JP2000057843A - Conductive particle excellent in migration resistance - Google Patents

Conductive particle excellent in migration resistance

Info

Publication number
JP2000057843A
JP2000057843A JP10234876A JP23487698A JP2000057843A JP 2000057843 A JP2000057843 A JP 2000057843A JP 10234876 A JP10234876 A JP 10234876A JP 23487698 A JP23487698 A JP 23487698A JP 2000057843 A JP2000057843 A JP 2000057843A
Authority
JP
Japan
Prior art keywords
copper
nickel
silver
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10234876A
Other languages
Japanese (ja)
Inventor
Eiki Takeshima
鋭機 竹島
Yasushi Shirai
安 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10234876A priority Critical patent/JP2000057843A/en
Publication of JP2000057843A publication Critical patent/JP2000057843A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent migration resulting from the use of silver and to impart excellent conductivity and corrosion resistance to copper particles to provide conductive particles that inhibit oxidation and reactivity with resin during soldering and that change little in conductivity over aging by coating the surfaces of the copper particles with a copper-nickel alloy. SOLUTION: 1 to 20 wt.% copper-nickel alloy coated layers are formed by physical deposition method on the surfaces of copper particles having average particle diameters of 1 to 100 μm. The copper-nickel coated layers are either nickel silver, Constantan, or Monel metal and formed on the surfaces of the copper particles by e.g. a sputtering method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種積層電子部品の内
部電極や内部導体などの形成に使用されるペ−スト用の
高導電性粒子ならびに帯電防止用やEMIシ−ルド用の
塗料、プラスチック成形品、プラスチックフィルムおよ
び合成繊維などに使用される高導電性粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to highly conductive particles for paste used for forming internal electrodes and internal conductors of various laminated electronic components, and paints for antistatic and EMI shielding. The present invention relates to highly conductive particles used for plastic molded articles, plastic films, synthetic fibers, and the like.

【0002】[0002]

【従来の技術】積層型の電子部品のうち、積層型コンデ
ンサ−、インダクタ−などは、高導電性粒子でできた導
電体層に磁性体層を積層し、一体焼結することにより製
造されている。中でも、導電体層を形成する導電性ペ−
ストの性能は、積層型電子部品の性能を決定する最も重
要なファクタ−となる。導電性ペ−ストの主成分である
高導電性粒子は、導電性は勿論、高温・湿潤環境下での
使用で問題となる耐マイグレ−ション性に優れているこ
とが要求される。このような高導電性粒子としては、従
来から銀が使用されている。また、帯電防止、EMIシ
−ルド用の塗料、プラスチック成形品、プラスチックフ
ィルムおよび合成繊維などにも、特に高導電性が要求さ
れる場合には銀が使用されている例が多い。しかし、銀
は優れた導電性と耐食性を有する反面、耐マイグレ−シ
ョン性に問題がある。
2. Description of the Related Art Among multilayer electronic components, multilayer capacitors, inductors and the like are manufactured by laminating a magnetic layer on a conductive layer made of highly conductive particles and sintering them integrally. I have. Among them, a conductive paper for forming a conductive layer
The performance of the strike is the most important factor that determines the performance of the multilayer electronic component. The highly conductive particles, which are the main components of the conductive paste, are required to have not only conductivity but also excellent migration resistance, which is a problem when used in a high-temperature and humid environment. Silver has been conventionally used as such highly conductive particles. In addition, silver is used in many cases in coatings for antistatic and EMI shielding, plastic molded products, plastic films, synthetic fibers, and the like, particularly when high conductivity is required. However, while silver has excellent conductivity and corrosion resistance, it has a problem in migration resistance.

【0003】マイグレ−ションは、絶縁された二つの回
路の間に水分が存在する状態で両回路の間に直流電圧を
印加すると、陽極として使用している銀から銀イオンが
溶出して陰極に移行し、陰極部で成長した銀が最終的に
両回路を短絡させる現象である。特に、湿潤環境で使用
される電子機器ではマイグレ−ションが大きな問題とな
り、電子部品の信頼性を損なうことになる。この銀によ
るマイグレ−ションは、銀−パラジウム合金粉末や銀−
銅合金粉末の使用によりある程度は制御できる。しか
し、銀−パラジウム合金では、例えば導電性ペ−ストと
して基板上にパタ−ンを形成する場合、基板間を接続す
る際のハンダ付け温度でパラジウムが触媒活性を示し、
導電性ペ−スト中に固化剤として添加している樹脂を分
解する。その結果、導電性ペ−ストが十分に固化しない
ことがある。他方、銀−銅合金は、銀の含有量が多い領
域では耐マイグレ−ション性が劣り、逆に銅が多い領域
ではハンダ付け時に酸化して電子部品の寿命安定性を損
なうことになる。
In a migration, when a DC voltage is applied between two insulated circuits in a state where moisture is present between the two circuits, silver ions elute from silver used as an anode and are discharged to a cathode. This is a phenomenon in which silver that has migrated and grown in the cathode portion eventually short-circuits both circuits. In particular, migration becomes a serious problem in electronic equipment used in a wet environment, and the reliability of electronic parts is impaired. The migration by silver is carried out by using silver-palladium alloy powder or silver-palladium.
The use of copper alloy powder can be controlled to some extent. However, in a silver-palladium alloy, for example, when a pattern is formed on a substrate as a conductive paste, palladium exhibits catalytic activity at a soldering temperature at the time of connecting the substrates,
The resin added as a solidifying agent in the conductive paste is decomposed. As a result, the conductive paste may not be sufficiently solidified. On the other hand, a silver-copper alloy has poor migration resistance in a region containing a large amount of silver, and conversely oxidizes during soldering in a region containing a large amount of copper, thereby impairing the life stability of electronic components.

【0004】このため、新しい高導電性粒子が開発され
ており、例えば、銅や鉄などの粉末粒子の表面に2層以
上の異なった貴金属をコ−ティングすることにより耐マ
イグレ−ション性を改善した導電性電極材(特開平2−
66,101号公報)やポリスチレン樹脂やフェノ−ル
樹脂の球状粒子の表面に銀を無電解メッキした導電塗料
用銀メッキ複合粉末(特開平2−118,079号公
報)などが開示されている。しかし、特開平2−66,
101号公報の導電性電極材は、コ−ティング層に金、
白金、銀などを使用しているので極めて高価である。そ
の上、もしも被膜にピンホ−ルや不メッキ部分がある
と、銀の溶出現象が電気化学的に促進されるのでかえっ
て耐マイグレ−ション性が劣る。他方、特開平2−11
8,079号公報の銀メッキ複合粉末は、導電性は優れ
ているものの銀メッキ層と樹脂との間の密着性が弱い。
その上、メッキ層が銀であるからマイグレ−ションを完
全に防止することはできない。
For this reason, new highly conductive particles have been developed. For example, the migration resistance is improved by coating two or more layers of different noble metals on the surface of powder particles such as copper and iron. Conductive electrode material (Japanese Unexamined Patent Publication No.
No. 66,101) and a silver-plated composite powder for conductive paint in which silver is electrolessly plated on the surface of spherical particles of a polystyrene resin or a phenol resin (JP-A-2-118,079). . However, JP-A-2-66,
The conductive electrode material disclosed in Japanese Patent Application Publication No.
It is extremely expensive because it uses platinum, silver and the like. In addition, if the coating has pinholes or unplated portions, the silver elution phenomenon is promoted electrochemically, and the migration resistance is rather poor. On the other hand, Japanese Patent Laid-Open No. 2-11
The silver-plated composite powder disclosed in Japanese Patent No. 8,079 has excellent conductivity, but low adhesion between the silver-plated layer and the resin.
In addition, migration cannot be completely prevented because the plating layer is silver.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
問題を解決するために案出されたものであり、銅粒子の
表面に銅・ニッケル合金をコ−ティングすることによ
り、銀の使用に起因するマイグレ−ションの発生を防止
すると同時に、銅粒子に優れた導電性と耐食性を付与し
て、ハンダ付け時における酸化や樹脂との反応性を抑制
し、かつ導電性の経時変化の少ない導電性粒子を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem, and the use of silver by coating a copper-nickel alloy on the surface of copper particles. At the same time as preventing the occurrence of migration caused by the above, imparting excellent conductivity and corrosion resistance to the copper particles, suppressing oxidation and reactivity with the resin at the time of soldering, and little change in conductivity with time. An object is to provide conductive particles.

【0006】[0006]

【課題を解決するための手段】本発明の導電性粒子は、
その目的を達成するため、平均粒径1〜100μmの銅
粉末粒子の表面に、1〜20重量%の銅・ニッケル合金
コ−ティング層が、物理蒸着法で形成されており、銀を
全く含んでいないことを最大の特徴とする。粒子の表面
に金属をコ−ティングする方法としては、無電解銅メッ
キ法や無電解ニッケルメッキ法が一般的であるが、無電
解メッキ法で銅・ニッケル合金をコ−ティングするのは
極めて困難であった。一方、物理蒸着法で粒子の表面に
銅・ニッケル合金をコ−ティングすることは基本的に可
能である。例えば、本発明者等が特開平2−153,0
68号公報で紹介したスパッタリング法によれば容易に
実施することができる。この方法では、回転バレル内に
銅粉末を入れ、攪拌しながらスパッタされた銅とニッケ
ルの粒子を銅粉末に衝突させることにより、銅粉末粒子
の表面を所定の組成の銅・ニッケル合金でコ−ティング
することができる。真空蒸着法も利用できるが、銅とニ
ッケルの融点や蒸気圧が大きく異なるために、銅とニッ
ケルの合金組成を一定に保持することが難しい。
Means for Solving the Problems The conductive particles of the present invention are:
In order to achieve the object, a copper / nickel alloy coating layer of 1 to 20% by weight is formed on the surface of copper powder particles having an average particle diameter of 1 to 100 μm by a physical vapor deposition method and contains no silver. The biggest feature is that it is not. Electroless copper plating or electroless nickel plating is generally used as a method of coating metal on the surface of particles, but it is extremely difficult to coat copper / nickel alloy by electroless plating. Met. On the other hand, it is basically possible to coat a copper / nickel alloy on the surface of particles by physical vapor deposition. For example, the present inventors disclosed in Japanese Patent Laid-Open No.
According to the sputtering method introduced in Japanese Patent Publication No. 68, it can be easily carried out. In this method, copper powder is put into a rotating barrel, and the sputtered copper and nickel particles collide with the copper powder while stirring, so that the surface of the copper powder particles is coated with a copper / nickel alloy having a predetermined composition. Can be Although a vacuum evaporation method can be used, it is difficult to keep the alloy composition of copper and nickel constant because the melting points and vapor pressures of copper and nickel are significantly different.

【0007】本発明による銅・ニッケル合金は、以下に
示すような特徴を有する。 (1)コ−ティング金属中に含まれるニッケルとの固溶
性が良好な銅を粉末粒子として使用している。したがっ
て、スパッタリング時の温度上昇によってコ−ティング
層と粉末粒子との界面に合金層が形成され、密着性が極
めて強固となる。 (2)銅粉末粒子の表面に純ニッケルをコ−ティングし
た場合には、被膜のピンホ−ルや不メッキ部分がある
と、イオン化傾向の差によって内部電池が形成され、ニ
ッケルの選択的な溶出現象が起こる。しかし、本発明で
はコ−ティング層が銅とニッケルの合金であるから、被
膜のピンホ−ルや不メッキ部分があっても、ニッケルの
電気化学的な溶出現象は起こりにくい。 (3) 銅粉末粒子だけの場合には、経時劣化によって
酸化被膜が生成すると106Ω・cm台の高い比抵抗を
示す。しかし、銅・ニッケル合金のコ−ティング層の場
合は、耐食性に優れているので10-4Ω・cm台の低い
比抵抗を有し、その経時変化も少ない。 (4)極めて長期間の保存や腐食などによって、導電性
が著しく低下した場合には、水素ガス雰囲気下、約20
0℃で1時間の低温で還元処理することにより、再び1
-4Ω・cm台の低い比抵抗に復帰できる。
The copper / nickel alloy according to the present invention has the following features. (1) Copper having good solid solubility with nickel contained in the coating metal is used as powder particles. Therefore, an alloy layer is formed at the interface between the coating layer and the powder particles due to the temperature rise during sputtering, and the adhesion becomes extremely strong. (2) When pure nickel is coated on the surface of copper powder particles, if there is a pinhole or unplated portion of the coating, an internal battery is formed due to the difference in ionization tendency, and nickel is selectively eluted. A phenomenon occurs. However, in the present invention, since the coating layer is an alloy of copper and nickel, even if there is a pinhole or an unplated portion of the coating, the electrochemical elution phenomenon of nickel hardly occurs. (3) In the case of using only copper powder particles, when an oxide film is formed due to deterioration over time, a high specific resistance of the order of 10 6 Ω · cm is exhibited. However, a coating layer of a copper / nickel alloy has a low specific resistance of the order of 10 −4 Ω · cm because of its excellent corrosion resistance, and its change with time is small. (4) If the conductivity is significantly reduced due to storage or corrosion for an extremely long period of time, about 20
By performing the reduction treatment at a low temperature of 0 ° C. for 1 hour,
It can return to a low specific resistance of the order of 0 -4 Ω · cm.

【0008】コ−ティング被膜の組成として、銅・ニッ
ケル合金以外の使用も考えられたが、銅・ニッケル合金
以外の、銅・コバルト合金、銅・クロム合金、銅・鉄合
金、銅・錫合金、銅・亜鉛合金などの組み合わせについ
て種々検討したが、銅・ニッケル合金のように耐食性、
導電性および耐マイグレ−ション性のすべてを満足する
ことはできなかった。
As the composition of the coating film, use other than the copper / nickel alloy was considered. However, other than the copper / nickel alloy, a copper / cobalt alloy, a copper / chromium alloy, a copper / iron alloy, a copper / tin alloy was used. We examined various combinations of copper, zinc alloys, etc.
All of the conductivity and the migration resistance could not be satisfied.

【0009】銅・ニッケル合金としては、2成分でも良
いが、他に錫、亜鉛、鉄またはマンガンなどを含んでも
良い。ただし、ニッケルが8重量%未満と少なくなり過
ぎると耐食性が低下し、逆に70重量%以上に多くなる
と導電性が低下するので、8重量%から70重量%の範
囲が最も好ましい。具体的には、ニッケルを8重量%か
ら70重量%含む洋白、40重量%から45重量%含む
コンスタンタン、60重量%から70重量%含むモネル
メタルが最もバランスのとれた耐食性、導電性および耐
マイグレ−ション性を有する。
The copper / nickel alloy may be composed of two components, but may further contain tin, zinc, iron or manganese. However, if the nickel content is too small, less than 8% by weight, the corrosion resistance is reduced, and if the nickel content is more than 70% by weight, the conductivity is reduced. Therefore, the range of 8 to 70% by weight is most preferable. More specifically, nickel white containing 8% to 70% by weight of nickel, constantan containing 40% to 45% by weight, and Monel metal containing 60% to 70% by weight have the most balanced corrosion resistance, conductivity and anti-migrain resistance. -Has an optional property.

【0010】銅粉末粒子は、1〜100μmの平均粒径
をもつことが必要である。平均粒径が1μm未満の場合
には、粒子相互の凝集が著しいので、銅・ニッケル合金
のコ−ティングを均一に施すことが困難になる。しか
も、粒径が小さくなればなるほど、粉末の比表面積が増
大するので、コ−ティング量を多くすることが必要とさ
れ、製造コストを上昇させる原因となる。逆に、平均粒
径が100μmを越えると、銅粉末粒子を多量に添加す
る必要があるのでコストが高くなる。また、導通不良を
起こし易くなるので、導電性粒子としての信頼性が低下
する。銅粉末粒子の形状としては、特に制約されるもの
ではないが、できるだけ少量の添加で優れた導電性を発
現させるためには、球状、樹脂状および破砕状のものよ
りは、ウィスカ−状、フレ−ク状または短繊維状のもの
が好ましい。
It is necessary that the copper powder particles have an average particle size of 1 to 100 μm. If the average particle size is less than 1 μm, the particles will agglomerate significantly, making it difficult to coat the copper / nickel alloy uniformly. In addition, the smaller the particle size, the larger the specific surface area of the powder. Therefore, it is necessary to increase the coating amount, which causes an increase in manufacturing cost. Conversely, if the average particle size exceeds 100 μm, a large amount of copper powder particles need to be added, which increases the cost. In addition, since conduction failure is likely to occur, the reliability of the conductive particles decreases. The shape of the copper powder particles is not particularly limited. However, in order to exhibit excellent conductivity by adding as little as possible, whisker-like and fluffy particles are more preferable than spherical, resinous and crushed particles. -A fiber or a short fiber is preferred.

【0011】銅粉末粒子に対する銅・ニッケル合金のコ
−ティング量は、優れた耐マイグレ−ション性を確保す
る上から1〜20重量%の範囲に規制される。コ−ティ
ング量が1重量%未満の場合には、被膜厚が極めて薄く
なるので耐食性が低下する。逆に、20重量%以上の場
合には、被膜厚が極めて厚くなるために被膜表面の凹凸
が顕著になる。そのために、粒子間の接触状態が悪くな
るのでかえって導電性が低下する。なお、塗料中におけ
る分散性を向上するために、銅・ニッケル合金をコ−テ
ィングした後に、種々のシランカップリング剤またはチ
タネ−トカップリング剤などで、表面処理を施しても良
い。ただしこの場合、被膜が厚すぎると導電性が低下す
るので注意が必要である。
The amount of coating of the copper / nickel alloy with respect to the copper powder particles is regulated in the range of 1 to 20% by weight from the viewpoint of ensuring excellent migration resistance. When the coating amount is less than 1% by weight, the coating thickness becomes extremely thin, so that the corrosion resistance decreases. On the other hand, when the content is 20% by weight or more, the thickness of the coating becomes extremely large, so that the unevenness of the coating surface becomes remarkable. For this reason, the contact state between the particles is deteriorated, so that the conductivity is rather lowered. Incidentally, in order to improve the dispersibility in the paint, a surface treatment may be performed with various silane coupling agents or titanate coupling agents after coating the copper / nickel alloy. However, in this case, care must be taken because conductivity is reduced when the coating is too thick.

【0012】本発明の導電性粒子は、ハンダ付け温度で
の耐酸化性に優れ、樹脂との反応もなく、少ないコ−テ
ィング量で効果的に耐マイグレ−ション性が向上する。
また、高価な銀を使用せず、製造方法も簡単であるか
ら、コストの低減が可能となる。以下に、本発明を実施
例にて説明する。
The conductive particles of the present invention have excellent oxidation resistance at a soldering temperature, do not react with a resin, and have an improved migration resistance effectively with a small coating amount.
Further, since expensive silver is not used and the manufacturing method is simple, the cost can be reduced. Hereinafter, the present invention will be described with reference to examples.

【0013】[実施例1および実施例2]特開平2−1
53068号公報で紹介した粉末スパッタリング装置を
使用して、平均粒径1μmおよび5μmのフレ−ク状の
銅粉末の表面に、各々1重量%および3重量%の洋白
(JIS 1種。73重量%銅,18重量%ニッケル,
9重量%亜鉛)をコ−ティングした。得られた各導電性
粒子について、以下に示す試験方法に準じて耐マイグレ
−ション性を調査した。導電性粒子をペ−スト化し、ガ
ラスエポキシ基板上に1mmの間隔で印刷し、溶剤を蒸
発させて固化することにより、厚さ30μmのマイグレ
−ション測定用電極を作成した。なお、この電極中の導
電性粒子の割合は、40体積%(一定)にした。電極間
に脱イオン水を滴下した後、5Vの直流電圧を印加し、
電極間に電流が流れ始める時間を測定し、マイグレ−シ
ョン開始時間として評価した。このマイグレ−ション開
始時間が長いほど、耐マイグレ−ション性が優れている
ことを示す。測定結果を表1に示す。表1には、参考と
して4端子法で測定した導電性粒子の比抵抗率も合わせ
て示す。
[Examples 1 and 2] JP-A-2-1
Using a powder sputtering apparatus introduced in Japanese Patent No. 53068, 1% by weight and 3% by weight of nickel white (JIS 1 type, 73% by weight) were respectively applied to the surface of flake copper powder having an average particle diameter of 1 μm and 5 μm. % Copper, 18% by weight nickel,
9% by weight zinc) was coated. The migration resistance of each of the obtained conductive particles was examined according to the test method described below. The conductive particles were pasted, printed on a glass epoxy substrate at intervals of 1 mm, and the solvent was evaporated and solidified to prepare a migration measuring electrode having a thickness of 30 μm. The ratio of the conductive particles in the electrode was 40% by volume (constant). After dropping deionized water between the electrodes, a DC voltage of 5 V is applied,
The time when current began to flow between the electrodes was measured and evaluated as the migration start time. The longer the migration start time, the better the migration resistance. Table 1 shows the measurement results. Table 1 also shows the specific resistivity of the conductive particles measured by a four-terminal method for reference.

【0014】[実施例3および実施例4]実施例1と同
様の手順に従って、平均粒径10μmおよび20μmの
フレ−ク状の銅粉末の表面に、各々5重量%および10
重量%のコンスタンタン(55重量%銅,45重量%ニ
ッケル)をコ−ティングした。得られた導電性粒子の耐
マイグレ−ション性および比抵抗率を表1に示す。
[Examples 3 and 4] Following the same procedure as in Example 1, 5% by weight and 10% by weight of flake copper powder having an average particle size of 10 μm and 20 μm
% By weight of constantan (55% by weight copper, 45% by weight nickel) was coated. Table 1 shows the migration resistance and the specific resistivity of the obtained conductive particles.

【0015】[実施例5および実施例6]実施例1と同
様の手順に従って、平均粒径50μmおよび100μm
のフレ−ク状の銅粉末の表面に、各々15重量%および
20重量%のモネルメタル(70重量%ニッケル,24
重量%銅,2.5重量%鉄,2.0重量%マンガン,残
余他)をコ−ティングした。得られた導電性粒子の耐マ
イグレ−ション性および比抵抗率を表1に示す。
[Examples 5 and 6] According to the same procedure as in Example 1, the average particle diameters were 50 μm and 100 μm.
15% by weight and 20% by weight of monel metal (70% by weight nickel, 24% by weight)
Wt% copper, 2.5 wt% iron, 2.0 wt% manganese, and others). Table 1 shows the migration resistance and the specific resistivity of the obtained conductive particles.

【0016】[0016]

【表1】 [Table 1]

【0017】[比較例1および比較例2]実施例1と同
様の手順に従って、平均粒径20μmのフレ−ク状の銅
粉末の表面に、10重量%の純ニッケルおよび純銀をス
パッタリング法でコ−ティングした。 得られた導電性
粒子の耐マイグレ−ション性および比抵抗率を表1に示
す。
[Comparative Example 1 and Comparative Example 2] According to the same procedure as in Example 1, 10% by weight of pure nickel and pure silver were coated on the surface of flake copper powder having an average particle diameter of 20 μm by a sputtering method. -I did it. Table 1 shows the migration resistance and the specific resistivity of the obtained conductive particles.

【0018】[比較例3]以下に示す手順に従って、平
均粒径20μmのフレ−ク状の銅粉末の表面に、10重
量%の無電解ニッケルメッキを行った。まず、蒸留水1
L中に濃塩酸40mlを加えた希塩酸水溶液中に、フレ
−ク状の銅粉末100gを投入した後、室温下で30分
間攪拌して、粉末表面の酸化膜を溶解除去した。次に、
硫酸ニッケル30g,酢酸ナトリウム15gの割合で混
合した無電解メッキ液0.8Lを入れたビ−カ−の中
に、この酸洗処理ずみのフレ−ク状の銅粉末100gを
投入した後、攪拌しながら90℃に保持した状態で、希
アンモニア水を添加してpHを5〜6の範囲に調整しつ
つ、次亜リン酸ナトリウム5gを溶解した還元液0.8
Lを少量ずつ1時間かけて添加した。この作業により、
平均粒径20μmのフレ−ク状の銅粉末の表面に、10
重量%の無電解ニッケルメッキを行った。その後、この
作成した無電解ニッケルメッキ銅粉末を良く水洗した
後、濾過・乾燥した。得られた導電性粒子の耐マイグレ
−ション性および比抵抗率を表1に示す。
Comparative Example 3 Electroless nickel plating of 10% by weight was performed on the surface of a flaky copper powder having an average particle diameter of 20 μm according to the following procedure. First, distilled water 1
100 g of flake-form copper powder was put into a dilute hydrochloric acid aqueous solution in which 40 ml of concentrated hydrochloric acid was added to L, and stirred at room temperature for 30 minutes to dissolve and remove an oxide film on the surface of the powder. next,
100 g of this pickled flaked copper powder was put into a beaker containing 0.8 L of an electroless plating solution mixed with 30 g of nickel sulfate and 15 g of sodium acetate, followed by stirring. While maintaining the temperature at 90 ° C., while adjusting the pH to a range of 5 to 6 by adding diluted ammonia water, a reducing solution 0.8 g in which 5 g of sodium hypophosphite was dissolved was added.
L was added in small portions over 1 hour. With this work,
The surface of a flaky copper powder having an average particle size of 20 μm
The electroless nickel plating of weight% was performed. Thereafter, the produced electroless nickel-plated copper powder was thoroughly washed with water, filtered and dried. Table 1 shows the migration resistance and the specific resistivity of the obtained conductive particles.

【0019】[比較例4]以下に示す手順に従って、平
均粒径20μmのフレ−ク状の銅粉末の表面に、10重
量%の無電解銀メッキを行った。まず、蒸留水1L中に
濃塩酸40mlを加えた希塩酸水溶液中に、フレ−ク状
の銅粉末100gを投入した後、室温下で30分間攪拌
して、粉末表面の酸化膜を溶解除去した。次に、濃アン
モニア水40ml,水酸化カリウム14g、硝酸銀20
gの割合で混合した無電解銀メッキ液1Lを入れたビ−
カ−の中に、この酸洗処理ずみのフレ−ク状の銅粉末1
00gを投入した後、攪拌しながら60℃に保持した状
態で、0.2Nのホルマリン1Lの中にブドウ糖12g
を溶解した還元液と希アンモニア水20mlを1時間か
けて添加した。その後、この作成した無電解銀メッキ銅
粉末を良く水洗した後、濾過・乾燥した。この作業によ
り、平均粒径20μmのフレ−ク状の銅粉末の表面に、
10重量%の無電解銀メッキを行った。得られた導電性
粒子の耐マイグレ−ション性および比抵抗率を表1に示
す。
Comparative Example 4 A 10% by weight electroless silver plating was performed on the surface of a flaky copper powder having an average particle diameter of 20 μm according to the following procedure. First, 100 g of flaky copper powder was put into a diluted hydrochloric acid aqueous solution obtained by adding 40 ml of concentrated hydrochloric acid to 1 L of distilled water, and then stirred at room temperature for 30 minutes to dissolve and remove an oxide film on the surface of the powder. Next, 40 ml of concentrated ammonia water, 14 g of potassium hydroxide, 20 g of silver nitrate
bead containing 1 L of electroless silver plating solution mixed at a ratio of 1 g
In the car, the pickled flake copper powder 1
After charging 100 g, 12 g of glucose was placed in 1 L of 0.2 N formalin while maintaining the temperature at 60 ° C. with stirring.
Was dissolved and 20 ml of diluted ammonia water was added over 1 hour. Thereafter, the produced electroless silver-plated copper powder was thoroughly washed with water, filtered and dried. By this operation, on the surface of the flake-like copper powder having an average particle diameter of 20 μm,
Electroless silver plating of 10% by weight was performed. Table 1 shows the migration resistance and the specific resistivity of the obtained conductive particles.

【0020】表1の調査結果からわかるように、1〜2
0重量%の銅・ニッケル合金をコ−ティングした実施例
では、いずれの場合も9.3×10-4Ω・cm以下の低
い比抵抗を示し、耐マイグレ−ション性にも優れてい
た。しかし、スパッタリング法や無電解メッキ法で10
重量%のニッケルをコ−ティングした比較例の場合は、
耐マイグレ−ション性は優れているものの、比抵抗が
5.0×10-3Ω・cm以上と高かった。一方、スパッ
タリング法や無電解メッキ法で10重量%の銀をコ−テ
ィングした比較例の場合は、比抵抗が1.3×10-4Ω
・cm以下と低いが、耐マイグレ−ション性は著しく劣
っていた。
As can be seen from the survey results in Table 1, 1-2
In the examples in which the copper / nickel alloy was coated at 0% by weight, the specific resistance was as low as 9.3 × 10 −4 Ω · cm or less in each case, and the migration resistance was excellent. However, the sputtering method and the electroless plating method
In the case of a comparative example in which nickel was coated by weight%,
Although the migration resistance was excellent, the specific resistance was as high as 5.0 × 10 −3 Ω · cm or more. On the other hand, in the case of the comparative example in which 10% by weight of silver was coated by a sputtering method or an electroless plating method, the specific resistance was 1.3 × 10 −4 Ω.
Cm, but low, but the migration resistance was markedly inferior.

【0021】[発明の効果]以上説明したように、本発
明の導電性粒子は、フレ−ク状の銅粉末の表面に銅・ニ
ッケル合金を物理蒸着法でコ−ティングしているので、
比較的電気抵抗が低く、耐食性や耐マイグレ−ション性
に優れている。その上、高価な銀を一切使用していない
ので、安価であり、省資源の観点からも優れている。そ
のため、小型化が強く要求されている各種積層電子部品
の内部電極、内部導体を形成するのに適した高品質導電
性ペ−ストの主成分である高導電性粒子ならびに帯電防
止、EMIシ−ルド用の塗料、プラスチック成形品、プ
ラスチックフィルムおよび合成繊維などに使用される汎
用の高導電性粒子として幅広く使用される。
[Effects of the Invention] As described above, the conductive particles of the present invention are formed by coating a copper / nickel alloy on the surface of a flake-like copper powder by physical vapor deposition.
Relatively low electric resistance, excellent in corrosion resistance and migration resistance. In addition, since no expensive silver is used, it is inexpensive and excellent in terms of resource saving. Therefore, high conductive particles which are a main component of high quality conductive paste suitable for forming internal electrodes and internal conductors of various laminated electronic components for which miniaturization is strongly required, as well as antistatic and EMI shielding. It is widely used as general-purpose highly conductive particles used in paints for plastics, plastic molded products, plastic films and synthetic fibers.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径1〜100μmの銅粉末粒子の
表面に、1〜20重量%の銅・ニッケル合金コ−ティン
グ層が、物理蒸着法で形成されている耐マイグレ−ショ
ン性に優れた導電性粒子。
1. A copper-nickel alloy coating layer of 1 to 20% by weight is formed on a surface of copper powder particles having an average particle diameter of 1 to 100 μm by physical vapor deposition, and has excellent migration resistance. Conductive particles.
【請求項2】 銅・ニッケル合金が、洋白、コンスタン
タンまたはモネルメタルのいずれかである特許請求の範
囲第1項記載の導電性粒子。
2. The conductive particles according to claim 1, wherein the copper / nickel alloy is one of nickel silver, constantan, and monel metal.
【請求項3】 物理蒸着法がスパッタリング法である特
許請求の範囲第1項記載の導電性粒子。
3. The conductive particles according to claim 1, wherein the physical vapor deposition method is a sputtering method.
JP10234876A 1998-08-07 1998-08-07 Conductive particle excellent in migration resistance Withdrawn JP2000057843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10234876A JP2000057843A (en) 1998-08-07 1998-08-07 Conductive particle excellent in migration resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10234876A JP2000057843A (en) 1998-08-07 1998-08-07 Conductive particle excellent in migration resistance

Publications (1)

Publication Number Publication Date
JP2000057843A true JP2000057843A (en) 2000-02-25

Family

ID=16977720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10234876A Withdrawn JP2000057843A (en) 1998-08-07 1998-08-07 Conductive particle excellent in migration resistance

Country Status (1)

Country Link
JP (1) JP2000057843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186206A (en) * 2018-04-10 2019-10-24 タク・マテリアル株式会社 Conductive paste and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186206A (en) * 2018-04-10 2019-10-24 タク・マテリアル株式会社 Conductive paste and its production method

Similar Documents

Publication Publication Date Title
EP2644754B1 (en) Surface treated copper foil
KR101131229B1 (en) Conductive particle and anisotropic conductive material
JP2004079544A (en) Electrochemically adaptable conductive filler and its manufacturing method
KR20170031215A (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
KR20070039882A (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
CN101157837A (en) Felting laminate for resin and method for manufacturing laminated body using same
JP2014218701A (en) Silver-coated nickel particles and method of manufacturing the same
JP2011153372A (en) Metal multilayer laminated electrical insulator, and method for producing the same
JP2006291323A (en) Method for forming sn-ag-cu three-element alloy thin film
KR100698662B1 (en) Terminal Having Surface Layer Formed of Sn-Ag-Cu Ternary Alloy Formed Thereon, and Part and Product Having the Same
JP2002025345A (en) Conductive particle with excellent migration resistance property
KR100872622B1 (en) METHOD FOR FORMING Sn-Ag-Cu THREE-ELEMENT ALLOY THIN FILM ON BASE
JP2003221683A (en) Coating method onto surface of light metal alloy
JP2000057843A (en) Conductive particle excellent in migration resistance
JP3348705B2 (en) Electrode formation method
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
KR100892301B1 (en) Manufacturing Method of Conductive Ball Using Eletroless Plating
JP2670796B2 (en) Method for producing metal-plated ceramic molded body
JPH05287543A (en) Electroless silver plating method
JPH0969313A (en) Conductive paste and its manufacture, and electric circuit device using conductive paste and its manufacture
JP3662577B1 (en) Method for forming Sn-Ag-Cu ternary alloy thin film
JPS61151914A (en) Contactor
JP2574383B2 (en) Electrode forming method for ceramic electronic parts
CN117964405A (en) Microwave dielectric ceramic material and surface metallization process and application thereof
WO2000031318A1 (en) Electroless silver plating solution for electronic parts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101