JP2000060958A - Manufacture of implant material for organism - Google Patents

Manufacture of implant material for organism

Info

Publication number
JP2000060958A
JP2000060958A JP10232846A JP23284698A JP2000060958A JP 2000060958 A JP2000060958 A JP 2000060958A JP 10232846 A JP10232846 A JP 10232846A JP 23284698 A JP23284698 A JP 23284698A JP 2000060958 A JP2000060958 A JP 2000060958A
Authority
JP
Japan
Prior art keywords
solution
base material
phase
calcium hydroxide
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10232846A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Okunaga
清行 奥長
Seiichi Morita
誠一 森田
Takayuki Mito
貴之 三戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP10232846A priority Critical patent/JP2000060958A/en
Publication of JP2000060958A publication Critical patent/JP2000060958A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the mechanical strength, quicken the binding to the bone and make keepable the stability over a long period of time by dipping a base material made of titanium metal in an alkali solution, sintering the same, and dipping the same in a calcium hydroxide solution. SOLUTION: For example, a pure titanium plate is used as a base material, dipped in about 5 mol/l of NaOH water solution and then washed with pure water. The material is dried to form a coat composed of a titania phase and a sodium titanate gel phase on the surface of the base material. The obtained material is sintered at about 60 deg.C for about one hour to alterate a part of the sodium titanate gel phase to a sodium titanate phase. Subsequenty, the material is dipped in a calcium hydroxide water solution with the concentration of 0.1-20M mol/l, and then washed with water and dried to obtain an implant material for an organism. Thus, apatite can be formed in a short time, and the speed of connection to the bone can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体インプラント材料
の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a bioimplant material.

【0002】[0002]

【従来の技術】従来、骨の代替材料として種々の生体イ
ンプラント材料が提案されている。例えば、ステンレス
合金、チタンやチタン合金等のチタン系金属等の高強度
材料や、アパタイト焼結体、生体活性ガラス、生体活性
結晶化ガラス等の生体活性材料が知られている。
2. Description of the Related Art Conventionally, various bioimplant materials have been proposed as substitute materials for bone. For example, high-strength materials such as stainless alloys and titanium-based metals such as titanium and titanium alloys, and bioactive materials such as apatite sintered bodies, bioactive glass, and bioactive crystallized glass are known.

【0003】ステンレス合金やチタン系金属等の高強度
材料は、高い機械的強度を有するものの、骨と結合する
のに長期間を要する。またアパタイト焼結体、生体活性
ガラス、生体活性結晶化ガラス等の生体活性材料は骨と
短期間で結合するが、強度的に不十分であり、適用箇所
が制限される。そこで高強度材料の表面に、プラズマ溶
射や焼き付けによって生体活性材料からなる被膜を形成
したインプラント材料も提案されているが、この材料に
おいても長期の生体内への埋入中に基材と被膜との界面
で剥離が生じることがある。
High-strength materials such as stainless alloys and titanium-based metals have high mechanical strength, but require a long period of time to bond with bone. Further, bioactive materials such as apatite sintered body, bioactive glass, and bioactive crystallized glass are bound to bone in a short period of time, but their strength is insufficient and their application sites are limited. Therefore, an implant material in which a coating made of a bioactive material is formed on the surface of a high-strength material by plasma spraying or baking has also been proposed.However, even in this material, the base material and the coating are formed during long-term implantation in the living body. Peeling may occur at the interface of.

【0004】そこで本出願人は特願平8−357040
において、チタン系金属からなる基材表面にチタニア相
やアルカリチタネート相からなる被膜が形成され、該被
膜中にカルシウムイオンが含有されてなるインプラント
材料を提案している。
Therefore, the present applicant has filed Japanese Patent Application No. 8-357040.
Proposes an implant material in which a coating film made of a titania phase or an alkali titanate phase is formed on the surface of a base material made of a titanium-based metal, and calcium ions are contained in the coating film.

【0005】[0005]

【発明が解決しようとする課題】上記した材料は、被膜
が基材と一体的に形成されており、また生体活性を有す
るため、自然骨と結合した後も被膜が剥がれることがな
い。しかしながら、この材料は、自然骨との結合スピー
ドが遅いため、術後の安静期間を長くする必要がある。
In the above-mentioned materials, the coating is formed integrally with the base material and has bioactivity, so that the coating does not peel off even after bonding with natural bone. However, this material requires a long postoperative rest period due to its slow bond speed with natural bone.

【0006】本発明の目的は、機械的強度が高く、短期
間で骨と結合し、しかも生体内で長期にわたって安定な
生体インプラント材料を製造する方法を提供することで
ある。
[0006] An object of the present invention is to provide a method for producing a bioimplant material having high mechanical strength, binding to bone in a short period of time, and being stable in vivo for a long period of time.

【0007】[0007]

【課題を解決するための手段】本発明の生体インプラン
ト材料の製造方法は、チタン系金属からなる基材をアル
カリ溶液中に浸漬し、焼成した後、水酸化カルシウム溶
液中に浸漬することを特徴とする。
The method for producing a bioimplant material of the present invention is characterized in that a base material made of a titanium-based metal is immersed in an alkaline solution, baked, and then immersed in a calcium hydroxide solution. And

【0008】[0008]

【作用】本発明の生体インプラント材料を製造する方法
を詳細に説明する。
The method for producing the bioimplant material of the present invention will be described in detail.

【0009】まずチタン系金属を所望の形状に成形して
基材を作製する。チタン系金属としては、純チタンの
他、Na、Mg、P、Nb、Zr、Al、Sn、Pt、
Ta、V等を添加したチタン合金が使用できる。
First, a titanium-based metal is formed into a desired shape to prepare a base material. Examples of the titanium-based metal include pure titanium, Na, Mg, P, Nb, Zr, Al, Sn, Pt,
A titanium alloy added with Ta, V, etc. can be used.

【0010】次に、基材をアルカリ溶液中に浸漬する。
チタン系金属の表面には通常チタニアの薄い膜が存在し
ており、アルカリ溶液と接触させると、これらが反応し
てアルカリチタネートゲルが生成する。またチタニアゲ
ルが生成することもある。このようにしてチタニア相や
チタニアゲル相と、アルカリチタネートゲル相を有する
被膜が基材表面に一体的に形成される。アルカリ溶液と
しては、水酸化ナトリウム、水酸化カリウム等の水溶液
を使用する。アルカリ溶液の濃度、温度、浸漬時間等の
条件は、材料表面の被膜の形成具合によって決定すれば
よいが、濃度は2〜10mol/l、溶液の温度は25
〜90℃、浸漬時間は12〜48時間が適当である。
Next, the substrate is immersed in an alkaline solution.
A thin film of titania is usually present on the surface of the titanium-based metal, and when they are brought into contact with an alkaline solution, these react with each other to form an alkaline titanate gel. Titania gel may also be formed. In this way, a coating having a titania phase or a titania gel phase and an alkali titanate gel phase is integrally formed on the surface of the base material. As the alkaline solution, an aqueous solution of sodium hydroxide, potassium hydroxide or the like is used. Conditions such as the concentration, temperature, and immersion time of the alkaline solution may be determined according to the degree of formation of the film on the material surface, but the concentration is 2 to 10 mol / l, and the temperature of the solution is 25.
Appropriate dipping time is 12 to 48 hours at ˜90 ° C.

【0011】続いて基材を焼成し、アルカリチタネート
ゲルの一部又は全部を安定なアルカリチタネートに変質
させて被膜の安定性を高める。その焼成条件は、200
℃〜基材の転移温度で4時間以内であることが望まし
い。
Subsequently, the substrate is fired to transform a part or the whole of the alkali titanate gel into a stable alkali titanate to enhance the stability of the coating. The firing condition is 200
It is desirable that the transition temperature of the substrate is within 4 hours.

【0012】その後、基材を水酸化カルシウム溶液中に
浸漬する。このとき大気等の二酸化炭素の存在する雰囲
気中で処理すると、雰囲気中の二酸化炭素と水酸化カル
シウム溶液が反応して炭酸カルシウムが生成し、これが
基材の被膜表面に付着する。また水酸化カルシウム溶液
と基材の被膜が反応して被膜表面にカルシウムチタネー
トが生成する。
After that, the substrate is immersed in a calcium hydroxide solution. At this time, if the treatment is performed in an atmosphere in which carbon dioxide is present, such as the atmosphere, the carbon dioxide in the atmosphere reacts with the calcium hydroxide solution to produce calcium carbonate, which adheres to the coating surface of the substrate. Further, the calcium hydroxide solution reacts with the film of the base material to produce calcium titanate on the surface of the film.

【0013】水酸化カルシウム溶液としては、水酸化カ
ルシウムの水溶液を使用することができる。水酸化カル
シウム溶液の濃度は、0.1〜20Mmol/l、特に
5〜20Mmol/lが好ましい。濃度が0.1Mmo
l/lより低いと炭酸カルシウムやカルシウムチタネー
トが生成しにくくなり、20Mmol/lより高くなる
と炭酸カルシウムの生成が多くなりすぎ、膜剥がれやひ
び割れが生じて骨との強固な結合が得難くなる。また水
酸化カルシウム溶液の液温は、50〜150℃、特に1
00〜140℃の範囲にあることが好ましい。液温が5
0℃より低いと炭酸カルシウムやカルシウムチタネート
が生成し難くなり、150℃を超えると炭酸カルシウム
の生成が多くなりすぎ、膜剥がれやひび割れが生じて骨
との強固な結合が得難くなる。処理時間は、溶液の濃度
や液温に応じて適宜調整すればよいが、10分〜3日間
の範囲内で行うことが適当である。
An aqueous solution of calcium hydroxide can be used as the calcium hydroxide solution. The concentration of the calcium hydroxide solution is preferably 0.1 to 20 Mmol / l, particularly preferably 5 to 20 Mmol / l. Concentration is 0.1Mmo
If it is lower than 1 / l, it becomes difficult to produce calcium carbonate or calcium titanate, and if it is higher than 20 Mmol / l, the amount of calcium carbonate is too much produced, and film peeling or cracking occurs and it becomes difficult to obtain a strong bond with bone. The liquid temperature of the calcium hydroxide solution is 50 to 150 ° C., especially 1
It is preferably in the range of 00 to 140 ° C. Liquid temperature is 5
If the temperature is lower than 0 ° C, it becomes difficult to generate calcium carbonate or calcium titanate, and if the temperature exceeds 150 ° C, the amount of calcium carbonate is excessively increased, and film peeling or cracking occurs, which makes it difficult to obtain a strong bond with bone. The treatment time may be appropriately adjusted depending on the concentration of the solution and the temperature of the solution, but it is suitable to perform the treatment within a range of 10 minutes to 3 days.

【0014】上記の方法により作製されるインプラント
材料は、チタン系金属からなる基材表面に、チタニア相
及びアルカリチタネート相を有する被膜が形成されてお
り、被膜表面には炭酸カルシウム結晶やカルシウムチタ
ネート相が存在している。この材料は、体液と接触する
と、被膜中のアルカリチタネート相やアルカリチタネー
トゲル相(及び被膜表面のカルシウムチタネート)のア
ルカリイオン(及びカルシウムイオン)が体液中のヒド
ロニウムイオンと交換されてチタニアゲル相になり、ア
パタイト生成の核となる。またこのイオン交換によって
インプラント材料近傍の体液のpHが上昇し、アパタイ
トが析出しやすい環境となる。さらに被膜上に炭酸カル
シウム結晶が存在する場合には、これが種となって体液
中のカルシウムイオンが吸着し、続いて電気的中性を保
とうとしてリン酸イオンが吸着する。このようにして被
膜表面に骨類似のアパタイトが速やかに形成され、この
層を介して骨と早期に結合することができる。
The implant material produced by the above method has a coating having a titania phase and an alkali titanate phase formed on the surface of a base material made of titanium metal, and calcium carbonate crystals or calcium titanate phase is formed on the coating surface. Exists. When this material comes into contact with body fluids, alkali ions (and calcium ions) in the alkaline titanate phase and alkaline titanate gel phase (and calcium titanate on the coating surface) in the coating are exchanged with hydronium ions in the body fluid to form the titania gel phase. And becomes the nucleus of apatite formation. The ion exchange also raises the pH of the body fluid near the implant material, creating an environment in which apatite easily precipitates. Further, when calcium carbonate crystals are present on the film, they serve as seeds for adsorbing calcium ions in the body fluid, and subsequently adsorbing phosphate ions in order to maintain electrical neutrality. In this way, bone-like apatite is rapidly formed on the surface of the coating, and it is possible to early bond with bone through this layer.

【0015】[0015]

【実施例】以下、実施例に基づいて本発明を説明する。EXAMPLES The present invention will be described below based on examples.

【0016】表1は本発明の実施例(試料No.1〜
3)及び比較例(試料No.4)を示している。
Table 1 shows examples of the present invention (Sample Nos. 1 to 1).
3) and a comparative example (sample No. 4) are shown.

【0017】[0017]

【表1】 [Table 1]

【0018】各試料は次のようにして調製した。Each sample was prepared as follows.

【0019】まず基材として10×10×1mmの大き
さの純チタン板を用意した。次いで基材を、5mol/
lのNaOH水溶液(60℃)5mlに24時間浸漬
し、純水で洗浄後、乾燥させて、基材表面にチタニア相
とナトリウムチタネートゲル相からなる被膜を形成し
た。次いで基材を600℃で1時間焼成し、ナトリウム
チタネートゲル相の一部をナトリウムチタネート相に変
質させた。その後、表に示す条件で水酸化カルシウム水
溶液又は塩化カルシウム水溶液5mlに浸漬した後、純
水で洗浄し、乾燥させて試料を得た。ここで100℃未
満の場合は恒温槽中で、100℃以上の場合はオートク
レーブ内で処理を行った。
First, a pure titanium plate having a size of 10 × 10 × 1 mm was prepared as a base material. Then, the substrate is 5 mol /
It was immersed in 5 ml of an aqueous NaOH solution (60 ° C.) for 24 hours, washed with pure water, and dried to form a film composed of a titania phase and a sodium titanate gel phase on the surface of the base material. Then, the base material was baked at 600 ° C. for 1 hour to change a part of the sodium titanate gel phase to the sodium titanate phase. After that, the sample was obtained by immersing in 5 ml of an aqueous solution of calcium hydroxide or an aqueous solution of calcium chloride under the conditions shown in the table, washing with pure water and drying. When the temperature was lower than 100 ° C, the treatment was carried out in a constant temperature bath, and when the temperature was 100 ° C or higher, the treatment was carried out in an autoclave.

【0020】得られた試料について、体液と同じイオン
濃度に調製した疑似体液中に浸漬し、アパタイト層の形
成に要する期間を調査し、骨との結合速度を評価した。
結果を表1に示す。
The obtained sample was dipped in a simulated body fluid prepared to have the same ion concentration as that of the body fluid, the period required for forming an apatite layer was investigated, and the binding rate with bone was evaluated.
The results are shown in Table 1.

【0021】表から明らかなように、比較例であるN
o.4の試料はアパタイト生成に120時間を要したの
に対し、本発明の実施例であるNo.1〜3の試料では
12〜24時間という短時間でアパタイトが生成した。
As is apparent from the table, the comparative example N
o. The sample of No. 4 required 120 hours for the formation of apatite, whereas the sample of No. In samples 1 to 3, apatite was formed in a short time of 12 to 24 hours.

【0022】[0022]

【発明の効果】本発明の製造方法によれば、機械的強度
が高く、短期間で骨と結合することができ、生体内で長
期間にわたって安定な生体インプラント材料を容易に作
製することが可能である。
EFFECTS OF THE INVENTION According to the production method of the present invention, it is possible to easily produce a bioimplant material which has high mechanical strength, can be bound to bone in a short period of time, and is stable in the body for a long period of time. Is.

フロントページの続き Fターム(参考) 4C081 AB02 CF032 CF22 CF23 CF26 CG02 CG03 DC03 DC05 DC14 EA05 Continued front page    F-term (reference) 4C081 AB02 CF032 CF22 CF23                       CF26 CG02 CG03 DC03 DC05                       DC14 EA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタン系金属からなる基材をアルカリ溶
液中に浸漬し、焼成した後、水酸化カルシウム溶液中に
浸漬することを特徴とする生体インプラント材料の製造
方法。
1. A method for producing a bioimplant material, which comprises immersing a base material made of a titanium-based metal in an alkaline solution, firing it, and then immersing it in a calcium hydroxide solution.
【請求項2】 水酸化カルシウム溶液として、水酸化カ
ルシウム水溶液を使用することを特徴とする請求項1の
生体インプラント材料の製造方法。
2. The method for producing a bioimplant material according to claim 1, wherein an aqueous calcium hydroxide solution is used as the calcium hydroxide solution.
【請求項3】 液温が50〜150℃の水酸化カルシウ
ム溶液を使用することを特徴とする請求項1の生体イン
プラント材料の製造方法。
3. The method for producing a bioimplant material according to claim 1, wherein a calcium hydroxide solution having a liquid temperature of 50 to 150 ° C. is used.
【請求項4】 0.1〜20Mmol/lの濃度の水酸
化カルシウム溶液を使用することを特徴とする請求項1
の生体インプラント材料の製造方法。
4. A calcium hydroxide solution having a concentration of 0.1 to 20 Mmol / l is used.
For producing a bioimplant material of the above.
JP10232846A 1998-08-19 1998-08-19 Manufacture of implant material for organism Pending JP2000060958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10232846A JP2000060958A (en) 1998-08-19 1998-08-19 Manufacture of implant material for organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10232846A JP2000060958A (en) 1998-08-19 1998-08-19 Manufacture of implant material for organism

Publications (1)

Publication Number Publication Date
JP2000060958A true JP2000060958A (en) 2000-02-29

Family

ID=16945730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10232846A Pending JP2000060958A (en) 1998-08-19 1998-08-19 Manufacture of implant material for organism

Country Status (1)

Country Link
JP (1) JP2000060958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022478A1 (en) 2006-08-22 2008-02-28 Thommen Medical Ag Implant, in particular dental implant
CN105696054A (en) * 2016-01-18 2016-06-22 南京医科大学附属口腔医院 Preparation method for forming calcium-containing nanosheet film layer on surface of sandblasted and acid-etched titanium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022478A1 (en) 2006-08-22 2008-02-28 Thommen Medical Ag Implant, in particular dental implant
JP2010501212A (en) * 2006-08-22 2010-01-21 トーメン メディカル アーゲー Implants, especially dental implants
US20110104638A1 (en) * 2006-08-22 2011-05-05 Thommen Medical Ag Implant, in particular dental implant
US8057843B2 (en) 2006-08-22 2011-11-15 Thommen Medical Ag Implant, in particular dental implant
EP2476443A1 (en) 2006-08-22 2012-07-18 Thommen Medical Ag Implant, in particular dental implant
US8789693B2 (en) 2006-08-22 2014-07-29 Thommen Medical Ag Implant, in particular dental implant
US8920866B2 (en) 2006-08-22 2014-12-30 Thommen Medical Ag Implant, in particular dental implant
CN105696054A (en) * 2016-01-18 2016-06-22 南京医科大学附属口腔医院 Preparation method for forming calcium-containing nanosheet film layer on surface of sandblasted and acid-etched titanium

Similar Documents

Publication Publication Date Title
US5478237A (en) Implant and method of making the same
JPH08299429A (en) Method for surface treatment of titanium implant and bio-compatible titanium implant
JPH02255515A (en) Coating method for bioactive hydroxylapatite film
NO310060B1 (en) Material for bone replacement and manufacture thereof
JP5757943B2 (en) Implant coated with reticulated or island-like low crystalline hydroxide apatite and coating method thereof
JP2002035109A (en) Anti-thrombotic material and method for manufacturing the same
WO2002059395A9 (en) Electrolytic deposition of coatings for prosthetic metals and alloys
JP2009067669A (en) Process for preparation of protein mediated calcium hydroxyapatite (hap) coating on metal substrate
JP4457230B2 (en) Surface treatment method for medical implant material
GB2194250A (en) Production of a composite of a metal coated with a calcium phosphate compound for implants
TW486374B (en) Non-dissolvable hydroxyapatite/titanium coating for implant application
JPH10179718A (en) Vital implant material and its production
JPH0731627A (en) Implant and manufacture thereof
KR101737358B1 (en) Surface treated Method of Dental implants using plasma electrolytic oxidation
JP2000060958A (en) Manufacture of implant material for organism
JP2003235954A (en) Bone conductive biomaterial and manufacturing method therefor
JP2000060957A (en) Implant material for organism and manufacture thereof
JPH10179717A (en) Vital implant material and its production
JPH10243997A (en) Production of vital implant material
JP2775523B2 (en) Bone substitute material and its manufacturing method
JPH0773600B2 (en) Coating method of bioactive hydroxyapatite film
JP3129041B2 (en) Implant and manufacturing method thereof
JP4804648B2 (en) Bone substitute material
JPH10179719A (en) Vital implant material and its production
JPH0747115A (en) Implant and its manufacture