JP2000058026A - Battery - Google Patents

Battery

Info

Publication number
JP2000058026A
JP2000058026A JP10224888A JP22488898A JP2000058026A JP 2000058026 A JP2000058026 A JP 2000058026A JP 10224888 A JP10224888 A JP 10224888A JP 22488898 A JP22488898 A JP 22488898A JP 2000058026 A JP2000058026 A JP 2000058026A
Authority
JP
Japan
Prior art keywords
terminal member
electrode terminal
negative electrode
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10224888A
Other languages
Japanese (ja)
Inventor
Goro Shibamoto
悟郎 柴本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10224888A priority Critical patent/JP2000058026A/en
Publication of JP2000058026A publication Critical patent/JP2000058026A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve the mechanical strength of a bonding part of a terminal member by forming an electrode terminal member, while weaving lead wires into a vertical net having a longitudinal axis in the longitudinal director crossing the cross direction, in parallel with a connection part of a longitudinal one end and an electrode material. SOLUTION: A layered material of a positive electrode material 2 and a negative electrode material laminated through separator, made of the polymer including the gel-like electrolyte and formed by fitting the positive electrode material and the negative electrode material onto a strip positive electrode collector and a strip negative electrode collector, is sealed by a laminating material in a condition such that tips 8a, 9a of a positive electrode terminal member and a negative electrode terminal member 8, 9 connected to the layered structure are exposed. The positive electrode and the negative electrode terminal members 8, 9 are preferably formed into a vertical net by weaving narrow lead wires 10 of Ni or the like having a diameter at 50-300 μm at 30-90 degrees in crossing angle in the longitudinal direction, and quantity of the lead wire 10 to be used becomes larger than the case of a lateral net. Consequently, the cross-sectional area of the whole conductor becomes large, and since the deterioration of the welding strength to the laminate material 7 is prevented, strength in the tensile direction is improved. Moreover, the width is preferably set at 3 mm or more and less than half the width of the battery main body 1a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導線を網目状に織
るとともに縦長の一端部を電極材に接続してなる電極端
子部材を有する電池に関し、特に電極材に接続された電
極端子部材の先端部を露呈させた状態でラミネート材に
よって電池本体を封装してなる薄型電池等に好適に用い
られる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery having an electrode terminal member formed by weaving a conductive wire in a mesh shape and connecting a vertically long end to an electrode material, and more particularly to a tip of the electrode terminal member connected to the electrode material. It is suitably used for a thin battery or the like in which a battery main body is sealed with a laminate material in a state where a portion is exposed.

【0002】[0002]

【従来の技術】電池は、化学エネルギーや物理的エネル
ギー或いは生物化学エネルギーを電気的エネルギーに変
換する装置と定義され、化学電池、生物電池或いは物理
電池等に大分類される。例えば化学電池については、化
学変化の過程が可逆的でないもの或いは充電可能に構成
されていない一次電池と、化学変化の過程が可逆的であ
るもの或いは充電可能に構成されている二次電池及び反
応に関与する物質を外部から供給して反応生成物を外部
に取り出しながら化学反応を促進する燃料電池等に分類
される。
2. Description of the Related Art A battery is defined as a device that converts chemical energy, physical energy, or biochemical energy into electrical energy, and is roughly classified into a chemical battery, a biological battery, a physical battery, and the like. For example, for a chemical battery, a primary battery in which the process of chemical change is not reversible or not configured to be rechargeable, a secondary battery in which the process of chemical change is reversible or configured to be rechargeable, and a reaction. Fuel cells and the like that promote a chemical reaction while supplying a substance involved in the reaction from the outside and extracting a reaction product to the outside are classified.

【0003】電池には、一般に電極間で生成された電位
差を外部に取り出すために電極端子部材が設けられてい
る。この電極端子部材としては、一般に導電性が良好な
導体からなるリード状導体や導電性が良好な導線を網目
状に織った網目状導体等が用いられている。例えば、リ
チウムイオン電池においては、かかるリード状導体や網
目状導体が用いられるが、正極側がアルミニウム材で形
成されるとともに負極側がニッケル材で形成された電極
端子部材が用いられている。
[0003] A battery is generally provided with an electrode terminal member for taking out a potential difference generated between the electrodes to the outside. As the electrode terminal member, generally, a lead-like conductor made of a conductor having good conductivity, a mesh-like conductor obtained by weaving a conductive wire having good conductivity in a mesh shape, or the like is used. For example, in a lithium ion battery, such a lead-like conductor or a mesh-like conductor is used, but an electrode terminal member having a positive electrode side formed of an aluminum material and a negative electrode side formed of a nickel material is used.

【0004】ところで、携帯機器においては、その電源
として一般に繰り返し充電が可能であるとともに大容量
が得られるリチウムイオン二次電池が用いられている。
携帯機器は、その多機能化に伴って電源容量の確保とと
もにより携帯性の確保が求められており、電源の薄型
化、換言すれば薄型電池の要求が高まっている。一般的
なリチウムイオン二次電池は、乾電池等と比較して小型
で薄型ではあるが、導電性物質として液体の電解液を使
用し、この電解液の液漏れを防ぐために金属缶が備えら
る。したがって、一般的なリチウムイオン二次電池は、
金属缶が機械的強度を保持するために4mm以下に構成
することが困難であるために、薄型化について限界があ
った。
In portable equipment, a lithium ion secondary battery which can be repeatedly charged and has a large capacity is generally used as a power source.
As portable devices become more multifunctional, there is a demand for more secure portability as well as power supply capacity, and there is an increasing demand for thinner power supplies, in other words, thin batteries. A general lithium ion secondary battery is smaller and thinner than a dry battery or the like, but uses a liquid electrolyte as a conductive substance and is provided with a metal can to prevent leakage of the electrolyte. . Therefore, a general lithium ion secondary battery is
Since it is difficult to configure the metal can to be 4 mm or less in order to maintain the mechanical strength, there is a limit to the reduction in thickness.

【0005】最近、超薄型電池として、電解質として全
固体電解質やゲル状電解質を用いるリチウムイオン電池
やポリマー電池等が注目されている。例えば、ポリマー
電池は、フィルム状の正極材と負極材との間にフィルム
状のポリマー電解材からなるセバレータを挟み込むとと
もに、全体をラミネート材により封装してなる。ラミネ
ート材は、内部に少なくとも一層以上のアルミニウム層
を含む高分子多層フィルムからなり、各電極材及びセバ
レータの積層体を密封した状態で周囲に熱溶着処理が施
される。ポリマー電池は、各電極材に電極端子部材が接
合され、これら電極端子部材の先端部を露呈させた状態
でラミネート材による封装が行われる。
Recently, lithium-ion batteries and polymer batteries using an all solid electrolyte or a gel electrolyte as an electrolyte have been receiving attention as ultra-thin batteries. For example, a polymer battery is formed by sandwiching a severator made of a polymer electrolyte material in the form of a film between a positive electrode material and a negative electrode material in a film form, and sealing the whole with a laminate material. The laminate material is made of a polymer multilayer film including at least one or more aluminum layers inside, and is heat-sealed around the laminate in a state where the laminate of each electrode material and the severator is sealed. In a polymer battery, an electrode terminal member is joined to each electrode material, and sealing with a laminate material is performed in a state where the tip portions of these electrode terminal members are exposed.

【0006】また、固体化リチウムイオン二次電池も、
ポリマー電池と基本的な構成をほぼ同等としており、帯
状の集電体上にそれぞれ正極活物質や負極活物質が被着
されて正極材及び負極材が構成される。これら正極材及
び負極材は、溶融状態のゲル状電解質が塗布されるとと
もにセバレータを介して重ね合わされる。また、正極材
及び負極材には、それぞれ電極端子部材が接続される。
固体化リチウムイオン二次電池は、上述した積層体をさ
らに多層重ね合わせたり、折り畳むように巻回等した後
に電極端子部材の先端部を露呈させた状態でラミネート
材による封装が行われて構成される。
[0006] Solidified lithium ion secondary batteries are also
The basic configuration is almost the same as that of the polymer battery, and a positive electrode material and a negative electrode material are formed by applying a positive electrode active material and a negative electrode active material on a belt-shaped current collector, respectively. The positive electrode material and the negative electrode material are coated with a gel electrolyte in a molten state and overlapped via a severator. An electrode terminal member is connected to each of the positive electrode material and the negative electrode material.
The solidified lithium ion secondary battery is formed by further laminating the above-mentioned laminate, or winding it to be folded, and then sealing with a laminate material in a state in which the distal end of the electrode terminal member is exposed. You.

【0007】[0007]

【発明が解決しようとする課題】電池においては、電極
端子部材が外部から加わる力に対して破損しないような
機械的強度を保持する構成が必要とされる。リード状の
電極端子部材は、比較的太径であるために比較的大きな
機械的強度が保持される。一方、網目状の電極端子部材
は、細径の導線を織って構成するために、折り曲げや引
き裂き等の外部力が加えられた場合に破損し易いといっ
た問題がある。
In a battery, there is a need for a structure which maintains mechanical strength so that the electrode terminal member is not damaged by an externally applied force. Since the lead-shaped electrode terminal member has a relatively large diameter, a relatively large mechanical strength is maintained. On the other hand, since the mesh-shaped electrode terminal member is formed by weaving a small-diameter conductive wire, there is a problem that the electrode terminal member is easily damaged when an external force such as bending or tearing is applied.

【0008】一方、上述した固体化リチウムイオン二次
電池やポリマー電池においては、電極端子部材がラミネ
ート材の接合部位から引き出されることから、その引出
部の強度については接合面積が大きい網目状電極端子部
材の方がリード状電極端子部材よりもより大きい機械的
強度を得ることが可能となる。また、網目状電極端子部
材は、リード状電極端子部材と比較して薄型であること
から電池全体の薄型化を図ることが可能である。
On the other hand, in the above-mentioned solidified lithium ion secondary battery or polymer battery, since the electrode terminal member is pulled out from the bonding portion of the laminate material, the strength of the drawing portion is such that the mesh electrode terminal has a large bonding area. The member can obtain higher mechanical strength than the lead electrode terminal member. Further, since the mesh electrode terminal member is thinner than the lead electrode terminal member, it is possible to reduce the thickness of the entire battery.

【0009】このため、固体化リチウムイオン二次電池
やポリマー電池においては、一般に網目状電極端子部材
が用いられるが、小型、薄型を維持したまま折り曲げや
引き裂き等の外部力に対して電池本体との接合部が充分
な機械的強度を有することにより信頼性の向上がさらに
図られることが求められている。
For this reason, in a solidified lithium ion secondary battery or a polymer battery, a mesh electrode terminal member is generally used. However, while maintaining a small size and a thin shape, the battery body and the battery body are not subjected to external force such as bending or tearing. It is required that the joints have sufficient mechanical strength to further improve the reliability.

【0010】したがって、本発明は、網目状電極端子部
材を備えるとともに接合部における機械的強度の向上が
図られて信頼性の高い電池を提供することを目的に提案
されたものである。
Therefore, the present invention has been proposed with the object of providing a highly reliable battery having a mesh electrode terminal member and improved mechanical strength at the joint.

【0011】[0011]

【課題を解決するための手段】この目的を達成する本発
明にかかる電池は、導線を網目状に織るとともに長さ方
向の一端部を電極材に接続してなる電極端子部材を備
え、この電極端子部材が、電極材との接続部と平行な幅
方向に対して直交する長さ方向を長軸とした縦目の網目
状に織られてなる。
A battery according to the present invention that achieves this object is provided with an electrode terminal member formed by weaving a conductive wire in a mesh shape and connecting one end in a longitudinal direction to an electrode material. The terminal member is woven in a longitudinal mesh shape having a major axis in a length direction orthogonal to a width direction parallel to a connection portion with the electrode material.

【0012】以上のように構成された本発明にかかる電
池によれば、電極端子部材がその長さ方向を長軸とした
縦目の網目に織られて構成されることによって、その引
張り方向の強度が向上される。したがって、電池は、電
極端子部材に対して折り曲げや引き裂きの外部力が加え
られた場合にもその損傷が抑制され信頼性の向上が図ら
れる。
According to the battery according to the present invention having the above-described structure, the electrode terminal member is woven in a vertical mesh having the longitudinal direction as a long axis, so that the electrode terminal member is stretched in the tensile direction. Strength is improved. Therefore, even when an external force such as bending or tearing is applied to the electrode terminal member, the battery is suppressed from being damaged and the reliability is improved.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。本発明の実施の形態
として図面に示した電池は、フィルム状の正極材2と負
極材3との間にフィルム状のポリマー電解材からなるセ
バレータ4を挟み込んで積層体を構成するとともに、正
極材2と負極材3の外側面にそれぞれ封口材5、6を接
合した後、これら全体をラミネート材7により密封する
ことによって電池本体1aが超薄型に構成されたポリマ
ー電池1を示す。ポリマー電池1には、図1に示すよう
に、正極材2と負極材3とにそれぞれ正極端子部材8及
び負極端子部材9とがそれぞれ接合されている。これら
正極端子部材8及び負極端子部材9とは、図2に示すよ
うに、それぞれその先端部8a、9aがラミネート材7
から露呈されて外部との接続部を構成してなる。
Embodiments of the present invention will be described below in detail with reference to the drawings. The battery shown in the drawings as an embodiment of the present invention has a structure in which a separator 4 made of a film-shaped polymer electrolyte material is sandwiched between a film-shaped cathode material 2 and a negative electrode material 3 to form a laminate. A polymer battery 1 in which a battery body 1a is formed to be ultra-thin by joining sealing materials 5 and 6 to the outer surfaces of the negative electrode material 2 and the negative electrode material 3, respectively, and then sealing the whole with a laminate material 7 is shown. In the polymer battery 1, as shown in FIG. 1, a positive electrode terminal member 8 and a negative electrode terminal member 9 are respectively joined to a positive electrode material 2 and a negative electrode material 3. As shown in FIG. 2, each of the positive electrode terminal member 8 and the negative electrode terminal member 9 has
And constitutes a connection part with the outside.

【0014】ポリマー電池1は、基本的な構成をリチウ
ムイオン二次電池と同様としており、正極材2が例えば
アルミニウム箔等のフィルム状集電体上にリチウムニッ
ケル酸化物、リチウムコバルト酸化物或いはリチウムマ
ンガン酸化物等の電極活物質を成膜形成して構成されて
なる。また、ポリマー電池1は、負極材2が、例えば銅
箔等のフィルム状集電体上にリチウムイオンをドープ・
脱ドープ可能な炭素材料等からなる電極活物質を成膜形
成して構成されてなる。
The polymer battery 1 has a basic structure similar to that of a lithium ion secondary battery, and a positive electrode material 2 is made of a lithium nickel oxide, a lithium cobalt oxide or a lithium cobalt oxide on a film-shaped current collector such as an aluminum foil. It is formed by forming a film of an electrode active material such as manganese oxide. In the polymer battery 1, the negative electrode material 2 is formed by doping lithium ions on a film-shaped current collector such as a copper foil.
It is formed by forming a film of an electrode active material made of a undoped carbon material or the like.

【0015】ポリマー電池1は、一般的なリチウムイオ
ン電池が正極材と負極材との間に介在される導電性物質
の電解質として電解液が用いられていたが、この電解液
を固体のポリマー電解質に置き換えてなるセバレータ4
を正極材2と負極材3との間に介在させて積層体を構成
したことに特徴を有している。すなわち、ポリマー電池
1は、セバレータ4がポリマー中に電解液を取り込んで
なるゲル電解質によって構成されなる。ポリマー電池1
は、正極材2、負極材3及びセバレータ4の積層体を単
層或いは多層によって構成してなる。ポリマー電池1
は、多層で構成した場合にそれぞれの正極材2間及び負
極材3間を電気的に接続した後に、正極材2に対して正
極端子部材8がまた負極材3に対して負極端子部材9が
それぞれ接続されてなる。
In the polymer battery 1, a general lithium ion battery uses an electrolytic solution as an electrolyte of a conductive substance interposed between a positive electrode material and a negative electrode material. This electrolytic solution is used as a solid polymer electrolyte. Sebalator 4 replaced by
Is interposed between the positive electrode material 2 and the negative electrode material 3 to form a laminate. That is, the polymer battery 1 is constituted by a gel electrolyte in which the separator 4 incorporates an electrolytic solution into a polymer. Polymer battery 1
Comprises a single-layer or multi-layer laminate of the positive electrode material 2, the negative electrode material 3, and the separator 4. Polymer battery 1
In the case of a multi-layer structure, after electrically connecting the respective positive electrode members 2 and between the negative electrode members 3, the positive electrode terminal member 8 is connected to the positive electrode member 2 and the negative electrode terminal member 9 is connected to the negative electrode member 3. Each is connected.

【0016】ラミネート材7は、例えば内部に少なくと
も一層以上のアルミニウム層等の金属箔層と高分子層と
を含む防湿性の高分子多層フィルムからなる。ラミネー
ト材7は、正極材2、負極材3及びセバレータ4の積層
体を包み込んだ状態で周囲に熱溶着処理が施されること
によって、これら積層体を封装する。ラミネート材7
は、積層体を封装する際に、正極材2及び負極材3にそ
れぞれ接続された正極端子部材8及び負極端子部材9を
その厚み方向に溶着して外方へと露呈させる。
The laminate 7 is made of, for example, a moisture-proof polymer multilayer film including at least one or more metal foil layers such as an aluminum layer and a polymer layer. The laminate 7 encapsulates the laminate of the positive electrode material 2, the negative electrode material 3, and the separator 4, and heat-welds the laminate to seal the laminate. Laminate material 7
When sealing the laminate, the positive electrode terminal member 8 and the negative electrode terminal member 9 connected to the positive electrode material 2 and the negative electrode material 3, respectively, are welded in the thickness direction to be exposed to the outside.

【0017】正極端子部材8及び負極端子部材9は、詳
細を後述するが、それぞれ細径の導線10を網目状に織
ってなるいわゆる網目状電極端子部材が用いられる。正
極端子部材8及び負極端子部材9は、それぞれ外形寸法
がほぼ同等の矩形形状を以って構成され、図3に示すよ
うに、長手方向のそれぞれの基端部8b、9bが正極材
2及び負極材3の接合部2a、3aに溶接等によって電
気的な導通が図られかつ充分な機械的強度を以って接続
されてなる。正極端子部材8及び負極端子部材9は、例
えば超音波溶着処理を施すことによって正極材2及び負
極材3に対してそれぞれ接続してもよい。
The details of the positive electrode terminal member 8 and the negative electrode terminal member 9 will be described later, and a so-called mesh electrode terminal member in which a thin conductive wire 10 is woven in a mesh shape is used. Each of the positive electrode terminal member 8 and the negative electrode terminal member 9 is configured to have a rectangular shape having substantially the same outer dimensions. As shown in FIG. Electrical conduction is achieved by welding or the like to the joints 2a, 3a of the negative electrode material 3 and the negative electrode material 3 is connected with sufficient mechanical strength. The positive electrode terminal member 8 and the negative electrode terminal member 9 may be connected to the positive electrode member 2 and the negative electrode member 3 by performing, for example, an ultrasonic welding process.

【0018】正極端子部材8及び負極端子部材9は、正
極材2及び負極材3に対して互いに接触しない充分な間
隔を保持されて接続され、具体的には次のように設定位
置されている。すなわち、正極端子部材8及び負極端子
部材9は、図2に示すように、電池本体1aの両端から
間隔D1、D2の位置に露呈されている。間隔D1、D
2は、互いにほぼ等しく、特にその寸法についての制限
は無い。また、正極端子部材8及び負極端子部材9は、
相互の間隔D3が互いに接触しない範囲で設定される。
The positive electrode terminal member 8 and the negative electrode terminal member 9 are connected to the positive electrode member 2 and the negative electrode member 3 while maintaining a sufficient interval so as not to contact each other, and are specifically set as follows. . That is, as shown in FIG. 2, the positive electrode terminal member 8 and the negative electrode terminal member 9 are exposed at the positions of the intervals D1 and D2 from both ends of the battery main body 1a. Interval D1, D
2 are substantially equal to each other, and there is no particular limitation on their dimensions. Further, the positive electrode terminal member 8 and the negative electrode terminal member 9
The mutual interval D3 is set in a range where they do not contact each other.

【0019】正極端子部材8及び負極端子部材9は、上
述したように細径の導線10を網目状に織って全体矩形
状に形成されるが、その幅寸法W1、W2が3mm以上
とされることにより、網目状であっても機械的強度が保
持されるように構成される。また、正極端子部材8及び
負極端子部材9は、当然その幅寸法W1、W2が電池本
体1aの幅寸法の1/2以下とされる。
As described above, the positive electrode terminal member 8 and the negative electrode terminal member 9 are formed into a whole rectangular shape by weaving a small-diameter conductive wire 10 in a mesh shape, and have widths W1 and W2 of 3 mm or more. Thereby, it is configured such that the mechanical strength is maintained even in a mesh shape. The widths W1 and W2 of the positive electrode terminal member 8 and the negative electrode terminal member 9 are, of course, not more than half the width of the battery body 1a.

【0020】正極端子部材8は、例えばアルミニウムや
ニッケルからなる導線10が網目状に織られたものが用
いられる。また、負極端子部材9は、例えば銅やニッケ
ルからなる導線10が網目状に織られたものが用いられ
る。導線10は、図5に示すように断面が円形であり、
直径が50μm乃至300μmのものが用いられる。導
線10は、直径が50μm以下である場合、正極端子部
材8及び負極端子部材9の機械的強度が保持されなくな
る。また、導線10は、直径が300μm以上である場
合、後述するようにラミネート材7との溶着強度を劣化
させてしまう。勿論、導線10には、断面が楕円形のも
のを用いてもよい。
As the positive electrode terminal member 8, a member in which a conductive wire 10 made of, for example, aluminum or nickel is woven in a mesh shape is used. Further, as the negative electrode terminal member 9, one in which a conductive wire 10 made of, for example, copper or nickel is woven in a mesh shape is used. The conductor 10 has a circular cross section as shown in FIG.
Those having a diameter of 50 μm to 300 μm are used. When the diameter of the conductive wire 10 is 50 μm or less, the mechanical strength of the positive electrode terminal member 8 and the negative electrode terminal member 9 cannot be maintained. Further, when the diameter of the conductive wire 10 is 300 μm or more, the welding strength to the laminate 7 is deteriorated as described later. Of course, the conductor 10 may have an elliptical cross section.

【0021】正極端子部材8及び負極端子部材9は、そ
の長手方向を長軸として導線10が網目状に織られて構
成されてなる。すなわち、正極端子部材8及び負極端子
部材9は、詳細には図4に示すように、正極材2及び負
極材3の接続部2a、3aと直交する長さ方向を長軸と
し接続部2a、3aと平行する幅方向を短軸とした平行
四辺形に織られてなる。正極端子部材8及び負極端子部
材9は、導線10によって構成される平行四辺形の長軸
側交点P1、P2間の長さをM1、短軸側交点P3、P
4間の長さをM2とした場合に、M1>M2の関係を満
たす網目状に織られて構成されてなる。
Each of the positive electrode terminal member 8 and the negative electrode terminal member 9 is formed by weaving a conducting wire 10 in a mesh shape with its longitudinal direction as a long axis. That is, as shown in detail in FIG. 4, the positive electrode terminal member 8 and the negative electrode terminal member 9 have the long axis perpendicular to the connection parts 2a, 3a of the positive electrode material 2 and the negative electrode material 3, and the connection parts 2a, It is woven into a parallelogram whose minor axis is in the width direction parallel to 3a. The positive electrode terminal member 8 and the negative electrode terminal member 9 have a length M1 between the long axis intersections P1 and P2 of the parallelogram formed by the conducting wire 10, and a short axis intersection P3 and P
When the length between the four is M2, it is woven in a mesh shape satisfying the relationship of M1> M2.

【0022】さらに、正極端子部材8及び負極端子部材
9は、互いに交差して長軸側交点P1、P2を構成する
導線10a、10bのなす交差角度θ1が30°以上9
0°以下とされて網目状に織られて構成されてなる。正
極端子部材8及び負極端子部材9は、短軸側交点P3、
P4を構成する導線10a、10cのなす交差角度θ2
が、90°以上150°以下とされて網目状に織られて
構成されてなる。
Further, the positive electrode terminal member 8 and the negative electrode terminal member 9 have an intersection angle .theta.1 between the conductors 10a and 10b which intersect each other and forms the long axis side intersections P1 and P2.
It is configured to be 0 ° or less and woven in a mesh shape. The positive electrode terminal member 8 and the negative electrode terminal member 9 are connected at a short axis side intersection P3,
Intersection angle θ2 between the conductors 10a and 10c constituting P4
Is set to 90 ° or more and 150 ° or less and woven in a mesh shape.

【0023】以上のように構成された正極端子部材8及
び負極端子部材9は、長軸側交点P1、P2の交差角度
θ1が短軸側交点P3、P4の交差角度θ2よりも小さ
ないわゆる縦目の網目とされている。したがって、正極
端子部材8及び負極端子部材9は、幅方向に対していわ
ゆる横目の網目のものよりも導線10の本数が多くな
り、換言すれば総導体断面積が大きくなって同一材料比
でより機械的強度が大きくなる。
The positive electrode terminal member 8 and the negative electrode terminal member 9 configured as described above have a so-called longitudinal shape in which the intersection angle θ1 of the long-axis intersections P1 and P2 is smaller than the intersection angle θ2 of the short-axis intersections P3 and P4. It is a mesh. Therefore, the positive electrode terminal member 8 and the negative electrode terminal member 9 have a larger number of conductors 10 than that of a so-called cross-mesh in the width direction, in other words, the total conductor cross-sectional area is larger and the material ratio is higher. The mechanical strength increases.

【0024】また、正極端子部材8及び負極端子部材9
は、上述したようにそれぞれ正極材2及び負極材3に接
続された後に、ラミネート材7により溶着される。正極
端子部材8及び負極端子部材9は、互いに交差する各導
線10によって構成される平行四辺形の空間部に高分子
樹脂が充填されることによりラミネート材7に溶着され
る。この場合、正極端子部材8及び負極端子部材9は、
各導線10の交差角度θが30°以下である場合、高分
子樹脂の充填が少なくなって溶着強度がやや劣化する。
The positive terminal member 8 and the negative terminal member 9
Are connected to the positive electrode material 2 and the negative electrode material 3 as described above, and then are welded by the laminate material 7. The positive electrode terminal member 8 and the negative electrode terminal member 9 are welded to the laminate 7 by filling a parallelogram-shaped space defined by the respective conducting wires 10 with a polymer resin. In this case, the positive electrode terminal member 8 and the negative electrode terminal member 9
When the intersection angle θ of each conductor 10 is 30 ° or less, the amount of the polymer resin to be filled is reduced, and the welding strength is slightly deteriorated.

【0025】正極端子部材8及び負極端子部材9は、短
軸側交点P3、P4部位に高分子樹脂が充分に充填され
ることによってラミネート材7との溶着強度が保持され
ることから、引張り方向に対して強度の向上が図られて
電池本体1aから引き出される。正極端子部材8及び負
極端子部材9は、これによって折り曲げや引き裂き等の
外部力が加えられた場合においても破損等の抑制が図ら
れる。
The positive electrode terminal member 8 and the negative electrode terminal member 9 maintain the welding strength with the laminate 7 by being sufficiently filled with the polymer resin at the intersections P3 and P4 on the short axis side. And the battery is pulled out from the battery main body 1a. The positive electrode terminal member 8 and the negative electrode terminal member 9 can thereby be prevented from being damaged even when an external force such as bending or tearing is applied.

【0026】したがって、ポリマー電池1は、正極端子
部材8や負極端子部材9に対して折り曲げや引き裂きの
外部力が加えられた場合にも、その損傷が抑制されて信
頼性の向上が図られる。
Accordingly, even when an external force such as bending or tearing is applied to the positive electrode terminal member 8 or the negative electrode terminal member 9, the polymer battery 1 is prevented from being damaged and the reliability is improved.

【0027】勿論、本発明は、上述したポリマー電池1
に限定されるものでは無く、基本的な構成を同等とする
固体化リチウムイオン電池ばかりでなく種々の電池にも
適用される。電池は、化学電池、生物電池或いは物理電
池の全てであり、また一次電池と二次電池とに適用され
る。適用される電池は、いずれも電極端子部材が導線を
網目状に織ったものが用いられればよい。電極端子部材
は、導線について特に材質に制限は無いが、一般に正極
側にアルミニウム材やニッケル材が用いられるとともに
負極側に銅材やニッケル材が用いられる。
Of course, the present invention relates to the polymer battery 1 described above.
However, the present invention is not limited to the solid-state lithium-ion battery having the same basic configuration, but is also applicable to various batteries. The battery is a chemical battery, a biological battery, or a physical battery, and is applied to a primary battery and a secondary battery. The battery to be applied may be any one in which the electrode terminal member is formed by weaving a conductive wire in a mesh shape. The electrode terminal member is not particularly limited in the material of the conductive wire, but generally, an aluminum material or a nickel material is used on the positive electrode side, and a copper material or a nickel material is used on the negative electrode side.

【0028】電極端子部材は、電解質成分が接触する構
成である場合、この電解質成分により腐蝕されることか
らニッケル材を直接用いることはできない。したがっ
て、電極端子部材には、ニッケル材の表面にカブトンテ
ープ等を巻回する等の不導体処理を施したものが用いら
れる。
When the electrode terminal member is configured to be in contact with the electrolyte component, the electrode material is corroded by the electrolyte component, so that the nickel material cannot be used directly. Therefore, as the electrode terminal member, a member which has been subjected to a non-conductive treatment such as winding a Kavton tape or the like on the surface of a nickel material is used.

【0029】上述した電極端子部材を用いる電池の有意
性について、図6に示した試験用装置20を製作し、こ
の試験用装置20を対象として引張り強度試験を実施し
てその確認を行った。実施例試験用装置20A、20B
は、上述した正極端子部材8や負極端子部材9と同様
に、幅方向に対して長手方向が長軸として織られたいわ
ゆる縦目の網目状電極端子部材を備えてなる。これに対
して、比較例試験用装置20C、20Dは、長手方向に
対して幅方向が長軸として織られたいわゆる横目の網目
状電極端子部材を備えてなる。
The significance of the battery using the above-mentioned electrode terminal member was confirmed by manufacturing a test apparatus 20 shown in FIG. 6 and performing a tensile strength test on the test apparatus 20. Example Test Equipment 20A, 20B
Like the positive electrode terminal member 8 and the negative electrode terminal member 9 described above, a so-called vertical mesh electrode terminal member having a long axis in a longitudinal direction with respect to the width direction is provided. On the other hand, the comparative example test devices 20C and 20D each include a so-called horizontal mesh electrode terminal member woven in the width direction as the major axis with respect to the longitudinal direction.

【0030】第1の試験用装置20Aは、一方の電極端
子部材21Aが導線10にアルミ材が用いられて縦目に
織られてなり、他方の電極端子部材22Aが導線10に
ニッケル材が用いられて縦目に織られてなる。第2の実
施例試験用装置20Bは、電極端子部材21B、22B
がそれぞれ導線10にニッケル材が用いられて縦目に織
られてなる。これに対して、第1の比較例20Cは、一
方の電極端子部材21Cが導線10にアルミ材が用いら
れて横目に織られてなり、他方の電極端子部材22Cが
導線10にニッケル材が用いられて横目に織られてな
る。第2の比較例試験用装置20Dは、電極端子部材2
1D、22Dがそれぞれ導線10にニッケル材が用いら
れて横目に織られてなる。
In the first test apparatus 20A, one of the electrode terminal members 21A is made of aluminum material for the conductor 10 and is woven in the longitudinal direction, and the other electrode terminal member 22A is made of the nickel material for the conductor 10. It is woven in the vertical direction. The second embodiment test apparatus 20B includes electrode terminal members 21B and 22B.
Are made of nickel material for the conductive wire 10 and are woven in the longitudinal direction. On the other hand, in the first comparative example 20C, one of the electrode terminal members 21C is made of aluminum material for the conductive wire 10 and woven sideways, and the other electrode terminal member 22C is made of a nickel material for the conductive wire 10. It is woven to the side. The second comparative example test device 20D includes the electrode terminal member 2
1D and 22D are each woven by using a nickel material for the conductive wire 10.

【0031】上述した各試験用装置20は、電極端子部
材21と電極端子部材22とがそれぞれ互いに平行状態
にした状態でその両側からラミネート材として2枚のポ
リエチレンフィルム23、24とによって挟み込まれる
とともに、これに熱溶着処理を施してなる。ポリエチレ
ンフィルム23、24は、それぞれ厚みが0.1mmで
あり、溶着部25を4cm2として熱溶着処理が施され
る。
Each of the above-mentioned test devices 20 is sandwiched between two polyethylene films 23 and 24 as a laminate from both sides in a state where the electrode terminal member 21 and the electrode terminal member 22 are parallel to each other. This is subjected to a heat welding process. Each of the polyethylene films 23 and 24 has a thickness of 0.1 mm, and is subjected to a heat welding process with the welding portion 25 being 4 cm 2 .

【0032】引張り強度試験は、引張り試験器を用いて
上述した各試験用装置20についてポリエチレンフィル
ム23、24を一定の速度で引っ張り、破断が生じる最
大荷重点の荷重をそれぞれ測定した。この測定の結果、
第1の実施例試験用装置20Aについては、最大荷重点
における荷重が7.39kgfであった。第2の実施例
試験用装置20Bについては、最大荷重点における荷重
が8.15kgfであった。一方、第1の比較例試験用
装置20Cについては、最大荷重点における荷重が6.
06kgfであった。第2の比較例試験用装置20Dに
ついては、最大荷重点における荷重が6.79kgfで
あった。
In the tensile strength test, the polyethylene films 23 and 24 were pulled at a constant speed with respect to each of the above-described test devices 20 using a tensile tester, and the loads at the maximum load points at which breakage occurred were measured. As a result of this measurement,
The load at the maximum load point was 7.39 kgf for the test apparatus 20A of the first example. The load at the maximum load point of the test apparatus 20B of the second example was 8.15 kgf. On the other hand, as for the first comparative example test device 20C, the load at the maximum load point was 6.
It was 06 kgf. With respect to the second comparative example test device 20D, the load at the maximum load point was 6.79 kgf.

【0033】以上の引張り強度試験から明らかなよう
に、第1の実施例試験用装置20Aは、その引張り強度
が、第1の比較例試験用装置20Cと比較してほぼ22
%以上大きくなっている。同様に、第2の実施例試験用
装置20Bについても、第2の比較例試験用装置20D
と比較してその引張り強度が20%以上大きくなってい
る。したがって、電極端子部材21、22は、縦目の網
目状に織られたものが用いられることにより、同一材料
で形成された横目の網目状に織られたものと比較して溶
着部25における溶着強度の向上が図られることが確認
される。
As apparent from the above tensile strength test, the tensile strength of the test apparatus 20A of the first embodiment is approximately 22 times that of the tensile strength test apparatus 20C of the first comparative example.
% Or more. Similarly, the second comparative example test apparatus 20D is also used for the second comparative example test apparatus 20B.
The tensile strength is increased by 20% or more as compared with. Therefore, since the electrode terminal members 21 and 22 are woven in a vertical mesh pattern, the electrode terminal members 21 and 22 are welded in the welding portion 25 as compared with horizontal electrode mesh elements formed of the same material. It is confirmed that the strength is improved.

【0034】次に上述した電極端子部材を用いる電池の
有意性について、図7に示した試験用装置30を製作
し、この試験用装置30を対象として液漏れ試験を実施
してその確認を行った。試験用装置30は、網目状の一
対の電極端子部材31、32をアルミラミネートパック
33に熱溶着するとともに、このアルミラミネートパッ
ク33内に5gの電解液を充填してなる。電解液は、溶
媒のプロピレンカーボネートに電解質塩のLiPF6
1.2mol/kg溶かしてなる。
Next, regarding the significance of the battery using the above-described electrode terminal member, a test device 30 shown in FIG. 7 was manufactured, and a liquid leakage test was performed on the test device 30 to confirm the result. Was. The test apparatus 30 is formed by heat-welding a pair of mesh-shaped electrode terminal members 31 and 32 to an aluminum laminate pack 33 and filling the aluminum laminate pack 33 with 5 g of an electrolytic solution. The electrolyte is prepared by dissolving 1.2 mol / kg of LiPF 6 as an electrolyte salt in propylene carbonate as a solvent.

【0035】試験用装置30は、一方の電極端子部材3
1が導線にアルミ材を用いて網目に織られてなり、他方
の電極端子部材32が導線にニッケル材を用いて網目に
織られてなる。試験用装置30は、アルミラミネートパ
ック33によってこれら電極端子部材31、32を挟み
込んだ状態で周囲に熱溶着処理を施してなり、全体とし
てポリマー電池1と同様に構成されてなる。
The test apparatus 30 includes one electrode terminal member 3
1 is woven in a mesh using an aluminum material for the conductive wire, and the other electrode terminal member 32 is woven in a mesh using a nickel material for the conductive wire. The test apparatus 30 is formed by subjecting the electrode terminal members 31 and 32 to a heat-sealing process in a state where the electrode terminal members 31 and 32 are sandwiched by an aluminum laminate pack 33, and has the same configuration as the polymer battery 1 as a whole.

【0036】実施例試験用装置30Aは、上述した正極
端子部材8や負極端子部材9と同様に、幅方向に対して
長手方向が長軸として織られたいわゆる縦目の網目状電
極端子部材31A、32Aが用いられる。一方、比較例
試験用装置30Bは、長手方向に対して幅方向が長軸と
して織られたいわゆる横目の網目状電極端子部材31
B、32Bを備えてなる。
As in the case of the positive electrode terminal member 8 and the negative electrode terminal member 9 described above, the test apparatus 30A has a so-called longitudinal mesh electrode terminal member 31A whose longitudinal direction is a long axis with respect to the width direction. , 32A are used. On the other hand, the comparative example test device 30B has a so-called cross-meshed electrode terminal member 31 woven in the width direction with the major axis in the longitudinal direction.
B, 32B.

【0037】液漏れ試験は、以上のように構成した試験
用装置30を真空デシケータ中に入れて真空引き時間に
対する重量変化率を測定した。なお、重量変化率は、試
験用装置30の測定前の重量と測定後の重量の変化量を
百分率で求めた値である。図8は、上述した液漏れ試験
による実施例試験用装置30Aと比較例試験用装置30
Bとの測定結果を、縦軸に重量変化率(%)、横軸に測
定時間(H)としてプロットした図である。なお、同図
においてマイナス表示は、測定前の重量に対して測定後
の重量が減少した結果を示している。
In the liquid leakage test, the test apparatus 30 constructed as described above was placed in a vacuum desiccator, and the weight change rate with respect to the evacuation time was measured. The weight change rate is a value obtained by calculating the percentage change in weight between the weight of the test apparatus 30 before measurement and the weight after measurement. FIG. 8 shows an example test device 30A and a comparative example test device 30 based on the above-described liquid leakage test.
FIG. 9 is a diagram in which the measurement results with B are plotted as the weight change rate (%) on the vertical axis and the measurement time (H) on the horizontal axis. Note that, in the same figure, a minus sign indicates a result that the weight after measurement is reduced with respect to the weight before measurement.

【0038】実施例試験用装置30Aは、同図から明ら
かなように、比較例試験用装置30Bと比較して重量変
化率が小さく、換言すれば電解液の液漏れが極めて少な
い。したがって、実施例試験用装置30Aは、縦目の網
目状電極端子部材31A、32Aを用いることによっ
て、横目の網目状電極端子部材31B、32Bを用いた
比較例試験用装置30Bと比較して、アルミラミネート
パック33による密封性が保持される。
As can be seen from the figure, the test apparatus 30A of the embodiment has a smaller weight change rate than the test apparatus 30B of the comparative example, in other words, the leakage of the electrolyte is extremely small. Therefore, the device 30A for testing the example uses the mesh electrode terminal members 31A, 32A in the vertical direction, compared with the device 30B for the comparative example using the mesh electrode terminal members 31B, 32B in the horizontal direction. The sealing performance of the aluminum laminate pack 33 is maintained.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本発明にか
かる電池によれば、長さ方向を長軸とした縦目の網目に
織られてなる電極端子部材が用いられることから、この
電極端子部材に対して折り曲げや引き裂きの外部力が加
えられた場合にもその損傷が抑制されて信頼性の向上が
図られる。また、本発明にかかる電池によれば、電極端
子部材自体の機械的強度も大きくかつラミネート材によ
って封装する際にその網目に高分子フィルムが効率的に
充填されることによってラミネート材との接合強度が向
上されることから信頼性の高いポリマー電池を得ること
ができる。
As described above in detail, according to the battery according to the present invention, since the electrode terminal member woven in a vertical mesh having the major axis in the longitudinal direction is used, this battery is used. Even when an external force such as bending or tearing is applied to the terminal member, the damage is suppressed and reliability is improved. Further, according to the battery of the present invention, the mechanical strength of the electrode terminal member itself is large, and the polymer film is efficiently filled in the mesh when sealed with the laminate material, so that the bonding strength with the laminate material is improved. , A highly reliable polymer battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる電池の実施の形態として示すポ
リマー電池等の薄型電池の構成を説明する要部模式図で
ある。
FIG. 1 is a schematic view of a main part for explaining a configuration of a thin battery such as a polymer battery shown as an embodiment of a battery according to the present invention.

【図2】同薄型電池の概略構成を説明する正面図であ
る。
FIG. 2 is a front view illustrating a schematic configuration of the thin battery.

【図3】同薄型電池に備えられる電極端子部材を電極材
に取り付ける構成を説明する図である。
FIG. 3 is a diagram illustrating a configuration in which an electrode terminal member provided in the thin battery is attached to an electrode material.

【図4】同電極端子部材の詳細構造を説明する図であ
る。
FIG. 4 is a diagram illustrating a detailed structure of the electrode terminal member.

【図5】同電極端子部材に用いられる導線の要部斜視図
である。
FIG. 5 is a perspective view of a main part of a conductive wire used for the electrode terminal member.

【図6】引張り試験に用いる試験用装置の説明図であ
る。
FIG. 6 is an explanatory view of a test device used for a tensile test.

【図7】同薄型電池の液漏れ試験に用いる試験用装置の
正面図である。
FIG. 7 is a front view of a test device used for a liquid leakage test of the thin battery.

【図8】同液漏れ試験の結果を示す図である。FIG. 8 is a view showing the results of the liquid leakage test.

【符号の説明】[Explanation of symbols]

1 ポリマー電池(薄型電池)、2 正極材、3 負極
材、4 セバレータ、5 封口材、6 封口材、7 ラ
ミネート材、8 正極端子部材、9 負極端子部材、1
0 導線
Reference Signs List 1 polymer battery (thin battery), 2 positive electrode material, 3 negative electrode material, 4 separator, 5 sealing material, 6 sealing material, 7 laminate material, 8 positive electrode terminal member, 9 negative electrode terminal member, 1
0 conductor

フロントページの続き Fターム(参考) 5H022 AA09 BB01 CC02 CC09 CC12 CC16 CC21 5H024 AA00 AA02 BB00 CC04 CC16 DD11 HH00 HH13 5H029 AJ11 AK03 AL06 AM01 AM11 BJ04 BJ12 DJ05 EJ01 HJ00 HJ04 HJ05 Continued on the front page F term (reference) 5H022 AA09 BB01 CC02 CC09 CC12 CC16 CC21 5H024 AA00 AA02 BB00 CC04 CC16 DD11 HH00 HH13 5H029 AJ11 AK03 AL06 AM01 AM11 BJ04 BJ12 DJ05 EJ01 HJ00 HJ04 HJ05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導線を網目状に織るとともに長さ方向の
一端部を電極材に接続してなる電極端子部材を有する電
池において、 網目が、上記電極材との接続部と平行な幅方向に対して
直交する長さ方向を長軸とした縦目に織られてなる電極
端子部材を備えることを特徴とする電池。
1. A battery having an electrode terminal member formed by weaving a conductive wire in a mesh shape and connecting one end in a length direction to an electrode material, wherein the mesh is formed in a width direction parallel to a connection portion with the electrode material. A battery comprising an electrode terminal member woven in a longitudinal direction with a longitudinal direction perpendicular to the longitudinal direction as a major axis.
【請求項2】 上記電極材は、帯状の正極集電体上に正
極活物質を被着してなる正極材と帯状の負極集電体上に
負極活物質を被着してなる負極材とからなり、 上記正極材と負極材とがセバレータを介して積層される
とともにそれぞれ上記電極端子部材が接続され、 電解質に非水電解質或いは固体電解質やゲル電解質を用
いて、上記電極端子部材の先端を露呈させた状態で、上
記正極材と負極材及びセバレータとの積層体をラミネー
ト材により封装して構成したことを特徴とする請求項1
に記載の電池。
2. The method according to claim 1, wherein the electrode material comprises a positive electrode material formed by applying a positive electrode active material on a band-shaped positive electrode current collector, and a negative electrode material formed by applying a negative electrode active material on a band-shaped negative electrode current collector. The positive electrode material and the negative electrode material are laminated via a severator, and the electrode terminal members are connected to each other. Using a non-aqueous electrolyte, a solid electrolyte, or a gel electrolyte as an electrolyte, the tip of the electrode terminal member is The laminated body of the positive electrode material, the negative electrode material, and the separator is sealed with a laminate material in an exposed state, and is constituted.
The battery according to 1.
【請求項3】 上記電極端子部材は、その幅が3mm以
上でありかつ上記正極材と負極材及びセバレータとをラ
ミネート材により封装してなる電池本体の長さの1/2
未満であることを特徴とする請求項1に記載の電池。
3. The electrode terminal member has a width of 3 mm or more, and is の of the length of a battery body obtained by sealing the positive electrode material, the negative electrode material, and the severator with a laminate material.
The battery of claim 1, wherein
【請求項4】 上記電極端子部材は、直径が50μm乃
至300μmの導線によって網目状に織られてなり、上
記電極材との接続部と直交する長さ方向の上記導線の交
差角度が30°以上90°未満に織られてなることを特
徴とする請求項1に記載の電池。
4. The electrode terminal member is woven in a mesh shape by a conductive wire having a diameter of 50 μm to 300 μm, and a crossing angle of the conductive wire in a length direction orthogonal to a connection portion with the electrode material is 30 ° or more. The battery of claim 1, wherein the battery is woven less than 90 °.
JP10224888A 1998-08-07 1998-08-07 Battery Withdrawn JP2000058026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10224888A JP2000058026A (en) 1998-08-07 1998-08-07 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10224888A JP2000058026A (en) 1998-08-07 1998-08-07 Battery

Publications (1)

Publication Number Publication Date
JP2000058026A true JP2000058026A (en) 2000-02-25

Family

ID=16820744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10224888A Withdrawn JP2000058026A (en) 1998-08-07 1998-08-07 Battery

Country Status (1)

Country Link
JP (1) JP2000058026A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030008513A (en) * 2001-07-18 2003-01-29 성남전자공업주식회사 Lithium polymer battery
KR100384044B1 (en) * 2001-07-09 2003-05-14 현대자동차주식회사 Ni-MH Battery
JP2014110114A (en) * 2012-11-30 2014-06-12 Showa Denko Packaging Co Ltd External packaging body for electrochemical element
CN107230768A (en) * 2017-07-05 2017-10-03 林州朗坤科技有限公司 A kind of pole and its manufacture method
KR101873861B1 (en) * 2010-04-26 2018-07-03 콘티넨탈 오토모티브 게엠베하 Energy storage cell
CN111293268A (en) * 2018-12-10 2020-06-16 丰田自动车株式会社 Battery with a battery cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384044B1 (en) * 2001-07-09 2003-05-14 현대자동차주식회사 Ni-MH Battery
KR20030008513A (en) * 2001-07-18 2003-01-29 성남전자공업주식회사 Lithium polymer battery
KR101873861B1 (en) * 2010-04-26 2018-07-03 콘티넨탈 오토모티브 게엠베하 Energy storage cell
JP2014110114A (en) * 2012-11-30 2014-06-12 Showa Denko Packaging Co Ltd External packaging body for electrochemical element
CN107230768A (en) * 2017-07-05 2017-10-03 林州朗坤科技有限公司 A kind of pole and its manufacture method
CN111293268A (en) * 2018-12-10 2020-06-16 丰田自动车株式会社 Battery with a battery cell
CN111293268B (en) * 2018-12-10 2022-03-15 丰田自动车株式会社 Battery with a battery cell

Similar Documents

Publication Publication Date Title
JP6618677B2 (en) Electrode assembly and secondary battery including the same
TWI222233B (en) Method for treating electrode tabs of crude cell for lithium secondary battery and crude cell and lithium secondary battery according to the method
KR100878700B1 (en) Electrode Plate for Battery Cell and Process of Preparing the Same
KR101465172B1 (en) Secondary battery of pouch type having sealing margin for improving durability
US20080070111A1 (en) Sheet-type secondary battery and manufacturing method therefor
JPH10302756A (en) Thin battery
CN101552350A (en) Laminate type battery and battery module incorporating the laminate type battery
JP5408691B2 (en) Sealed secondary battery
JP2000188115A (en) Thin type battery
JP4655593B2 (en) Bipolar battery
JPH09265974A (en) Non-aqueous electrolytic battery
JPH1131486A (en) Flat battery
JP6324387B2 (en) Current collector with built-in sealing means, bipolar battery including such a current collector, and method of manufacturing such a battery
JP2022050682A (en) Lithium secondary battery
KR101147605B1 (en) Method of Preparing Secondary Battery
JP4433506B2 (en) battery
US9257727B2 (en) Assembled battery and battery pack
JP2000058026A (en) Battery
WO2021261029A1 (en) Secondary battery
JP4929587B2 (en) Bipolar battery, manufacturing method thereof, and assembled battery
JP4186260B2 (en) Thin battery
JP2022554113A (en) Electrode assembly and manufacturing method thereof
JP2001052681A (en) Polymer electrolyte battery
JP6077312B2 (en) Secondary battery
KR101616502B1 (en) Secondary battery having electrode lid and electrode tab connected by slit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101