JP2000060126A - Main circuit structure for power converter - Google Patents

Main circuit structure for power converter

Info

Publication number
JP2000060126A
JP2000060126A JP10239517A JP23951798A JP2000060126A JP 2000060126 A JP2000060126 A JP 2000060126A JP 10239517 A JP10239517 A JP 10239517A JP 23951798 A JP23951798 A JP 23951798A JP 2000060126 A JP2000060126 A JP 2000060126A
Authority
JP
Japan
Prior art keywords
conductor
phase
terminal
igbt
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10239517A
Other languages
Japanese (ja)
Other versions
JP3709512B2 (en
Inventor
Satoru Ito
知 伊東
Kiyoshi Nakada
仲田  清
Asako Koyanagi
阿佐子 小柳
Akira Mishima
彰 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23951798A priority Critical patent/JP3709512B2/en
Publication of JP2000060126A publication Critical patent/JP2000060126A/en
Application granted granted Critical
Publication of JP3709512B2 publication Critical patent/JP3709512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the effects of multiphase switching and irregularities in a current with a simple constitution by constituting each conductor connecting a main circuit as a flat plate, and installing a slit between each of phases. SOLUTION: A positive side conductor 1 is arranged as the lowermost layer and is fastened to a collector terminal of an IGBT 49 by using a terminal spacer 149 formed of conductor and a bolt 139. On the conductor 1, an AC side conductor 2c is arranged. A negative side conductor 3 is arranged as the uppermost layer. The conductors 2c, 3 are connected with terminals of the positive side IGBT 49 or a negative side IGBT 59, by using terminal spacers 249, 269, 349 and bolts 239, 259, 339. A terminal hole 101 is bored in the conductor 1. The IGBT of each layer is provided with terminal holes 111-113, connected with the collector terminal of the IGBT of an U-phase. Between the U-phase and its right V-phase, a slit 11 is formed. The U-phase and the V-phase are connected with each other via a constriction part in the upper part of conductor. In the V-phase part, terminal holes 114-116 connected with the IGBT are bored. In the right part of the holes, a slit 12 is formed. The V-phase part is connected with a W-phase part via a constricted part 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両用の電力
変換器など、電力変換器一般の主回路の実装構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting structure of a main circuit of a power converter in general, such as a power converter for a railway vehicle.

【0002】[0002]

【従来の技術】従来、電力変換器の配線は、特開平1−
160373号公報に示すような細長い導体バーや電線
が使用されていた。このような構成では配線のインダク
タンスが大きいため、半導体素子をオン、オフした際の
電流や電圧の跳ね上がりが大きい、という問題がある。
半導体素子を保護するため、大きな容量のスナバ回路等
を接続する必要があり、装置の小型化の障害となってい
た。ところで、インダクタンスを低減するには、電流の
経路である導体をできるだけ平たい形状とし、かつ、往
路と復路の導体をできるだけ近接して設置する、いわゆ
る平行平板状にすれば良いことが知られている。これ
は、往路と復路が作る磁束の変化が互いに相殺し、見か
け上磁束の変化が殆どなくなるからである。このような
原理を使用した配線方法としては、特開平6−3850
7号公報、特開平6ー225545号公報、特開平6−
327266号公報、特開平7−131981号公報、
特開平9−47036号公報、特開平9ー70184号
公報などに記載の技術があげられる。これらはいずれ
も、上述のように絶縁層などを挾んで平板状導体を近接
配置した平行平板状の配線を用いており、インダクタン
ス低減を実現している。しかしながら、各相間の接続に
は特に記述がない。特開平7−245951号公報で
は、各相間は平板状の導体でそのまま接続されている。
このような接続にすると、各相間のインダクタンスが少
ないことが裏目に出て、ある相のスイッチングした際の
電圧サージが他相に悪影響する場合がある。また、各相
において素子を並列接続している場合、フィルタコンデ
ンサからの少しの経路の差によるインダクタンスの差が
大きく影響し、各素子に流れる電流にばらつきが生じ
る。このため、大きな電流が流れる素子において、ピー
ク電流により素子が破壊したり、あるいは、発熱量が増
加して破壊に至るなど、各素子に均等に電流が流れる場
合に比べ、全体としては低い電流で電力変換器が破壊に
至る場合がある。
2. Description of the Related Art Conventionally, wiring of a power converter is disclosed in
Elongated conductor bars and electric wires as shown in JP-A-160373 have been used. In such a configuration, since the inductance of the wiring is large, there is a problem that a large jump of current or voltage occurs when the semiconductor element is turned on and off.
In order to protect the semiconductor element, it is necessary to connect a snubber circuit or the like having a large capacity, which has been an obstacle to miniaturization of the device. By the way, it is known that the inductance can be reduced by making the conductor that is the current path as flat as possible and by setting the conductors on the outward path and the return path as close as possible, that is, in a so-called parallel plate shape. . This is because the changes in the magnetic flux created by the forward path and the return path cancel each other, and the change in the magnetic flux apparently hardly occurs. A wiring method using such a principle is disclosed in Japanese Unexamined Patent Publication No. 6-3850.
7, JP-A-6-225545, JP-A-6-225545
327266, JP-A-7-131981,
Techniques described in JP-A-9-47036, JP-A-9-70184, and the like can be mentioned. In each of these, as described above, parallel-plate-like wiring in which plate-like conductors are arranged close to each other with an insulating layer or the like interposed therebetween is used to realize a reduction in inductance. However, the connection between the phases is not particularly described. In Japanese Unexamined Patent Publication No. 7-245951, each phase is directly connected by a flat conductor.
With such a connection, the fact that there is little inductance between the phases backfires, and a voltage surge at the time of switching of one phase may adversely affect other phases. When elements are connected in parallel in each phase, a difference in inductance due to a slight difference in the path from the filter capacitor has a large effect, and the current flowing through each element varies. For this reason, in an element in which a large current flows, the element is destroyed by a peak current, or the amount of generated heat increases, leading to destruction. The power converter may be destroyed.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、簡単
な構成で、かつ、主回路インダクタンスを低減した上
で、多相のスイッチングの影響を低減し、また、複数素
子接続の場合には、これらの電流ばらつきを極力低減す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the influence of multi-phase switching with a simple structure and a reduced main circuit inductance. The object is to minimize these current variations.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、主回路を接続する各導体を平板状の形状とし、各相
間にスリットを設ける。あるいは、主回路導体が半導体
素子を接続する部分とフィルタコンデンサを接続する部
分に分割される場合には、半導体素子部は各相別個に設
置し、フィルタコンデンサを接続する部分で各相間を接
続する。
In order to solve the above-mentioned problems, each conductor for connecting the main circuit is formed in a flat plate shape, and a slit is provided between each phase. Alternatively, when the main circuit conductor is divided into a part for connecting the semiconductor element and a part for connecting the filter capacitor, the semiconductor element part is separately installed for each phase, and the phases for connecting the filter capacitors are connected to each other. .

【0005】本発明は、ある相のスイッチング波形が他
相に与える影響を低減する。また、複数の端子あるいは
素子が並列接続されている場合には、端子あるいは素子
間の電流ばらつきを低減する。
The present invention reduces the effect of a switching waveform of one phase on another phase. When a plurality of terminals or elements are connected in parallel, variation in current between the terminals or elements is reduced.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の代表的な実施形態を
示す。IGBTを用いた3相2レベル電力変換器の例で
ある。簡単のため、導体と絶縁板のみ記載し、半導体素
子、ボルト等他の部品を省略する。1は正側導体、2a
〜cは各相の交流側導体、3は負側導体である。また、
61、62は絶縁板である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a representative embodiment of the present invention. It is an example of a three-phase two-level power converter using an IGBT. For simplicity, only conductors and insulating plates are described, and other components such as semiconductor elements and bolts are omitted. 1 is a positive conductor, 2a
Cc is an AC-side conductor of each phase, and 3 is a negative-side conductor. Also,
61 and 62 are insulating plates.

【0007】図2は、図1の実施形態を側面(図1の右
側)から見た図である。便宜上、IGBT49および5
9に近い方の導体を下層、遠い方を上層と称することに
する。最下層に正側導体1を配し、IGBT49のコレ
クタ端子とは導体でできた端子スペーサ149およびボ
ルト139により締結する。その上層に交流側導体2c
を、さらに最上層に負側導体3を配し、同様に端子スペ
ーサ249、269、349とボルト239、259、
339により正側IGBT49もしくは負側IGBT5
9の該当する端子に接続する。絶縁板61、62はこれ
ら導体の間に設置する。しかし、導体と他の導体および
ボルト等の導電体との距離が絶縁確保の観点から十分離
れていれば、これらを省略してもよい。
FIG. 2 is a view of the embodiment of FIG. 1 as viewed from the side (the right side of FIG. 1). For convenience, IGBTs 49 and 5
The conductor closer to 9 will be referred to as a lower layer, and the conductor farther away will be referred to as an upper layer. The positive conductor 1 is arranged in the lowermost layer, and is fastened to the collector terminal of the IGBT 49 by a terminal spacer 149 made of a conductor and a bolt 139. The AC conductor 2c
Is further disposed on the uppermost layer, and the terminal spacers 249, 269, 349 and the bolts 239, 259,
339, the positive IGBT 49 or the negative IGBT 5
9 to the corresponding terminal. The insulating plates 61 and 62 are provided between these conductors. However, if the distance between the conductor and other conductors or conductors such as bolts is sufficiently large from the viewpoint of ensuring insulation, these may be omitted.

【0008】図3〜5は、図1の実施形態の導体1、2
a〜c、3をそれぞれ単体で示したものである。導体1
上部にフィルタコンデンサ正側端子と接続する端子穴1
01があける。また、各相のIGBTはこの例では3並
列となっているが、U相のIGBT41〜43(図6を
参照)のコレクタ端子と接続する端子穴111、11
2、113を並べてあける。その右側、V相との間には
スリット11を設け、U相とV相との間は導体上部のく
びれ部分13を介して接続する。V相部分にはIGBT
44〜46(図6を参照)と接続する端子穴114〜1
16をあける。同じように、その右にスリット12を設
け、くびれ部14を介してW相分と接続する。W相部分
にはIGBT47〜49(図6を参照)と接続する端子
穴117〜119をあける。交流側導体2a〜cは別電
位であるから、これらは接続せず、別個の導体である。
それぞれ交流出力の端子穴201〜203をあけ、モー
タ等の負荷と接続する電線等がここに接続される。IG
BTと接続する端子穴211〜219、221〜229
も同様にあける。導体3の形状は、導体1に類似してい
る。フィルタコンデンサの負端子穴301、IGBTと
接続する端子穴311〜319をあけ、スリット31、
32、くびれ部33、34を各相間に設ける。
FIGS. 3 to 5 show the conductors 1, 2 of the embodiment of FIG.
Each of a to c and 3 is shown alone. Conductor 1
Terminal hole 1 connected to the positive terminal of the filter capacitor at the top
01 is opened. Although the IGBTs of each phase are arranged in three parallel in this example, the terminal holes 111 and 11 connected to the collector terminals of the U-phase IGBTs 41 to 43 (see FIG. 6).
2 and 113 are opened side by side. A slit 11 is provided between the V phase and the right side thereof, and the U phase and the V phase are connected via a constricted portion 13 at the upper part of the conductor. IGBT for V-phase part
Terminal holes 114-1 to be connected to 44-46 (see FIG. 6)
Open 16. Similarly, a slit 12 is provided on the right side, and the slit 12 is connected to the W-phase via the constricted portion 14. Terminal holes 117 to 119 for connection to IGBTs 47 to 49 (see FIG. 6) are formed in the W-phase portion. Since the AC-side conductors 2a to 2c have different potentials, they are not connected and are separate conductors.
Terminal holes 201 to 203 for AC output are respectively formed, and electric wires and the like connected to a load such as a motor are connected here. IG
Terminal holes 211 to 219 and 221 to 229 connected to BT
Can be opened in the same way. The shape of the conductor 3 is similar to the conductor 1. Negative terminal holes 301 of the filter capacitor, terminal holes 311 to 319 to be connected to the IGBT,
32, constrictions 33 and 34 are provided between each phase.

【0009】図6は、本実施形態に対応する回路図であ
り、導体1、2a〜c、3、IGBT41〜49、51
〜59、フィルタコンデンサ7の接続関係を示す。ま
た、各端子穴101、111〜119、201〜20
3、211〜219、221〜229、301、311
〜319の電気的位置も示した。
FIG. 6 is a circuit diagram corresponding to this embodiment, in which conductors 1, 2a to 3c, IGBTs 41 to 49, 51
59 shows the connection relationship of the filter capacitor 7. In addition, each terminal hole 101, 111 to 119, 201 to 20
3, 211-219, 221-229, 301, 311
319 electrical positions are also shown.

【0010】図7は、導体1および3の各相間にスリッ
ト11、12、31、32を設けることの効果を示した
概念図である。スリットを設けない図7(a)の場合、
フィルタコンデンサの端子穴101から並列接続される
IGBTの端子穴117〜119への電流経路長のばら
つきが大きい。この差はそのまま、101から117〜
119へのインダクタンスの差に反映され、各IGBT
への電流がばらつくことになる。このため、大きな電流
が流れるIGBTが大電流により先に破壊されたり、あ
るいは、定常的に大きな電流が流れるIGBTの損失が
他より大きくなり、熱的に破壊する場合がある。いずれ
にしても、各IGBTに均等に流れる場合に比べ、全体
としてはより小さな電流値で電力変換器を動作させざる
を得ない、という問題がある。さらに、他相との間のイ
ンダクタンスが小さいため、ある相でスイッチングを行
うと、その影響で他相にもスパイク状の電圧、電流が発
生し、IGBTに悪影響を与える可能性がある。これに
対し、図7(b)では、他相との間にスリット12を設
けた(スリット11、31、32の図示を省略)。これ
により、端子101から、端子117〜119へのそれ
ぞれの電流経路は、くびれ部14まではほぼ同じ経路を
たどるので、電流経路長のばらつきは図7(a)の場合
より小さくなる。一方、くびれ部14から各端子間の電
流経路長にはばらつきが残留する。しかし、この残留す
るばらつきは、くびれ部14でインダクタンスが若干大
きくなるため、全インダクタンスに対するばらつきは小
さくなり、電流が均等化する。また、他相との間のイン
ダクタンスも大きくなるため、他相のスイッチングの影
響も小さくなる。このような構成とすることにより、本
実施形態では、並列接続した各IGBT電流を均等化す
るとともに、他相のスイッチングの影響を低減でき、I
GBTの持つ能力を最大限生かした電力変換器を実現す
ることができる。
FIG. 7 is a conceptual diagram showing the effect of providing slits 11, 12, 31, 32 between the phases of conductors 1 and 3. In the case of FIG. 7A without a slit,
The variation of the current path length from the terminal hole 101 of the filter capacitor to the terminal holes 117 to 119 of the IGBT connected in parallel is large. This difference is unchanged from 101 to 117-
Each IGBT is reflected in the difference in inductance to 119
Current will vary. For this reason, the IGBT through which a large current flows may be destroyed first by the large current, or the loss of the IGBT through which a large current flows steadily may be larger than that of other parts, resulting in thermal breakdown. In any case, there is a problem that the power converter must be operated with a smaller current value as a whole as compared with the case where the power converter flows evenly in each IGBT. Furthermore, since the inductance with the other phase is small, when switching is performed in a certain phase, a spike-like voltage or current is generated in the other phase due to the effect, which may adversely affect the IGBT. On the other hand, in FIG. 7B, a slit 12 is provided between other phases (illustration of the slits 11, 31, and 32 is omitted). As a result, the respective current paths from the terminal 101 to the terminals 117 to 119 follow almost the same path up to the constricted portion 14, so that the variation in the current path length is smaller than in the case of FIG. On the other hand, a variation remains in the current path length from the constricted portion 14 to each terminal. However, since the remaining variation slightly increases the inductance at the constricted portion 14, the variation with respect to the total inductance is reduced, and the current is equalized. In addition, since the inductance between the other phases is increased, the influence of the switching of the other phases is reduced. With such a configuration, in the present embodiment, the IGBT currents connected in parallel can be equalized, and the influence of switching of other phases can be reduced.
A power converter that makes full use of the capabilities of the GBT can be realized.

【0011】図8は、本発明の他の実施形態を示す。図
1と同様の効果を得るには、相間にスリットを設けるの
も1手法であるが、要は各相のIGBTからなるべく遠
くで相間を接続すればよい。図8では、負側導体8を新
たに設けることによって電流経路長を長くして相間を接
続する(例えば、端子穴317−導体3c−端子穴32
3−負側導体8−端子穴322−導体3b−端子穴31
6)。そこで、図8において、ブス導体を、IGBTを
接続する1a〜c、2a〜c、3a〜cと、フィルタコ
ンデンサ側の正側導体9と負側導体8に分割する。これ
は主回路の構成によっては、導体をこのように分割した
方が取扱いの便が向上する場合があるためである。図1
の実施形態と比べると、交流側導体2a〜cの形状は変
らないが、正側及び負側の導体を各相ごとに分割する。
それぞれフィルタコンデンサ側導体への接続端子穴12
1〜123、321〜323を介し、導体8、9に接続
する。3相間の接続もここでされる。導体8、9間に
は、必要に応じて絶縁板63を挿入する。なお、負側導
体8、正側導体9、端子穴321、322、323は、
図6に本実施形態に対応する回路として括弧をつけて
(8)、(9)、(321)、(322)、(323)
示した。このような構成にすることにより、本実施形態
では、図1同様、並列接続のIGBTの分担を均等化し
た上で、他相のスイッチングの影響を低減することがで
きる。
FIG. 8 shows another embodiment of the present invention. In order to obtain the same effect as in FIG. 1, it is one method to provide a slit between the phases, but the point is to connect the phases as far as possible from the IGBT of each phase. In FIG. 8, the current path length is increased by newly providing the negative side conductor 8 to connect the phases (for example, the terminal hole 317-conductor 3c-terminal hole 32).
3- Negative conductor 8-Terminal hole 322-Conductor 3b-Terminal hole 31
6). Therefore, in FIG. 8, the bus conductor is divided into 1a to c, 2a to c, 3a to c connecting the IGBT, and the positive conductor 9 and the negative conductor 8 on the filter capacitor side. This is because, depending on the configuration of the main circuit, the division of the conductor in this way may improve handling convenience. FIG.
Although the shapes of the AC-side conductors 2a to 2c do not change as compared with the embodiment, the positive-side and negative-side conductors are divided for each phase.
Connection terminal hole 12 to filter capacitor side conductor
Connected to the conductors 8 and 9 via 1-123 and 321-323. The connections between the three phases are also made here. An insulating plate 63 is inserted between the conductors 8 and 9 as needed. The negative conductor 8, the positive conductor 9, and the terminal holes 321, 322, 323 are
In FIG. 6, the circuits corresponding to the present embodiment are shown in parentheses (8), (9), (321), (322), and (323).
Indicated. By adopting such a configuration, in the present embodiment, as in FIG. 1, it is possible to equalize the sharing of the IGBTs connected in parallel and reduce the influence of switching of other phases.

【0012】上記した実施形態は、いずれも3相の電力
変換器で、各相3並列の2レベル変換器の場合を示し
た。当然のことながら、一般の他相、多並列、多レベル
変換器にも同様の構成を適用可能である。また、並列接
続をしない場合でも、他相スイッチングの影響を低減で
きる、というメリットがある。また、上記した実施形態
では、素子並列と記述したが、当然ながら、1モジュー
ルに端子が複数組あるものも、これに含まれる。
Each of the above-described embodiments has shown the case of a three-phase power converter and two-level converters of three phases in parallel. As a matter of course, the same configuration can be applied to general other-phase, multi-parallel, and multi-level converters. In addition, there is an advantage that the influence of the other-phase switching can be reduced even when the parallel connection is not performed. Further, in the above-described embodiment, the description has been given as the element parallel, but naturally, the case where one module has a plurality of sets of terminals is also included.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
ある相のスイッチングによる悪影響が他相に及ばないよ
うにできるので、半導体素子の破壊を防止することがで
きる。また、並列接続した半導体素子の電流のバランス
を改善できるので、各素子の性能を十分に活用すること
ができる。従って、本実装構造により、高性能で信頼性
の高い電力変換器を比較的安くかつ小型に実現すること
ができる。
As described above, according to the present invention,
Since it is possible to prevent the adverse effect due to the switching of a certain phase from affecting the other phases, it is possible to prevent the destruction of the semiconductor element. In addition, since the current balance of the semiconductor elements connected in parallel can be improved, the performance of each element can be fully utilized. Therefore, with this mounting structure, a high-performance and highly-reliable power converter can be realized at relatively low cost and small size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の代表的な一実施形態FIG. 1 is a representative embodiment of the present invention.

【図2】図1の実施形態を側面から見た図FIG. 2 is a side view of the embodiment of FIG. 1;

【図3】図1の実施形態の正側導体を示す図FIG. 3 is a diagram showing a positive conductor of the embodiment of FIG. 1;

【図4】図1の実施形態の交流側導体を示す図FIG. 4 is a diagram showing an AC-side conductor of the embodiment of FIG. 1;

【図5】図1の実施形態の負側導体を示す図FIG. 5 is a diagram showing a negative conductor of the embodiment of FIG. 1;

【図6】図1の実施形態に相当する回路図FIG. 6 is a circuit diagram corresponding to the embodiment of FIG. 1;

【図7】相間にスリットを設けることの利点を示す概念
FIG. 7 is a conceptual diagram showing an advantage of providing a slit between phases.

【図8】本発明の他の実施形態を示す図FIG. 8 shows another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、1a〜c…正側導体,2a〜c…交流側導体,3、
3a〜c…負側導体,41〜49…正側IGBT素子,
51〜59…負側IGBT素子,61、62、63…絶
縁板,7…フィルタコンデンサ,8…フィルタコンデン
サ側負側導体,9…フィルタコンデンサ側正側導体,1
1、12、31、32…導体のスリット,13、14、
33、34…導体のくびれ部,101…フィルタコンデ
ンサ正側端子穴,102…フィルタコンデンサ負側端子
穴,111〜119、211〜219、221〜22
9、311〜319…IGBT端子穴,121〜12
3、321〜323…IGBT側導体とフィルタコンデ
ンサ側導体を結ぶ端子穴,139、239、259、3
39…ボルト,149、259、269、349…端子
スペーサ
1, 1a-c: positive side conductor, 2a-c: AC side conductor, 3,
3a to c: negative side conductor, 41 to 49: positive side IGBT element,
51 to 59: negative IGBT element, 61, 62, 63: insulating plate, 7: filter capacitor, 8: filter capacitor side negative conductor, 9: filter capacitor side positive conductor, 1
1, 12, 31, 32 ... conductor slits, 13, 14,
33, 34: Constricted portion of conductor, 101: Filter capacitor positive terminal hole, 102: Filter capacitor negative terminal hole, 111 to 119, 211 to 219, 221 to 22
9, 311 to 319 IGBT terminal holes, 121 to 12
3, 321 to 323... Terminal holes connecting the IGBT-side conductor and the filter capacitor-side conductor, 139, 239, 259, 3
39: bolt, 149, 259, 269, 349: terminal spacer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柳 阿佐子 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 三島 彰 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 Fターム(参考) 5H006 AA01 AA05 CA01 CA13 HA08 HA83 5H007 AA01 AA06 CA01 CC07 HA03 HA04 5H740 AA05 BA11 BB02 MM10 PP01 PP02 PP03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Asako Koyanagi 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Power and Electricity Development Division (72) Inventor Akira Mishima Omika-cho, Hitachi City, Ibaraki Prefecture No. 7-2-1 F-term (Reference) 5H006 AA01 AA05 CA01 CA13 HA08 HA83 5H007 AA01 AA06 CA01 CC07 HA03 HA04 5H740 AA05 BA11 BB02 MM10 PP01 PP03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平行平板状の導体を用いた複数相の電力
変換装置において、正側導体および負側導体の各相間に
スリットを入れたことを特徴とする電力変換器の主回路
構造。
1. A main circuit structure of a power converter, wherein a slit is provided between each phase of a positive side conductor and a negative side conductor in a multi-phase power conversion device using parallel plate-shaped conductors.
【請求項2】 平行平板状の導体を用いた複数相の電力
変換装置において、前記導体が半導体素子の端子を接続
する部分と、フィルタコンデンサ端子を接続する部分と
に分割し、かつ、前記半導体素子を接続する導体を各相
毎に分割することを特徴とする電力変換器の主回路構
造。
2. A multi-phase power converter using parallel plate-shaped conductors, wherein said conductor is divided into a portion connecting a terminal of a semiconductor element and a portion connecting a filter capacitor terminal, and A main circuit structure of a power converter, wherein a conductor connecting elements is divided for each phase.
【請求項3】 平行平板状の導体を用いた複数相の電力
変換装置において、正側導体および負側導体の各相間に
くびれ部を入れたことを特徴とする電力変換器の主回路
構造。
3. A main circuit structure of a power converter, wherein a constricted portion is provided between each phase of a positive side conductor and a negative side conductor in a multi-phase power conversion device using parallel plate-shaped conductors.
【請求項4】 請求項1、請求項2または請求項3にお
いて、電力変換器の主回路部品または導体と接続する端
子部分を細長い形状としたことを特徴とする電力変換器
の主回路構造。
4. The main circuit structure of a power converter according to claim 1, wherein a terminal portion connected to a main circuit component or a conductor of the power converter has an elongated shape.
JP23951798A 1998-08-11 1998-08-11 Main circuit structure of power converter Expired - Lifetime JP3709512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23951798A JP3709512B2 (en) 1998-08-11 1998-08-11 Main circuit structure of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23951798A JP3709512B2 (en) 1998-08-11 1998-08-11 Main circuit structure of power converter

Publications (2)

Publication Number Publication Date
JP2000060126A true JP2000060126A (en) 2000-02-25
JP3709512B2 JP3709512B2 (en) 2005-10-26

Family

ID=17045985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23951798A Expired - Lifetime JP3709512B2 (en) 1998-08-11 1998-08-11 Main circuit structure of power converter

Country Status (1)

Country Link
JP (1) JP3709512B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352767A (en) * 2000-06-07 2001-12-21 Toshiba Corp Power unit for power converter
JP2002125381A (en) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp Power converter
JP2009153246A (en) * 2007-12-19 2009-07-09 Meidensha Corp Dc-ac converter
JP2009213272A (en) * 2008-03-04 2009-09-17 Toyota Industries Corp Power conversion device
JP2009213270A (en) * 2008-03-04 2009-09-17 Toyota Industries Corp Power conversion device
US8018730B2 (en) 2008-03-04 2011-09-13 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP2012095472A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Power conversion device
JP2012249453A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Power conversion device
EP3203625A1 (en) 2016-02-05 2017-08-09 Hitachi Ltd. Electric power conversion apparatus
JP2019102271A (en) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 Laminated flat type electric wire
WO2019230292A1 (en) * 2018-06-01 2019-12-05 富士電機株式会社 Semiconductor device
WO2020255249A1 (en) * 2019-06-18 2020-12-24 三菱電機株式会社 Power conversion device, refrigeration cycle device, and air-conditioning device
JP2022162191A (en) * 2021-04-12 2022-10-24 三菱電機株式会社 Power semiconductor module

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352767A (en) * 2000-06-07 2001-12-21 Toshiba Corp Power unit for power converter
JP2002125381A (en) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp Power converter
JP2009153246A (en) * 2007-12-19 2009-07-09 Meidensha Corp Dc-ac converter
EP2099121A3 (en) * 2008-03-04 2015-03-11 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP2009213270A (en) * 2008-03-04 2009-09-17 Toyota Industries Corp Power conversion device
JP4640425B2 (en) * 2008-03-04 2011-03-02 株式会社豊田自動織機 Power converter
JP4640424B2 (en) * 2008-03-04 2011-03-02 株式会社豊田自動織機 Power converter
US8018730B2 (en) 2008-03-04 2011-09-13 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP2009213272A (en) * 2008-03-04 2009-09-17 Toyota Industries Corp Power conversion device
JP2012095472A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Power conversion device
JP2012249453A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Power conversion device
JP2017139915A (en) * 2016-02-05 2017-08-10 株式会社日立製作所 Power conversion device
EP3203625A1 (en) 2016-02-05 2017-08-09 Hitachi Ltd. Electric power conversion apparatus
JP2019102271A (en) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 Laminated flat type electric wire
WO2019230292A1 (en) * 2018-06-01 2019-12-05 富士電機株式会社 Semiconductor device
JPWO2019230292A1 (en) * 2018-06-01 2020-12-17 富士電機株式会社 Semiconductor device
JP7060094B2 (en) 2018-06-01 2022-04-26 富士電機株式会社 Semiconductor device
US11373988B2 (en) 2018-06-01 2022-06-28 Fuji Electric Co., Ltd. Semiconductor device
WO2020255249A1 (en) * 2019-06-18 2020-12-24 三菱電機株式会社 Power conversion device, refrigeration cycle device, and air-conditioning device
JPWO2020255249A1 (en) * 2019-06-18 2021-11-25 三菱電機株式会社 Power converter, refrigeration cycle device and air conditioner
JP7170867B2 (en) 2019-06-18 2022-11-14 三菱電機株式会社 Power conversion equipment, refrigeration cycle equipment and air conditioning equipment
JP2022162191A (en) * 2021-04-12 2022-10-24 三菱電機株式会社 Power semiconductor module

Also Published As

Publication number Publication date
JP3709512B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
JP2809095B2 (en) Inverter device
US5132896A (en) Inverter unit with improved bus-plate configuration
JP3501685B2 (en) Power converter
JP3633432B2 (en) Semiconductor device and power conversion device
JP6096881B2 (en) Power converter for vehicle
JP6836201B2 (en) Power converter
JP2001197753A (en) Power converter
JP2000060126A (en) Main circuit structure for power converter
JP4209421B2 (en) Main circuit structure of power converter
JP3046276B2 (en) Power converter
JP2004135444A (en) Stack structure of power converter
JP4488978B2 (en) Main circuit structure of power converter
JP2011015455A (en) Three-phase power converter
JP3793700B2 (en) Power converter
JPH11136960A (en) Three-phase inverter circuit module
JP2005176555A (en) Power converter
US10284111B2 (en) Power conversion apparatus having connection conductors having inductance which inhibits ripple current
AU2018405279B2 (en) Power conversion device and electric railroad vehicle equipped with power conversion device
JP3896940B2 (en) Semiconductor device
JPH1094256A (en) Power-conversion element module
JP2004056984A (en) Power converting device
JP3487235B2 (en) Semiconductor module pair connection structure and inverter
JP7074175B2 (en) Power converter
JP2000023462A (en) Main circuit structure of power converter
JP4697025B2 (en) Power semiconductor module

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

EXPY Cancellation because of completion of term