ladle is 20 ppm, and the allowable amount of pickup of the total oxygen concentration in the electric resistance welded steel grade is 5 ppm from the allowable value in Table 1. In addition, the molten steel superheat degree in the tundish immediately after the start of injection into the tundish was 25 ° C, and it was found from Fig. 6 that the storage time could be set to 5 minutes. After the solution was stored in the mold, injection into the mold was started. The pouring time of the molten steel in the mold was 1 minute, and a height of 0.3 m was cast as the length of the cast piece in this 1 minute, and then the pulling of the cast piece was started at the above-mentioned cast piece drawing speed. In cutting the slab, the bottom crop length was set to 0.6 m. No plasma heating device was used.

【0041】ここで、総経過時間をT、鋳片の引抜き開
始からの経過時間をt、鋳片の引抜き長さをL、ボトム
鋳片におけるボトムクロップとの切断位置からの鋳片長
さをXとすると、鋳片各部位での総経過時間(T)は、
溜め置き時間と、鋳型での溶鋼の注ぎ上げ時間と、鋳片
の引抜き開始からの経過時間(t)との和であり、又、
鋳片長さ(X)は、(1)式及び(2)式を積分して求
まる鋳片引抜き長さ(L)と、鋳型での注ぎ上げ高さ
と、ボトムクロップ長さとで決まるので、実施例1での
条件においては、総経過時間(T)と鋳片長さ(X)
は、それぞれ(3)式及び(4)式として表わされる。
尚、(4)式における分母1.015は熱間補正係数で
あり、熱間での鋳片長さを冷間での鋳片長さに換算する
係数である。 T=5+1+t ……(3) X=(L+0.3−0.6)/1.015 ……(4)
Here, T is the total elapsed time, t is the elapsed time from the start of the drawing of the slab, L is the drawing length of the slab, and X is the slab length from the cutting position with the bottom crop in the bottom slab. Then, the total elapsed time (T) at each part of the slab is
It is the sum of the storage time, the pouring time of molten steel in the mold, and the elapsed time (t) from the start of drawing the slab, and
The slab length (X) is determined by the slab withdrawal length (L) obtained by integrating the formulas (1) and (2), the pouring height in the mold, and the bottom crop length. Under the condition of No. 1, the total elapsed time (T) and the slab length (X)
Are expressed as equations (3) and (4), respectively.
The denominator 1.015 in the equation (4) is a hot correction coefficient, which is a coefficient for converting a hot slab length into a cold slab length. T = 5 + 1 + t (3) X = (L + 0.3-0.6) /1.015 (4)

【0042】実施例1における鋳片引抜き開始からの経
過時間(t)と、(3)式及び(4)式により算出した
総経過時間(T)及び鋳片長さ(X)との関係を表2に
示す。
The relationship between the elapsed time (t) from the start of the ingot extraction in Example 1, the total elapsed time (T) calculated by the equations (3) and (4), and the ingot length (X) is shown. 2 shows.

【0043】[0043]

【表2】 [Table 2]

【0044】そして、図5に基づいてピックアップ量が
5ppmとなる総経過時間(T)を求めると、総経過時
間(T)が10分の位置となる。表2から総経過時間
(T)が10分に該当する鋳片長さ(X)を求めると、
鋳片長さ(X)は1.7mとなり、従って、鋳片長さ
(X)が1.7mまでの鋳片が電縫管用鋼種としては総
酸素濃度で不的確になると判断された。但し、図2によ
ればボトムクロップとの切断位置から1.7m以内の鋳
片でも電縫管で問題となる直径が100μm以上の介在
物は70%以上が分離されていると判断されるので、該
当鋳片はボトムクロップとの切断位置から1.7mの範
囲のみを2mmコールドスカーファーにより溶削し電縫
缶むけに使用した。該当鋳片は製品での超音波検査の結
果全く問題がなかった。これらの作業はオペレータが各
管理項目を収集して行ったが、全てのデータを自動収集
し、これらのデータをプロセスコンピュータに伝送し、
コンピューターで判断しても良い。
Then, when the total elapsed time (T) when the pickup amount is 5 ppm is obtained based on FIG. 5, the total elapsed time (T) is at the position of 10 minutes. When the slab length (X) corresponding to the total elapsed time (T) of 10 minutes is calculated from Table 2,
The slab length (X) was 1.7 m. Therefore, it was determined that slabs with a slab length (X) of up to 1.7 m were inaccurate in total oxygen concentration as a steel type for ERW pipes. However, according to FIG. 2, it is determined that 70% or more of the inclusions having a diameter of 100 μm or more, which is a problem in the electric resistance welded pipe, are separated even in a cast piece within 1.7 m from the cutting position with the bottom crop. The cast slab was melted and cut by a 2 mm cold scarfer only in a range of 1.7 m from the cutting position with the bottom crop and used for an electric resistance sewing can. As a result of ultrasonic inspection of the product, the cast product had no problem. Although these operations were performed by the operator collecting each management item, all the data were automatically collected and these data were transmitted to the process computer.
You may judge with a computer.

【0045】[実施例2]実施例1と同一の連続鋳造設
備を用いて同一の鋳造条件でDI缶用鋼種を鋳造した。
取鍋から採取した試料での初期総酸素濃度は13ppm
であり、総酸素濃度のピックアップ量の許容量は、表1
の許容値から2ppmとなる。又、タンディッシュへの
注入開始直後のタンディッシュ内での溶鋼過熱度は25
℃であり、図6から溜め置き時間を5分とすることが可
能であることが判明したので、5分間タンディッシュに
溜め置きした後、鋳型への注入を開始し、上記(1)式
及び(2)式の鋳片引抜き速度で鋳造を開始した。この
時プラズマ加熱装置は設備故障により使用できなかっ
た。
Example 2 Using the same continuous casting equipment as in Example 1, a steel for DI can was cast under the same casting conditions.
The initial total oxygen concentration in the sample collected from the ladle is 13 ppm
The allowable amount of total oxygen concentration is shown in Table 1.
It becomes 2 ppm from the allowable value of. Immediately after the start of injection into the tundish, the degree of superheat of molten steel in the tundish is 25.
Since it was found that it was possible to set the storage time to 5 minutes from Fig. 6, it was stored in the tundish for 5 minutes, then injection into the mold was started, and the above formula (1) and Casting was started at the slab drawing speed of the formula (2). At this time, the plasma heating device could not be used due to equipment failure.

【0046】そして、図5に基づいてピックアップ量が
2ppmとなる総経過時間(T)を求めると、総経過時
間(T)が13分の位置となる。表2から総経過時間
(T)が13分に該当する鋳片長さ(X)を求めると、
鋳片長さ(X)は4.1mとなり、従って、鋳片長さ
(X)が4.1mまでの鋳片がDI缶用鋼種としては総
酸素濃度で不的確になると判断された。更に、図2によ
ればボトムクロップとの切断位置から4.1mまでの鋳
片ではDI缶で問題となる直径が50μm以上の介在物
は、50%しか浮上分離されていないと判断されるの
で、該当鋳片はボトムクロップとの切断位置から4.1
mで切断して2mm溶削した後、DI缶向けから外して
汎用薄鋼板用に転用した。該当鋳片は薄鋼板製品での検
査の結果問題がなく、又、ボトム鋳片を除外した他の鋳
片も検査の結果問題なくDI缶用として出荷され、フラ
ンジクラックの発生は皆無であった。
Then, when the total elapsed time (T) at which the pickup amount becomes 2 ppm is obtained based on FIG. 5, the total elapsed time (T) is at the position of 13 minutes. When the slab length (X) corresponding to the total elapsed time (T) of 13 minutes is calculated from Table 2,
The slab length (X) was 4.1 m. Therefore, it was determined that slabs with a slab length (X) of up to 4.1 m were inaccurate as the total steel concentration for DI can steel type. Further, according to FIG. 2, it is judged that only 50% of the inclusions having a diameter of 50 μm or more, which is a problem in the DI can, are float-separated in the slab up to 4.1 m from the cutting position with the bottom crop. , The relevant slab is 4.1 from the cutting position with the bottom crop.
After cutting with m and fusing 2 mm, it was removed from the DI can and diverted to a general-purpose thin steel plate. There was no problem as a result of the inspection of the corresponding slab with a thin steel sheet product, and other slabs excluding the bottom slab were shipped as DI cans without any problem as a result of the inspection, and there was no occurrence of flange cracks. .

【0047】[0047]

【発明の効果】本発明によれば、ボトム鋳片の鋳造開始
からの長さ毎に総酸素濃度と介在物残留量とを推定する
ことが可能となり、要求される製品別に鋳片のどの部位
から適用可能かを判断することができるので、ボトム鋳
片の清浄性に起因する品質異常を未然に防止することが
できる。
According to the present invention, it is possible to estimate the total oxygen concentration and the residual amount of inclusions for each length from the start of casting of the bottom slab, and which part of the slab is required for each product. Since it can be determined from the above, it is possible to prevent the quality abnormality due to the cleanliness of the bottom slab.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した鋳片断面が矩形型の2ストラ
ンドの連続鋳造設備の正面断面の概要図である。
FIG. 1 is a schematic view of a front cross-section of a continuous casting equipment for two strands having a rectangular slab to which the present invention is applied.

【図2】タンディッシュ内における介在物分離率の調査
結果を溶鋼攪拌の有無で比較して示す図である。
FIG. 2 is a diagram showing a comparison result of the inclusion separation ratio in the tundish with and without molten steel agitation.

【図3】プラズマ加熱した際のタンディッシュ内におけ
る介在物分離率の調査結果を示す図である。
FIG. 3 is a diagram showing a result of investigation of a separation rate of inclusions in a tundish at the time of plasma heating.

【図4】ボトム鋳片の鋳造開始からの長さ毎の総酸素濃
度のピックアップ量の調査結果を示す図である。
FIG. 4 is a diagram showing a result of investigation on a pickup amount of total oxygen concentration for each length from the start of casting of a bottom slab.

【図5】ボトム鋳片の総酸素濃度のピックアップ量と総
経過時間との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the total oxygen concentration pickup amount of the bottom slab and the total elapsed time.

【図6】プラズマ加熱の有無で、タンディッシュ内の溶
鋼温度の変化を調査した結果を示す図である。
FIG. 6 is a diagram showing a result of investigating a change in molten steel temperature in a tundish with and without plasma heating.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 2 浸漬ノズル 3 スライディングノズル 4 堰 5 プラズマ加熱装置 6 プラズマトーチ 7 ポーラス煉瓦 8 測温装置 9 消耗型熱電対 10 ロードセル 11 鋳型 12 溶鋼 13 モールドパウダー 14 凝固シェル 15 取鍋 16 ロングノズル 1 tundish 2 immersion nozzle 3 sliding nozzles 4 weirs 5 Plasma heating device 6 plasma torch 7 Porous brick 8 temperature measuring device 9 Consumable thermocouple 10 load cell 11 molds 12 Molten steel 13 Mold powder 14 solidification shell 15 ladle 16 long nozzles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 典子 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4E004 MB00 MC00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Noriko Kubo             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F-term (reference) 4E004 MB00 MC00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュ内で溶鋼を溜め置きした
後、鋳型への注入を開始する鋼の連続鋳造方法におい
て、タンディッシュ内での溶鋼加熱の有無、タンディッ
シュ内での溶鋼攪拌の有無、及び、タンディッシュ内で
の地金付着量の3つの鋳造因子の組み合せにより定まる
鋳造条件で、鋳造開始時の鋳片での総酸素濃度のピック
アップ量と酸化物系介在物の分離率とを予め測定し、こ
の測定結果に基づいて個別の鋳造条件での鋳造開始時の
鋳片の総酸素濃度と酸化物系介在物の分離率とを推定
し、この推定値に基づいて鋳造開始時の鋳片の表面手入
れ方法と運用方法とを製品別に決めることを特徴とする
鋼の連続鋳造方法。
1. In a continuous casting method of steel, in which molten steel is stored in a tundish and then poured into a mold, in the tundish, whether molten steel is heated, whether molten steel is stirred in the tundish, In addition, under the casting conditions determined by the combination of three casting factors of the amount of metal adhered in the tundish, the pickup amount of the total oxygen concentration in the cast piece at the start of casting and the separation rate of oxide-based inclusions are set in advance. Measure, estimate the total oxygen concentration of the slab and the separation rate of oxide inclusions at the start of casting under individual casting conditions based on this measurement result, and cast at the start of casting based on this estimated value. A method for continuous casting of steel, characterized in that the surface care method and operation method of the piece are determined for each product.
【請求項2】 タンディッシュ内で溶鋼を溜め置きした
後、鋳型への注入を開始する鋼の連続鋳造方法におい
て、溜め置き中のタンディッシュ内溶鋼の温度変化を予
め測定し、この測定結果に基づいてタンディッシュへの
注入直後の溶鋼温度の測定値からタンディッシュ内での
溜め置き時間を決めると共に、タンディッシュ内での溶
鋼加熱の有無、タンディッシュ内での溶鋼攪拌の有無、
及び、タンディッシュ内での地金付着量の3つの鋳造因
子の組み合せにより定まる鋳造条件で、鋳造開始時の鋳
片での総酸素濃度のピックアップ量と酸化物系介在物の
分離率とを予め測定し、この測定結果に基づいて個別の
鋳造条件での鋳造開始時の鋳片の総酸素濃度と酸化物系
介在物の分離率とを推定し、この推定値に基づいて鋳造
開始時の鋳片の表面手入れ方法と運用方法とを製品別に
決めることを特徴とする鋼の連続鋳造方法。
2. In a continuous casting method of steel in which molten steel is stored in a tundish and then poured into a mold, a temperature change of molten steel in the tundish during storage is measured in advance, Based on the measured value of the molten steel temperature immediately after injection into the tundish based on which the time for holding in the tundish is determined, whether the molten steel is heated in the tundish, whether the molten steel is stirred in the tundish,
In addition, under the casting conditions determined by the combination of three casting factors of the amount of metal adhered in the tundish, the pickup amount of the total oxygen concentration in the cast piece at the start of casting and the separation rate of oxide-based inclusions are set in advance. Measure, estimate the total oxygen concentration of the slab and the separation rate of oxide inclusions at the start of casting under individual casting conditions based on this measurement result, and cast at the start of casting based on this estimated value. A method for continuous casting of steel, characterized in that the surface care method and operation method of the piece are determined for each product.
JP10237539A 1998-08-24 1998-08-24 Method for continuously casting steel Pending JP2000061591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10237539A JP2000061591A (en) 1998-08-24 1998-08-24 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10237539A JP2000061591A (en) 1998-08-24 1998-08-24 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JP2000061591A true JP2000061591A (en) 2000-02-29

Family

ID=17016840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10237539A Pending JP2000061591A (en) 1998-08-24 1998-08-24 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JP2000061591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264834A (en) * 2007-04-20 2008-11-06 Jfe Steel Kk Tundish for continuous casting
JP2014054675A (en) * 2013-11-29 2014-03-27 Nippon Steel & Sumitomo Metal Continuous casting method of molten steel
CN112903955A (en) * 2021-01-21 2021-06-04 柳州钢铁股份有限公司 Physical simulation test method and device for different steel types mixed casting in continuous casting process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264834A (en) * 2007-04-20 2008-11-06 Jfe Steel Kk Tundish for continuous casting
JP2014054675A (en) * 2013-11-29 2014-03-27 Nippon Steel & Sumitomo Metal Continuous casting method of molten steel
CN112903955A (en) * 2021-01-21 2021-06-04 柳州钢铁股份有限公司 Physical simulation test method and device for different steel types mixed casting in continuous casting process

Similar Documents

Publication Publication Date Title
CA2686301C (en) Compact strip or thin slab processing of boron/titanium steels
JP5104153B2 (en) Treatment method of joint slab in different steel type continuous casting
TW200303924A (en) Model-based system for determining process parameters for the ladle refinement of steel
JP5764431B2 (en) Metal ingot manufacturing method, metal ingot manufacturing equipment
JP5245800B2 (en) Continuous casting mold and steel continuous casting method
JP2000061591A (en) Method for continuously casting steel
JP2004306085A (en) Quality monitoring device and quality monitoring method for continuous cast cast slab
US20100000702A1 (en) Apparatus for determining the hot tearing susceptibility of metallic melts
JP5978967B2 (en) Component adjustment method for molten steel
JP3622422B2 (en) Tundish for continuous casting of steel
JP7226043B2 (en) Continuous casting method
Wizner et al. Effect of the production conditions of continuously cast steels on the degree of hot rolled product downgrading
JP5009019B2 (en) Steel manufacturing method
JP5020687B2 (en) Continuous casting method of slab steel with little center segregation
JP4926743B2 (en) Continuous casting method of high carbon high phosphorus steel
KR101400041B1 (en) Device for estimating carbon-increasing of molten steel and method thereof
Morov et al. Improvement in manufacturing technology for coiled and sheet rolled product in a VMZ casting and rolling complex
JP2008290136A (en) Continuous casting method for low carbon high sulfur steel
JP3806364B2 (en) Mold powder for continuous casting of steel and continuous casting method
Dutta et al. Continuous casting (concast)
JP4409167B2 (en) Continuous casting method
JP4325451B2 (en) Method for detecting surface defect of continuous cast slab and removing method thereof
KR0122299B1 (en) Method of manufacturing continuous casting strip
JPH09122844A (en) Sequentially continuous casting method for different kinds of steels
JP5052439B2 (en) How to use hot repeat tundish