JP2000057591A - Information recording/reproducing device and its stray beam component correction method - Google Patents
Information recording/reproducing device and its stray beam component correction methodInfo
- Publication number
- JP2000057591A JP2000057591A JP11219743A JP21974399A JP2000057591A JP 2000057591 A JP2000057591 A JP 2000057591A JP 11219743 A JP11219743 A JP 11219743A JP 21974399 A JP21974399 A JP 21974399A JP 2000057591 A JP2000057591 A JP 2000057591A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- light beam
- output
- offset
- automatic gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、放射光源を記録担
体上に照射して情報信号の記録再生を行う情報記録再生
装置で、特にサーボ信号の安定性を向上させる情報記録
再生装置及びその迷光成分補正方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information recording / reproducing apparatus for recording / reproducing an information signal by irradiating a recording medium with a radiation light source, and more particularly to an information recording / reproducing apparatus for improving the stability of a servo signal and its stray light. It relates to a component correction method.
【0002】[0002]
【従来の技術】記録再生に放射光を用いる時には、放射
光が散乱、屈折、反射等により発生する迷光が必然的に
つきまとう。例えば光ディスクでは、光分岐手段として
ビームスプリッター等の光学素子を用いるが、このビー
ムスプリッターの端面反射により迷光が発生する。この
迷光が放射線検出のための光電変換手段に入射すると電
気出力にバイアスが生じて信号特性の劣化を招く。この
ため従来この光によるバイアス出力を光電変換素子等の
調整で補正して信号品質を保とうとの方法がとられてき
た。以下従来一般的に用いられてきた方法を図面に基づ
いて説明を行う。2. Description of the Related Art When radiated light is used for recording and reproduction, stray light generated by scattering, refraction, reflection and the like of the radiated light inevitably accompanies. For example, in an optical disk, an optical element such as a beam splitter is used as a light splitting unit, and stray light is generated due to reflection on an end surface of the beam splitter. When this stray light is incident on the photoelectric conversion means for detecting radiation, a bias is generated in the electric output, which causes deterioration of signal characteristics. For this reason, conventionally, a method of correcting the bias output by the light by adjusting a photoelectric conversion element or the like to maintain the signal quality has been adopted. Hereinafter, a method generally used conventionally will be described with reference to the drawings.
【0003】図8は、従来用いられてきた迷光等のバイ
アス光の補正を行う為の方法を模式的に示したものであ
る。ここでは分かりやすくするために光ディスク装置の
例で説明を行う。半導体レーザ等の放射光源41を出射
した光ビームは、ビームスプリッター42を透過して対
物レンズ43で光ディスク40上に集光され、情報信号
で変調され反射される。光ディスク40で反射された信
号光ビーム46はビームスプリッター42で反射され複
数の光電変換手段44、45に入射する。複数の光電変
換素子を用いて光ディスクの面振れによる焦点ずれや偏
芯によるオフトラックの補正に用いるサーボ動作及びサ
ーボ誤差信号を得る方式については多くの公知の方法が
ありここでは説明を省略する。複数の光電変換手段は基
本的に2個の光電変換素子I44、光電変換素子II45
で説明すればあと数が増えても動作は同じであるため以
下2個の光電変換素子44、45の場合について説明を
行う。ビームスプリッター42の端面I47、端面II4
8のそれぞれより反射される迷光I49、迷光II50
は、一般的に反射端面の精度不足や光軸調整精度不足の
ため2個の光電変換素子の一方に偏って入射し、極端な
場合例えば光電変換素子I44に多く入射し光電変換素
子II45に少なく入射する。この時光電変換素子I44
及び光電変換素子II45に入射する信号光ビーム46が
等しくても光電変換素子I44と光電変換素子II45よ
り流れ出る光電流は異なるレベルとなる。光ディスクの
サーボでは、この光電流の差51を等しくするようにサ
ーボ動作を行うのでサーボ動作にオフセットが生じ誤動
作の原因となる。この為従来かかる誤動作を補正するた
めに光電変換素子I44と光電変換素子II45の出力が
等しくなるように調整を行い迷光によるオフセットの発
生の補償を行っていた。これにより情報担体に反射率一
定の場合、光電流の差を補正して正常なサーボ動作を行
うことができる。記録再生のために放射光出力を変化さ
せる場合にはサーボループのループゲインを一定とする
ために、光電変換素子に入射する総合計の光量で光電流
の差51を一定とするAGC(AUTO GAIN CONTOROL
E)を行い正常なサーボ動作をさせることができる。こ
れらのサーボ技術はほぼ確立されたものであり詳細な説
明は省略する。FIG. 8 schematically shows a method for correcting bias light such as stray light which has been conventionally used. Here, an example of an optical disk device will be described for easy understanding. A light beam emitted from a radiation light source 41 such as a semiconductor laser passes through a beam splitter 42, is focused on an optical disk 40 by an objective lens 43, and is modulated and reflected by an information signal. The signal light beam 46 reflected by the optical disk 40 is reflected by the beam splitter 42 and enters a plurality of photoelectric conversion units 44 and 45. There are many known methods of using a plurality of photoelectric conversion elements to obtain a servo operation and a servo error signal for use in correcting off-track due to defocus or eccentricity due to surface deflection of an optical disk, and a description thereof will be omitted here. The plurality of photoelectric conversion units are basically two photoelectric conversion elements I44 and II45.
Since the operation is the same even if the number increases, the case of two photoelectric conversion elements 44 and 45 will be described below. End surface I47, end surface II4 of beam splitter 42
8, stray light I49 and stray light II50 reflected from each of
Is generally incident on one of the two photoelectric conversion elements in a biased manner due to insufficient accuracy of the reflection end face or insufficient optical axis adjustment accuracy. In extreme cases, for example, a large amount of light enters the photoelectric conversion element I44 and a small amount of light enters the photoelectric conversion element II45 Incident. At this time, the photoelectric conversion element I44
Even if the signal light beams 46 incident on the photoelectric conversion element II 45 are equal, the photocurrents flowing out of the photoelectric conversion element I 44 and the photoelectric conversion element II 45 are at different levels. In the servo of the optical disk, the servo operation is performed so as to make the difference 51 of the photocurrents equal, so that an offset occurs in the servo operation and causes a malfunction. Therefore, conventionally, in order to correct such a malfunction, the output of the photoelectric conversion element I44 and the output of the photoelectric conversion element II45 are adjusted so as to be equal to each other to compensate for the occurrence of the offset due to the stray light. Thus, when the reflectance of the information carrier is constant, a difference in photocurrent can be corrected and a normal servo operation can be performed. When the radiation light output is changed for recording and reproduction, in order to keep the loop gain of the servo loop constant, an AGC (AUTO GAIN) in which the photocurrent difference 51 is kept constant by the total amount of light incident on the photoelectric conversion element. CONTOROL
E) and normal servo operation can be performed. These servo technologies are almost established and will not be described in detail.
【0004】図9は図8の光電変換素子I、II上の光ビ
ームの状態を具体的に示したものである。光電変換素子
I44、光電変換素子II45の差動出力を零と調整する
ために信号ビーム46は迷光のはいる光電変換素子の逆
方向にオフセットされている。この為例えば図9の差動
出力から得られるトラッキング誤差信号のレベルは減少
する。また信号光ビーム46強度と迷光I49、迷光II
50強度の変化の割合が異なるとサーボ誤差が増大す
る。この原理は、焦点誤差を補正するフォーカシングサ
ーボの時も同様であるが、同一原理であるのでフォーカ
シングサーボについての詳細な説明は省略する。FIG. 9 specifically shows a state of a light beam on the photoelectric conversion elements I and II in FIG. In order to adjust the differential output of the photoelectric conversion element I44 and the photoelectric conversion element II45 to zero, the signal beam 46 is offset in the reverse direction of the photoelectric conversion element where stray light enters. Therefore, for example, the level of the tracking error signal obtained from the differential output of FIG. 9 decreases. The signal light beam 46 intensity and stray light I49, stray light II
If the rate of change of the 50 intensity is different, the servo error increases. This principle is the same in the case of a focusing servo for correcting a focus error. However, since the principle is the same, a detailed description of the focusing servo will be omitted.
【0005】[0005]
【発明が解決しようとする課題】従来の方法では、情報
担体の反射率や光ビーム経路の透過率が変化したとき光
電変換素子上の信号光ビーム46のみの強度が変化し
て、迷光I49、迷光II50のレベルは変化しないため
光電変換素子の調整による補正が補正過多もしくは補正
不足となり、結果としてサーボ動作に誤動作が生じる。In the conventional method, when the reflectance of the information carrier or the transmittance of the light beam path changes, only the intensity of the signal light beam 46 on the photoelectric conversion element changes, and the stray light I49, Since the level of the stray light II50 does not change, the correction by the adjustment of the photoelectric conversion element is overcorrected or undercorrected, and as a result, a malfunction occurs in the servo operation.
【0006】本発明は上記問題点に鑑み、従来のように
迷光によるオフセットを光電変換素子の調整による補正
をするのではなく、光電変換素子出力が一定のレベルと
なるようにして電気的なオフセットの補正を行うこと
で、誤動作のない安定したサーボ動作を行える情報記録
再生装置及びその迷光成分補正方法を提供することを目
的とする。In view of the above problems, the present invention does not correct the offset due to the stray light as in the prior art by adjusting the photoelectric conversion element, but instead adjusts the electrical offset by setting the output of the photoelectric conversion element to a constant level. It is an object of the present invention to provide an information recording / reproducing apparatus capable of performing a stable servo operation without malfunction by performing the correction of the above, and a method of correcting the stray light component thereof.
【0007】[0007]
【課題を解決するための手段】この課題を解決するため
に本発明は、情報担体上で反射され光ビーム分岐手段で
分岐された信号光ビームを受ける複数の光電変換手段
と、複数の光電変換手段の電気出力を演算する演算手段
と、演算手段の出力を複数の光電変換手段の総出力で除
して正規化する自動利得調整手段と、自動利得調整手段
の出力に一定の補正値を加えるオフセット補正手段とを
備えることを特徴とするものである。In order to solve this problem, the present invention comprises a plurality of photoelectric conversion means for receiving a signal light beam reflected on an information carrier and branched by a light beam branching means, and a plurality of photoelectric conversion means. Calculating means for calculating the electrical output of the means, automatic gain adjusting means for dividing the output of the arithmetic means by the total output of the plurality of photoelectric conversion means for normalization, and adding a fixed correction value to the output of the automatic gain adjusting means And an offset correcting means.
【0008】これにより、ビームスプリッターの端面加
工精度や光軸精度不足によって起きる迷光は光学系によ
り定まるので、たとえ情報担体の反射率変化や光ビーム
経路の透過率が変化して光電変換素子上の信号光ビーム
の強度が変化しても迷光は変わらず、また反射光量やレ
ーザの出射光量が変化しても正規化しているので自動利
得調整手段の出力は振幅も変化しないことから迷光によ
るオフセット量は変化せず、さらにその迷光に相当する
量のオフセットを一定の補正値を加えることで補正して
いるので、実質上迷光の影響を考慮する必要が無くな
る。Accordingly, stray light generated due to insufficient processing accuracy of the end face of the beam splitter or insufficient optical axis accuracy is determined by the optical system. Therefore, even if the reflectance of the information carrier changes or the transmittance of the light beam path changes, the stray light on the photoelectric conversion element changes. Even if the intensity of the signal light beam changes, the stray light does not change, and even if the amount of reflected light or the amount of emitted laser light changes, the output of the automatic gain adjustment means does not change in amplitude. Does not change, and since the offset corresponding to the stray light is corrected by adding a fixed correction value, it is not necessary to substantially consider the influence of the stray light.
【0009】[0009]
【発明の実施の形態】本発明の請求項1に記載の発明
は、放射光源と、放射光源を出射した光ビームを透過又
は反射させる光ビーム分岐手段と、光ビーム分岐手段を
通過した第一の光ビームを受け情報担体上に集光させる
光ビーム集光手段と、情報担体上で反射され光ビーム分
岐手段で分岐された信号光ビームを受ける複数の光電変
換手段と、複数の光電変換手段の電気出力を演算する演
算手段と、演算手段の出力を複数の光電変換手段の総出
力で除して正規化する自動利得調整手段と、自動利得調
整手段の出力に一定の補正値を加えるオフセット補正手
段とを備えることを特徴とするもので、特に、オフセッ
ト補正手段は、初期調整で一定のオフセット補正値を設
定されそれを保持して出力するオフセット補正回路と、
オフセット補正回路の出力と自動利得調整手段の出力と
を加算する加算器とを備えることを特徴とするものであ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a radiation light source, a light beam branching means for transmitting or reflecting a light beam emitted from the radiation light source, and a first light beam passing through the light beam branching means. Light beam condensing means for receiving the light beam on the information carrier, a plurality of photoelectric conversion means for receiving the signal light beam reflected on the information carrier and branched by the light beam branching means, and a plurality of photoelectric conversion means Calculating means for calculating the electric output of the automatic gain adjusting means, dividing the output of the calculating means by the total output of the plurality of photoelectric conversion means for normalization, and an offset for adding a fixed correction value to the output of the automatic gain adjusting means. In particular, the offset correction means sets a constant offset correction value in the initial adjustment, and holds and outputs the offset correction circuit;
An adder for adding the output of the offset correction circuit and the output of the automatic gain adjustment means is provided.
【0010】また、請求項3に記載の発明は、放射光源
と、放射光源を出射した光ビームを透過又は反射させる
光ビーム分岐手段と、光ビーム分岐手段を通過した第一
の光ビームを受け情報担体上に集光させる光ビーム集光
手段と、情報担体上で反射され光ビーム分岐手段で分岐
された信号光ビームを受ける複数の光電変換手段と、複
数の光電変換手段の電気出力を演算する演算手段と、演
算手段の出力を複数の光電変換手段の総出力で除して正
規化する自動利得調整手段と、自動利得調整手段の出力
にオフセット補正を与えるオフセット補正手段とを備え
る情報記録再生装置の迷光成分補正方法であって、初期
調整において、まず複数の光電変換手段の中央に信号光
ビームの中心が照射するよう光電変換手段の位置調整を
し、次に自動利得調整手段の出力のオフセット値を求
め、該オフセット値と異極性でかつ同じ量の補正値を設
定してオフセット補正手段で保持し、以降、オフセット
補正手段で自動利得調整手段の出力に該補正値を常に加
えることを特徴とする情報記録再生装置の迷光成分補正
方法である。According to a third aspect of the present invention, there is provided a radiation light source, a light beam branching means for transmitting or reflecting a light beam emitted from the radiation light source, and a first light beam passing through the light beam branching means. A light beam focusing means for focusing on the information carrier, a plurality of photoelectric conversion means for receiving the signal light beam reflected on the information carrier and branched by the light beam branching means, and calculating an electric output of the plurality of photoelectric conversion means An information recording apparatus comprising: an arithmetic unit for performing an operation; an automatic gain adjusting unit for normalizing the output of the arithmetic unit by dividing the output of the arithmetic unit by a total output; and an offset correcting unit for applying an offset correction to the output of the automatic gain adjusting unit. A method of correcting a stray light component of a reproducing apparatus, wherein in an initial adjustment, first, a position of a photoelectric conversion unit is adjusted so that a center of a plurality of photoelectric conversion units is irradiated with a center of a signal light beam. The offset value of the output of the adjusting means is obtained, a correction value having the same polarity as that of the offset value and having the same amount is set and held by the offset correcting means, and thereafter, the correction value is output to the output of the automatic gain adjusting means by the offset correcting means. Is constantly added to the information recording / reproducing apparatus.
【0011】上記した構成及び方法により、ビームスプ
リッターの端面加工精度や光軸精度不足によって起きる
迷光は光学系により定まるので、たとえ情報担体の反射
率変化や光ビーム経路の透過率が変化して光電変換素子
上の信号光ビームの強度が変化しても迷光は変わらず、
また反射光量やレーザの出射光量が変化しても正規化し
ているので自動利得調整手段の出力は振幅も変化しない
ことから迷光によるオフセット量は変化せず、さらにそ
の迷光に相当する量のオフセットを初期調整によって補
正しているので、実質上迷光の影響を考慮する必要が無
くなる。According to the above configuration and method, stray light generated due to insufficient processing accuracy of the end surface of the beam splitter or optical axis accuracy is determined by the optical system. Therefore, even if the reflectance of the information carrier changes or the transmittance of the light beam path changes, the photoelectric conversion may occur. Even if the intensity of the signal light beam on the conversion element changes, the stray light does not change,
In addition, since the amplitude of the output of the automatic gain adjustment means does not change even if the amount of reflected light or the amount of emitted laser light changes, the offset amount due to stray light does not change. Since the correction is performed by the initial adjustment, it is not necessary to substantially consider the influence of stray light.
【0012】(実施の形態1)以下本発明の実施の形態
を図面に基づき説明する。(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.
【0013】(参考例の説明)図1は、本発明の参考例
を示したものである。半導体レーザ11を出射する光ビ
ームはビームスプリッター12を透過して、対物レンズ
13に入射する。対物レンズを出射する光ビームは光デ
ィスク10上に集光され反射される。光ディスクで反射
された信号光ビーム16はビームスプリッター12で反
射され二分割の光電変換素子I14、及び光電変換素子
II15にそれぞれ入射する。光電変換素子I14と光電
変換素子II15の出力の差動出力を差動回路27で取り
反射光量変化を正規化するための自動利得調整(AGC
Automatic Gain Control)29を通過した信号で対
物レンズ13を駆動する事で、光ディスクの情報トラッ
クを追従するためのトラッキングサーボを行う事ができ
る。前記のAGCは反射光量の和を取る加算回路28に
よって割り算などの演算を行って実現することが出来
る。(Description of Reference Example) FIG. 1 shows a reference example of the present invention. The light beam emitted from the semiconductor laser 11 passes through the beam splitter 12 and enters the objective lens 13. The light beam emitted from the objective lens is condensed on the optical disk 10 and reflected. The signal light beam 16 reflected by the optical disk is reflected by the beam splitter 12, and is split into two photoelectric conversion elements I14 and photoelectric conversion elements.
Each of them is incident on II15. An automatic gain adjustment (AGC) for taking the differential output of the output of the photoelectric conversion element I14 and the photoelectric conversion element II15 by the differential circuit 27 and normalizing the change in the amount of reflected light.
By driving the objective lens 13 with a signal that has passed through the Automatic Gain Control (29), it is possible to perform tracking servo for following the information track of the optical disc. The above-mentioned AGC can be realized by performing an operation such as division by an addition circuit 28 which takes the sum of the reflected light amounts.
【0014】ビームスプリッター12の端面I17、端
面II18より反射された迷光I19、及び迷光II20
は、反射端面の加工精度不足や光軸調整精度不足のため
極端な場合2個の光電変換素子の一方に偏って入射し、
例えば光電変換素子I14に多く入射し光電変換素子II
15に少なく入射する。一方ビームスプリッター12で
最初に反射される光ビーム23は少なくとも1次元で可
動な反射手段24で反射されビームスプリッター12を
透過して、光電変換素子II15の側に多く照射されるよ
うに調整をして、光電変換素子I14と光電変換素子II
15との差動出力が情報担体のない状態で零となるよう
にする。このように迷光の補正を光で行うことで、記録
と再生時の光量変化に対しても光電変換素子の差動出力
のオフセットレベルは変化しない。The stray light I19 and the stray light II20 reflected from the end face I17 and the end face II18 of the beam splitter 12, respectively.
Is incident on one of the two photoelectric conversion elements in an extreme case due to insufficient processing accuracy of the reflecting end face and insufficient optical axis adjustment accuracy.
For example, many incident on the photoelectric conversion element I14 and the photoelectric conversion element II
15 slightly. On the other hand, the light beam 23 first reflected by the beam splitter 12 is adjusted so that it is reflected by the reflecting means 24 which is movable at least one-dimensionally, passes through the beam splitter 12, and is largely irradiated on the photoelectric conversion element II15 side. The photoelectric conversion element I14 and the photoelectric conversion element II
The differential output to the output 15 is zero in the absence of the information carrier. By correcting stray light with light in this manner, the offset level of the differential output of the photoelectric conversion element does not change even when the light amount changes during recording and reproduction.
【0015】次に図2を用いて反射手段の有効な利用方
法について第二の参考例の説明を行う。ビームスプリッ
ター12で最初に反射する光ビーム23は半導体レーザ
11の前端面から出射する光ビームに比例した光出力で
あるから、第二の光電変換素子25の出力を半導体レー
ザにフィードバックする事により半導体レーザ出力光を
一定とする制御に用いる事ができる。この第二の光電変
換素子25の反射率及び光電変換素子を保護するための
樹脂表面26及び第二の光電変換素子25の反射率はプ
リズム端面の反射率に比べて同等もしくはそれ以上あり
迷光の大きな要因となるので、従来は、反射光が信号検
出の光電変換素子に混入しないように通常光軸に対し一
定の角度をつけて固定し反射光が光電変換素子I、IIに
混入しないように設置してある。本参考例ではこの角度
を可変として、角度調整する事で迷光の補正を行なわせ
る。図1及び図2では光線の中心のみを表示している。
実際には信号光や迷光、光ビームには拡がりがあり、光
線の中心がいずれか一方の光電変換素子に入射してい
て、もう一方の光電変換素子にも一部入射しており、光
線の中心位置を変化させると両光電素子の差動出力のオ
フセットは連続的に変化し得る。従って第二の光電変換
素子25を光電変換素子I14、II15の分割線に垂直
な方向に光ビーム23が移動可能なように回転できる構
造とする事で光電変換素子I14、と光電変換素子II1
5の差動出力に迷光の影響によるオフセット出力を除去
でき、サーボの誤動作を防ぐことができる。Next, a second embodiment of the present invention will be described with reference to FIG. Since the light beam 23 first reflected by the beam splitter 12 has a light output proportional to the light beam emitted from the front end face of the semiconductor laser 11, the output of the second photoelectric conversion element 25 is fed back to the semiconductor laser to produce a semiconductor light. This can be used for controlling the laser output light to be constant. The reflectance of the second photoelectric conversion element 25 and the reflectance of the resin surface 26 for protecting the photoelectric conversion element and the reflectance of the second photoelectric conversion element 25 are equal to or greater than the reflectance of the end face of the prism. Conventionally, since it becomes a major factor, conventionally, a fixed angle is fixed to the optical axis so that the reflected light does not enter the photoelectric conversion element for signal detection so that the reflected light does not enter the photoelectric conversion elements I and II. Has been installed. In the present embodiment, stray light is corrected by making the angle variable and adjusting the angle. 1 and 2 show only the center of the light beam.
Actually, the signal light, the stray light, and the light beam have a spread, and the center of the light beam is incident on one of the photoelectric conversion elements, and is partially incident on the other photoelectric conversion element. When the center position is changed, the offset of the differential output of both photoelectric elements can change continuously. Therefore, the second photoelectric conversion element 25 is configured to be rotatable so that the light beam 23 can move in a direction perpendicular to the dividing line of the photoelectric conversion elements I14 and II15, so that the photoelectric conversion element I14 and the photoelectric conversion element II1 can be rotated.
The offset output due to the influence of stray light can be removed from the differential output of No. 5 and servo malfunction can be prevented.
【0016】図3は本参考例による迷光の影響を除去す
る方法を、トラッキング誤差信号の検出に適用した場合
の図である。従来の方法である図9と比較すると、迷光
I19、及び迷光II20の影響を光ビーム23でキャン
セルしてあるため信号光ビーム16は正確に両光電変換
素子の中央に位置させる事ができるようになり、信号光
ビーム16の変化でサーボ誤差が増大する事はない。FIG. 3 is a diagram showing a case where the method for removing the effect of stray light according to the present embodiment is applied to detection of a tracking error signal. Compared with FIG. 9 which is a conventional method, the influence of the stray light I19 and the stray light II20 is canceled by the light beam 23, so that the signal light beam 16 can be accurately positioned at the center of both photoelectric conversion elements. That is, the servo error does not increase due to the change of the signal light beam 16.
【0017】図4はこの参考例によるトラッキング誤差
信号検出の様子を示すものである。電気系のグランド3
0に対してプラスマイナスのレベルが対称になるように
調整されたトラッキング誤差信号31に対してサーボ動
作をさせると、トラック中心32にサーボは引き込む。
光ディスクなどの反射率が変化して信号光ビーム16の
光量が低下したときトラッキング誤差信号33は小さく
なる。しかしトラック中心32の位置は変化しないので
サーボ誤差が生じる事はない。FIG. 4 shows how a tracking error signal is detected according to this reference example. Electrical ground 3
When the servo operation is performed on the tracking error signal 31 adjusted so that the plus and minus levels are symmetrical with respect to 0, the servo is drawn into the track center 32.
When the reflectivity of the optical disk or the like changes and the light amount of the signal light beam 16 decreases, the tracking error signal 33 decreases. However, since the position of the track center 32 does not change, no servo error occurs.
【0018】本発明の参考例では、信号光ビーム23を
光電変換素子IIに入射させる変わりに第二の光電変換素
子25の出力を適切な利得を与えて光電変換素子IIの出
力に加算または減算させる方法がある。実際の構成とし
ては、図1の差動回路27の光電変換素子IIの出力が接
続される端子に適当な利得で抵抗加算する構成や、その
反対の端子に逆極性で加算する構成、または差動回路の
後段に加算用の回路を別途設けるなどの方法がある。こ
の場合は第二の光電変換素子25及びその樹脂表面26
の反射は第一の実施例と異なり光電変換素子I14、光
電変換素子II15に反射ビームが入射しないように角度
を設定する。本実施例の場合も、迷光の影響があらかじ
め除去できるので光ディスクなどの反射率が変化して信
号光ビーム16の光量が低下したときトラッキング誤差
信号33は小さくなるが、トラック中心32の位置は変
化しないのでサーボ誤差が生じる事はない。In the reference example of the present invention, the output of the second photoelectric conversion element 25 is given an appropriate gain and added or subtracted from the output of the photoelectric conversion element II instead of making the signal light beam 23 incident on the photoelectric conversion element II. There is a way to make it happen. As an actual configuration, a configuration in which resistance is added with an appropriate gain to a terminal to which the output of the photoelectric conversion element II of the differential circuit 27 of FIG. There is a method of separately providing a circuit for addition at the subsequent stage of the dynamic circuit. In this case, the second photoelectric conversion element 25 and its resin surface 26
The angle of reflection is set so that the reflected beam does not enter the photoelectric conversion element I14 and the photoelectric conversion element II15 unlike the first embodiment. Also in the case of this embodiment, since the influence of stray light can be removed in advance, the tracking error signal 33 becomes smaller when the reflectivity of the optical disk or the like changes and the amount of the signal light beam 16 decreases, but the position of the track center 32 changes. Therefore, no servo error occurs.
【0019】(実施例の説明)本発明の実施例として、
前述の反射手段24などを用いずに電気的に補正する方
法を示す。(Explanation of Embodiment) As an embodiment of the present invention,
A method of electrically correcting without using the above-described reflecting means 24 or the like will be described.
【0020】図5は本発明の実施例のブロック図を示
す。同図において半導体レーザ11からAGC29まで
は図1と同じ構成であり、35は加算器、36はオフセ
ット補正回路である。この様に正規化したトラッキング
誤差信号であるAGC29の出力に、迷光に相当する量
のオフセットをオフセット補正回路によって発生し、加
算器34でキャンセルするように構成することにより、
前述の反射手段24による光学的オフセット補正を行な
わなくても、反射光量や半導体レーザの出射光量が変化
した場合も、迷光I、IIによるオフセットも正規化され
ているため、加算器34の出力のトラッキング誤差信号
の動作中心を常に電気グランド30において動作させる
ことができるため、実質上迷光の影響を考慮する必要が
無くなるものである。FIG. 5 shows a block diagram of an embodiment of the present invention. In this figure, the components from the semiconductor laser 11 to the AGC 29 are the same as those shown in FIG. 1, wherein 35 is an adder and 36 is an offset correction circuit. The offset correction circuit generates an amount of offset corresponding to stray light in the output of the AGC 29, which is the normalized tracking error signal, and cancels the offset by the adder 34.
Even if the reflected light amount or the emitted light amount of the semiconductor laser is changed without performing the optical offset correction by the reflection means 24, the offset due to the stray light I and II is also normalized. Since the operation center of the tracking error signal can always be operated at the electric ground 30, there is substantially no need to consider the influence of stray light.
【0021】前記した信号の様子を図6、図7を用いて
説明する。図6は図3と同じくトラッキング誤差信号の
検出に適用した場合の図である。従来の方法である図9
と比較すると、迷光I19、及び迷光II20の影響は同
じであるが、矢印A−Aの方向に以下の方法を用いて信
号ビーム16の中心が正確に両光電変換素子の中央に位
置させる事ができるように調整されている。図7におい
て16e、15eに光電変換素子I、IIの出力を示す。
上記16e、15eのAC成分のリサージュ波形をオシ
ロスコープ等を用いて描かせると同図Reの様になる。
ここで図6の矢印A−Aの方向に光電変換素子を動か
し、AC成分が振幅が等しく極性が逆になるように合わ
せることによりReの波形は−45度の方向にほぼ直線
になる。この時図6に示すように、信号ビーム16の中
心位置が正確に両光電変換素子の中央に位置している。
この時のAGCの出力を図7のTeに示す。ここでトラ
ッキング出力37は正規化されているために反射光量や
半導体レーザの出射光量が変化した場合も振幅は変化せ
ず、迷光によるオフセットもまた36で示すように変化
しない。そのため電気的に一定量のオフセット補正を初
期に置いて行なえば、常に加算器34の出力のトラッキ
ング誤差信号の動作中心を電気グランド30において動
作させることができるため、実質上迷光によるトラッキ
ングサーボ系への影響は無視することができるものであ
る。The state of the above-mentioned signals will be described with reference to FIGS. FIG. 6 is a diagram when applied to detection of a tracking error signal as in FIG. FIG. 9 showing a conventional method
In comparison with the above, the effects of the stray light I19 and the stray light II20 are the same, but the center of the signal beam 16 can be accurately positioned at the center of both photoelectric conversion elements in the direction of arrow AA by using the following method. It has been adjusted to be able to. In FIG. 7, the outputs of the photoelectric conversion elements I and II are shown at 16e and 15e.
When the Lissajous waveforms of the AC components 16e and 15e are drawn using an oscilloscope or the like, the result is as shown in FIG.
Here, by moving the photoelectric conversion element in the direction of arrow AA in FIG. 6 and adjusting the AC components so that the AC components have the same amplitude and opposite polarities, the waveform of Re becomes substantially linear in the direction of -45 degrees. At this time, as shown in FIG. 6, the center position of the signal beam 16 is accurately located at the center of both photoelectric conversion elements.
The output of the AGC at this time is shown by Te in FIG. Here, since the tracking output 37 is normalized, the amplitude does not change even when the amount of reflected light or the amount of emission of the semiconductor laser changes, and the offset due to stray light does not change as indicated by 36. Therefore, if an offset correction of a fixed amount is initially performed electrically, the operation center of the tracking error signal output from the adder 34 can always be operated at the electric ground 30. The effect of can be neglected.
【0022】なお、上述した実施の形態では光ディスク
装置を用いて説明したが、同様の迷光の影響が考えられ
る光カードや光テープなどの記録再生装置への応用は本
発明の範囲内である。Although the above embodiment has been described using an optical disk device, application to a recording / reproducing device such as an optical card or an optical tape which is likely to be affected by stray light is within the scope of the present invention.
【0023】また、上述した実施の形態では、トラッキ
ングサーボ系について説明したが、この原理はフォーカ
シングサーボ系動作の場合も同様であり本発明の方法を
適用することができる。In the above embodiment, the tracking servo system has been described. However, the principle is the same in the case of the focusing servo system operation, and the method of the present invention can be applied.
【0024】[0024]
【発明の効果】このように本発明によると、ビームスプ
リッターの端面加工精度や光軸精度不足によって起きる
迷光によるオフセット量は変化せず、さらにその迷光に
相当する量のオフセットを初期調整によって補正してい
るので、実質上迷光の影響を考慮する必要が無くなると
いう優れた効果を有する。As described above, according to the present invention, the offset amount due to stray light caused by insufficient end face processing accuracy and optical axis accuracy of the beam splitter does not change, and the offset corresponding to the stray light is corrected by the initial adjustment. Therefore, there is an excellent effect that it is not necessary to substantially consider the influence of stray light.
【図1】本発明の参考例の構成を示す構成図FIG. 1 is a configuration diagram showing a configuration of a reference example of the present invention.
【図2】本発明の第2の参考例を示す構成図FIG. 2 is a configuration diagram showing a second reference example of the present invention.
【図3】同、光電変換素子上の光ビームの配置図FIG. 3 is a layout diagram of a light beam on a photoelectric conversion element.
【図4】同、トラッキング誤差信号の例を示す図FIG. 4 is a diagram showing an example of a tracking error signal in the embodiment.
【図5】本発明の実施例の構成図FIG. 5 is a configuration diagram of an embodiment of the present invention.
【図6】本発明による光電変換素子上の光ビームの配置
図FIG. 6 is a layout view of a light beam on a photoelectric conversion element according to the present invention.
【図7】本発明によるトラッキング誤差信号の例を示す
図FIG. 7 is a diagram showing an example of a tracking error signal according to the present invention.
【図8】従来の方式によるサーボ信号検出法を説明する
ための図FIG. 8 is a diagram for explaining a servo signal detection method according to a conventional method.
【図9】従来の方法による光電変換素子上の光ビームの
配置図FIG. 9 is an arrangement diagram of a light beam on a photoelectric conversion element according to a conventional method.
11 半導体レーザ 12 ビームスプリッター 14、15 光電変換素子 16 信号光ビーム 19、20 迷光 23 光ビーム 25 第二の光電変換素子 26 第二の光電変換素子の樹脂表面 27 差動回路 28 加算回路 29 AGC 34 加算器 35 オフセット補正回路 42 ビームスプリッタ 47、48 ビームスプリッター端面 51 光電流 Reference Signs List 11 semiconductor laser 12 beam splitter 14, 15 photoelectric conversion element 16 signal light beam 19, 20 stray light 23 light beam 25 second photoelectric conversion element 26 resin surface of second photoelectric conversion element 27 differential circuit 28 addition circuit 29 AGC 34 Adder 35 Offset correction circuit 42 Beam splitter 47, 48 Beam splitter end face 51 Photocurrent
Claims (3)
ビームを透過又は反射させる光ビーム分岐手段と、前記
光ビーム分岐手段を通過した第一の光ビームを受け情報
担体上に集光させる光ビーム集光手段と、前記情報担体
上で反射され前記光ビーム分岐手段で分岐された信号光
ビームを受ける複数の光電変換手段と、前記複数の光電
変換手段の電気出力を演算する演算手段と、前記演算手
段の出力を前記複数の光電変換手段の総出力で除して正
規化する自動利得調整手段と、前記自動利得調整手段の
出力に一定の補正値を加えるオフセット補正手段とを備
えることを特徴とする情報記録再生装置。1. A radiation light source, a light beam branching means for transmitting or reflecting a light beam emitted from the radiation light source, and a first light beam passing through the light beam branching means being focused on an information carrier. Light beam focusing means, a plurality of photoelectric conversion means for receiving a signal light beam reflected on the information carrier and branched by the light beam branching means, and an arithmetic means for calculating an electrical output of the plurality of photoelectric conversion means; Automatic gain adjustment means for dividing the output of the arithmetic means by the total output of the plurality of photoelectric conversion means for normalization, and offset correction means for adding a fixed correction value to the output of the automatic gain adjustment means. An information recording / reproducing apparatus characterized by the above-mentioned.
のオフセット補正値を設定されそれを保持して出力する
オフセット補正回路と、前記オフセット補正回路の出力
と自動利得調整手段の出力とを加算する加算器とを備え
ることを特徴とする請求項1記載の情報記録再生装置。2. An offset correction means for setting a constant offset correction value in an initial adjustment, holding and outputting the offset correction value, and adding an output of the offset correction circuit and an output of the automatic gain adjustment means. 2. The information recording / reproducing apparatus according to claim 1, further comprising an adder.
ビームを透過又は反射させる光ビーム分岐手段と、前記
光ビーム分岐手段を通過した第一の光ビームを受け情報
担体上に集光させる光ビーム集光手段と、前記情報担体
上で反射され前記光ビーム分岐手段で分岐された信号光
ビームを受ける複数の光電変換手段と、前記複数の光電
変換手段の電気出力を演算する演算手段と、前記演算手
段の出力を前記複数の光電変換手段の総出力で除して正
規化する自動利得調整手段と、前記自動利得調整手段の
出力にオフセット補正を与えるオフセット補正手段とを
備える情報記録再生装置の迷光成分補正方法であって、
初期調整において、まず前記複数の光電変換手段の中央
に前記信号光ビームの中心が照射するよう光電変換手段
の位置調整をし、次に前記自動利得調整手段の出力のオ
フセット値を求め、該オフセット値と異極性でかつ同じ
量の補正値を設定して前記オフセット補正手段で保持
し、以降、前記オフセット補正手段で前記自動利得調整
手段の出力に該補正値を常に加えることを特徴とする情
報記録再生装置の迷光成分補正方法。3. A radiation light source, a light beam branching means for transmitting or reflecting a light beam emitted from the radiation light source, and a first light beam passing through the light beam branching means being focused on an information carrier. Light beam focusing means, a plurality of photoelectric conversion means for receiving a signal light beam reflected on the information carrier and branched by the light beam branching means, and an arithmetic means for calculating an electrical output of the plurality of photoelectric conversion means; An information recording / reproducing apparatus comprising: an automatic gain adjusting means for dividing an output of the arithmetic means by a total output of the plurality of photoelectric conversion means for normalization; and an offset correcting means for applying an offset correction to an output of the automatic gain adjusting means. A stray light component correction method for a device,
In the initial adjustment, first, the position of the photoelectric conversion unit is adjusted so that the center of the signal light beam irradiates the center of the plurality of photoelectric conversion units, and then the offset value of the output of the automatic gain adjustment unit is obtained. The offset correction means sets a correction value having the same polarity as the value and the same amount and holds the correction value, and thereafter, the offset correction means always adds the correction value to the output of the automatic gain adjustment means. A method for correcting a stray light component of a recording / reproducing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11219743A JP2000057591A (en) | 1999-08-03 | 1999-08-03 | Information recording/reproducing device and its stray beam component correction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11219743A JP2000057591A (en) | 1999-08-03 | 1999-08-03 | Information recording/reproducing device and its stray beam component correction method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3179494A Division JP3010801B2 (en) | 1991-07-19 | 1991-07-19 | Information recording / reproducing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000057591A true JP2000057591A (en) | 2000-02-25 |
Family
ID=16740303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11219743A Pending JP2000057591A (en) | 1999-08-03 | 1999-08-03 | Information recording/reproducing device and its stray beam component correction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000057591A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002075766A1 (en) * | 2001-03-19 | 2002-09-26 | Jae-Hong Park | A seal glass which is adhesive in vacuum, its manufacturing method, and a flat panel display device manufactured by using it |
WO2006101077A1 (en) * | 2005-03-22 | 2006-09-28 | Matsushita Electric Industrial Co., Ltd. | Optical disc device |
CN100342431C (en) * | 2003-12-17 | 2007-10-10 | 索尼株式会社 | Laser noise elimination circuit and optical disc device |
-
1999
- 1999-08-03 JP JP11219743A patent/JP2000057591A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002075766A1 (en) * | 2001-03-19 | 2002-09-26 | Jae-Hong Park | A seal glass which is adhesive in vacuum, its manufacturing method, and a flat panel display device manufactured by using it |
CN100342431C (en) * | 2003-12-17 | 2007-10-10 | 索尼株式会社 | Laser noise elimination circuit and optical disc device |
WO2006101077A1 (en) * | 2005-03-22 | 2006-09-28 | Matsushita Electric Industrial Co., Ltd. | Optical disc device |
US7830761B2 (en) | 2005-03-22 | 2010-11-09 | Panasonic Corporation | Optical disk apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4815060A (en) | Optical pickup device with tracking and focusing utilizing a photodetector having four regions | |
JPH076379A (en) | Optical head and optical recording and reproducing method | |
EP0512616B1 (en) | Optical scanning device | |
JP2006114165A (en) | Optical information reproducing device | |
JPH0760527B2 (en) | Optical pickup device | |
EP1143428B1 (en) | Tracking servo apparatus of optical information recording and reproducing apparatus | |
JP2000057591A (en) | Information recording/reproducing device and its stray beam component correction method | |
GB2247099A (en) | Optical system using polarized light. | |
JP3010801B2 (en) | Information recording / reproducing device | |
US20080267042A1 (en) | Optical pickup device | |
JPH0636251B2 (en) | Optical disc recording / reproducing device | |
JPH04232621A (en) | Optical scanning apparatus | |
KR100257624B1 (en) | Tracking error signal generation device | |
KR100394314B1 (en) | Optical adjustment method of optical pickup | |
KR100657250B1 (en) | Optical pickup apparatus | |
US7342852B2 (en) | Method and apparatus for differing focus between at least two dimensions | |
US6946634B2 (en) | Optical pickup device | |
JP2965044B2 (en) | Offset correction device for tracking error signal | |
JPH0528525A (en) | Track positional deviation signal generator for optical disk device and tracking controller | |
JPH08161763A (en) | Optical pickup device | |
JP2001034965A (en) | Focus error detector | |
JPH08279166A (en) | Optical pickup device | |
JP2730132B2 (en) | Optical card processing equipment | |
JPS63173231A (en) | Optical head device | |
JP2009070436A (en) | Optical information processor and light detecting device |