JP2000055975A - Layer corona testing circuit - Google Patents
Layer corona testing circuitInfo
- Publication number
- JP2000055975A JP2000055975A JP10227293A JP22729398A JP2000055975A JP 2000055975 A JP2000055975 A JP 2000055975A JP 10227293 A JP10227293 A JP 10227293A JP 22729398 A JP22729398 A JP 22729398A JP 2000055975 A JP2000055975 A JP 2000055975A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- winding
- corona
- capacitor
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Relating To Insulation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リアクトル,変圧
器等の巻線機器のレヤー間絶縁検証等に用いられるレヤ
ーコロナ試験回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a layer corona test circuit used for verifying insulation between layers of a winding device such as a reactor or a transformer.
【0002】[0002]
【従来の技術】従来、この種レヤーコロナ試験回路は図
4に示すように形成される。2. Description of the Related Art Conventionally, a layer corona test circuit of this kind is formed as shown in FIG.
【0003】同図において、1は3相の巻線2u,2
v,2wがスター結線されたリアクトル,変圧器等の3
相の供試巻線機器であり、中性点3及び各相の巻線2
u,2v,2wの端部u,v,wにそれぞれ均圧コンデ
ンサを有する容量200pF程度のコンデンサブッシン
グ4が接続されている。In FIG. 1, reference numeral 1 denotes a three-phase winding 2u, 2
v, 2w are star-connected reactors, transformers, etc.
Phase winding test equipment, neutral point 3 and winding 2 of each phase
A capacitor bushing 4 having a capacity of about 200 pF and having an equalizing capacitor is connected to each of the ends u, v, w of u, 2v, 2w.
【0004】そして、図4は供試巻線機器1の巻線2u
を着目巻線とし、巻線2uの端部uと,残りの2巻線2
v,2wの端部v,wとの間に電圧を印加し、その間の
部分放電(レヤーコロナ)を測定して試験する場合の接
続を示し、端部v,wは接地され、端部uと接地された
端部v,wとの間に、ブロッキングコイル5,共振用コ
ンデンサ6を介して高周波電源7が接続される。FIG. 4 shows a winding 2u of the test winding device 1.
, And the end u of the winding 2u and the remaining two windings 2u
v, w shows a connection when a voltage is applied between the ends v, w, and a partial discharge (Layer corona) therebetween is measured and tested. The ends v, w are grounded, and the ends u, w A high frequency power supply 7 is connected between the grounded ends v and w via a blocking coil 5 and a resonance capacitor 6.
【0005】この高周波電源7は、系統電源(50Hz又
は60Hz)より高周波数,例えば800Hzであり、オペ
レータの操作等により例えば0Vから3000Vに昇圧
変化する。The high-frequency power supply 7 has a higher frequency than the system power supply (50 Hz or 60 Hz), for example, 800 Hz, and changes its voltage from 0 V to 3000 V, for example, by an operation of an operator.
【0006】また、共振用コンデンサ6は数十μFであ
り、供試巻線機器1と直列共振回路を形成し、この直列
共振回路により高周波電源7の電圧を例えば最大27,
5000Vに昇圧して供試巻線機器1に印加する。The resonance capacitor 6 has a capacitance of several tens of μF, and forms a series resonance circuit with the winding device 1 to be tested.
The voltage is increased to 5000 V and applied to the test winding device 1.
【0007】そして、この印加電圧が昇圧変化する間に
端部uと端部v,wとの間に部分放電が発生すると、印
加電圧に重畳した放電電圧が端部uのコンデンサブッシ
ング4を介してコロナ測定器8により検知され、検知さ
れた電圧波形がコロナ測定器8のCRT画面等のモニタ
画面に表示される。When a partial discharge occurs between the end u and the ends v and w during the step-up change of the applied voltage, the discharge voltage superimposed on the applied voltage passes through the capacitor bushing 4 at the end u. The corona measuring device 8 detects the voltage waveform and displays the detected voltage waveform on a monitor screen such as a CRT screen of the corona measuring device 8.
【0008】このとき、巻線2u,2v,2wのインピ
ーダンスが等しく、端部uと端部v,wとの間の印加電
圧は、巻線2uにその2/3が印加され、巻線2v,2
wの並列回路に残りの1/3が印加されることから、着
目巻線2uは印加電圧が高く部分放電が発生し易い。At this time, the windings 2u, 2v, and 2w have the same impedance, and the voltage applied between the end u and the ends v and w is 2/3 of the voltage applied to the winding 2u. , 2
Since the remaining 1/3 is applied to the parallel circuit of w, the applied voltage is high in the target winding 2u, and partial discharge easily occurs.
【0009】また、コロナ測定器8に画面表示される電
圧波形は、例えば図5のモニタ画面8’に示すように供
試巻線機器1の印加電圧の1周期の正極半周期の波形と
負極半周期の波形とを合成した環状の電圧波形aに、部
分放電の高周波数の微小電圧の電圧波形bが重畳した波
形である。The voltage waveform displayed on the screen of the corona measuring device 8 is, for example, as shown on a monitor screen 8 'of FIG. This is a waveform in which a voltage waveform b of a high-frequency minute voltage of partial discharge is superimposed on an annular voltage waveform a obtained by combining a half cycle waveform.
【0010】一方、ブロッキングコイル5は供試巻線機
器1より十分に小インピーダンスであり、前記の直列共
振回路に影響を与えることなく、部分放電の電圧の電源
側への出力を阻止する。On the other hand, the blocking coil 5 has a sufficiently smaller impedance than the winding device 1 to be tested, and blocks the output of the partial discharge voltage to the power supply side without affecting the series resonance circuit.
【0011】また、端部uの印加電圧をモニタするた
め、端部uに500pF程度の印加電圧測定用のコンデ
ンサ9を介して電流計10が接続され、この電流計10
の電流値から端部uと端部v,wとの間の印加電圧が間
接的に測定される。In order to monitor the applied voltage at the end u, an ammeter 10 is connected to the end u via a capacitor 9 for measuring an applied voltage of about 500 pF.
Is applied indirectly to the applied voltage between the end u and the ends v and w.
【0012】これは、前記の800Hz,27,5000
Vもの高周波高電圧は、一般的な電圧検出器によって
は、電圧として直接検出することが困難だからである。This is because the above-mentioned 800 Hz, 27,5000
This is because it is difficult to directly detect a high-frequency high voltage of V as a voltage by a general voltage detector.
【0013】そして、巻線2uを着目巻線とする図4の
接続状態での試験が終了すると、例えば、巻線2u,2
v,2wを同図の巻線2v,2w,2uの位置に移動し
た接続状態に変え、巻線2vを着目巻線とし、その端部
vと端部w,uとの間に高周波高電圧を印加して前記と
同様の試験を行い、その後、巻線2wを着目巻線とし、
その端部wと端部u,vとの間に高周波高電圧を印加し
て試験を行う。When the test in the connection state of FIG. 4 in which the winding 2u is the target winding is completed, for example, the windings 2u, 2
v, 2w are changed to the connection state where they are moved to the positions of the windings 2v, 2w, 2u shown in FIG. , And the same test as above is performed. Thereafter, the winding 2w is set as a target winding,
A test is performed by applying a high-frequency high voltage between the end w and the ends u and v.
【0014】すなわち、3相の供試巻線機器1の場合、
前記したように着目巻線の印加電圧が残りの2巻線の印
加電圧の2倍になり、全ての巻線2u,2v,2wの印
加電圧が等しくならないため、着目巻線を変えて試験を
くり返し、その結果からレヤー間絶縁検証等が行われ
る。That is, in the case of the three-phase test winding device 1,
As described above, the applied voltage of the target winding is twice the applied voltage of the remaining two windings, and the applied voltages of all the windings 2u, 2v, and 2w are not equal. The inspection is repeatedly performed based on the result.
【0015】[0015]
【発明が解決しようとする課題】前記従来のレヤーコロ
ナ試験回路の場合、図5に示したように、コロナ測定器
8のモニタ画面8’に部分放電の電圧波形のみが表示さ
れ、この画面表示からは、供試巻線機器1の印加電圧を
基準にしたその発生位相を容易に把握できない問題点が
ある。In the case of the conventional layer corona test circuit, only the partial discharge voltage waveform is displayed on the monitor screen 8 'of the corona measuring instrument 8 as shown in FIG. However, there is a problem that the generated phase based on the applied voltage of the test winding device 1 cannot be easily grasped.
【0016】そして、部分放電が供試巻線機器1の実際
の印加電圧に同期して発生し、その発生位相や発生パタ
ーンが部分放電の発生個所(位置)等によって異なるこ
とから、部分放電の発生位相を把握することができる
と、その位相及び発生パターン等から部分放電の発生個
所等を特定し得る。Since the partial discharge occurs in synchronization with the actual applied voltage of the test winding device 1, the phase and pattern of the partial discharge vary depending on the location (position) of the partial discharge. If the generation phase can be ascertained, the location where the partial discharge occurs can be specified from the phase and the generation pattern.
【0017】しかし、従来回路においては、前記したよ
うにモニタ画面8’から部分放電の発生位相を知ること
が困難であり、部分放電の発生個所等を精度よく特定す
ることができず、レヤー間絶縁検証等が精度よく行えな
い。However, in the conventional circuit, as described above, it is difficult to know the generation phase of the partial discharge from the monitor screen 8 ', and it is not possible to accurately identify the location where the partial discharge occurs, and the like. Insulation verification etc. cannot be performed with high accuracy.
【0018】なお、高周波電源7等の電源を形成する低
周波数の系統電源については、一般的なゼロクロス点検
出等により容易にその位相零点を検出することができる
ため、この系統電源の位相零点から供試巻線機器1の印
加電圧の位相零点を間接的に検出してモニタ画面8’に
表示することが考えられるが、この場合は、直列共振に
よる位相のずれ等が生じるため、画面表示される位相零
点が供試巻線機器1の高周波の実際の印加電圧の位相零
点から大きくずれ、部分放電の発生位相を正確に把握す
ることはできない。Note that the phase zero of a low-frequency system power source forming the power source such as the high-frequency power source 7 can be easily detected by a general zero-cross point detection or the like. It is conceivable that the phase zero of the applied voltage of the test winding device 1 is indirectly detected and displayed on the monitor screen 8 ′. In this case, a phase shift due to series resonance occurs, so that the screen is displayed. Therefore, the phase zero point greatly deviates from the phase zero point of the high-frequency actual applied voltage of the test winding device 1, and the occurrence phase of the partial discharge cannot be accurately grasped.
【0019】本発明は、コロナ測定器の画面表示から、
部分放電の発生位相がずれなく容易に把握し得るように
することを課題とする。According to the present invention, from the screen display of the corona measuring instrument,
It is an object of the present invention to enable the occurrence phase of partial discharge to be easily grasped without deviation.
【0020】[0020]
【課題を解決するための手段】前記の課題を解決するた
めに、本発明のレヤーコロナ試験回路においては、供試
巻線機器の中性点又は着目巻線の端部のコンデンサブッ
シングと大地との間に設けられ,供試巻線機器の印加電
圧を分圧する分圧コンデンサと、コンデンサブッシン
グ,分圧コンデンサの接続点とコロナ測定器との間に設
けられ,前記分圧を電流に変換する電圧検出抵抗と、コ
ロナ測定器に設けられ,電圧検出抵抗を通流する電流か
ら前記印加電圧の位相零点を検出し,この位相零点に同
期した零点マーカを形成してコロナ測定器の画面表示に
付加する表示処理手段とを備える。In order to solve the above-mentioned problems, in the layer corona test circuit of the present invention, a capacitor bushing at a neutral point of a test winding device or at an end of a target winding is connected to the ground. A voltage dividing capacitor, which is provided between the voltage dividing capacitor for dividing the voltage applied to the winding device under test, and a capacitor bushing, which is provided between a connection point of the voltage dividing capacitor and the corona measuring instrument, and which converts the voltage divided into a current. A phase zero of the applied voltage is detected from a detection resistor and a current flowing through the voltage detection resistor provided in the corona measuring device, and a zero marker synchronized with the phase zero is formed and added to a screen display of the corona measuring device. Display processing means.
【0021】したがって、供試巻線機器の実際の印加電
圧の分圧が分圧コンデンサにより発生し、この分圧が電
圧検出抵抗により電流に変換して検出される。Therefore, the divided voltage of the actual applied voltage of the test winding device is generated by the voltage dividing capacitor, and the divided voltage is converted into a current by the voltage detecting resistor and detected.
【0022】そして、コロナ測定器の表示処理手段によ
り、供試巻線機器の実際の印加電圧の位相零点に同期し
て零点マーカが形成され、この零点マーカが部分放電の
電圧波形とともに画面表示される。Then, the display processing means of the corona measuring instrument forms a zero marker in synchronization with the phase zero of the actual applied voltage of the winding device under test, and the zero marker is displayed on the screen together with the voltage waveform of the partial discharge. You.
【0023】そのため、コロナ測定器に画面表示された
零点マーカにより、供試巻線機器の印加電圧の位相零点
が直ちに分かり、この零点を基準にして部分放電の発生
位相をずれなく容易に把握することができる。For this reason, the zero point marker displayed on the screen of the corona measuring instrument allows the phase zero point of the applied voltage of the test winding device to be immediately known, and the occurrence phase of the partial discharge can be easily grasped based on the zero point without deviation. be able to.
【0024】[0024]
【発明の実施の形態】本発明の実施の1形態につき、図
1ないし図3を参照して説明する。図1は3相の供試巻
線機器1につき、その巻線2uを着目巻線として試験す
る場合の構成を示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a configuration in which a three-phase test winding device 1 is tested with its winding 2u as a target winding.
【0025】同図において、図4と同一符号は同一もし
くは相当するものを示し、中性点3のコンデンサブッシ
ング4と大地との間に分圧コンデンサ11が設けられ、
端部uと端部v,wとの間の印加電圧に基づく中性点3
の電圧がそのコンデンサブッシング4と分圧コンデンサ
11により分圧され、中性点3のコンデンサブッシング
4と分圧コンデンサ11との接続点αに前記印加電圧を
分圧した電圧が発生する。4, the same reference numerals as those in FIG. 4 denote the same or corresponding components, and a voltage dividing capacitor 11 is provided between the capacitor bushing 4 at the neutral point 3 and the ground.
Neutral point 3 based on applied voltage between end u and ends v, w
Is divided by the capacitor bushing 4 and the voltage dividing capacitor 11 to generate a voltage obtained by dividing the applied voltage at a connection point α between the capacitor bushing 4 at the neutral point 3 and the voltage dividing capacitor 11.
【0026】このとき、最大27,5000Vの印加電
圧を十分に分圧するため、分圧コンデンサ11は例えば
容量1μFに設定される。At this time, in order to sufficiently divide the applied voltage of 27,5000 V at the maximum, the voltage dividing capacitor 11 is set to, for example, a capacitance of 1 μF.
【0027】さらに、接続点αとコロナ測定器13との
間に高インピーダンス(数MΩ)の電圧検出抵抗12が
設けられ、この抵抗12により前記印加電圧が電流に変
換され、接続点αの電圧に応じた電流が電圧検出抵抗1
2を通流する。Further, a high impedance (several MΩ) voltage detection resistor 12 is provided between the connection point α and the corona measuring device 13, and the applied voltage is converted into a current by the resistance 12, and the voltage at the connection point α The current according to the voltage detection resistor 1
Flow through 2.
【0028】つぎに、図4のコロナ測定器8の代わりに
設けられたコロナ測定器13は例えば図2に示すように
形成され、端部uのコンデンサブッシング4を介して取
込まれた部分放電の電圧は、表示処理手段を形成する表
示処理部14の放電電圧側処理回路15により従来のコ
ロナ測定器8の場合と同様に検知されて処理され、この
処理により図5の電圧波形a,bと同様の電圧波形の表
示信号が形成される。Next, a corona measuring device 13 provided in place of the corona measuring device 8 in FIG. 4 is formed, for example, as shown in FIG. 2, and a partial discharge taken in through the capacitor bushing 4 at the end u. Are detected and processed by the discharge voltage side processing circuit 15 of the display processing unit 14 forming the display processing means in the same manner as in the case of the conventional corona measuring device 8, and the voltage waveforms a and b in FIG. A display signal having the same voltage waveform as that shown in FIG.
【0029】また、電圧検出抵抗12の他端と大地との
間に設けられた印加電圧側処理回路としての電圧計回路
16が電圧検出抵抗12の電流から前記印加電圧を計測
してその位相零点(ゼロクロス点)を検知し、例えば印
加電圧の極性変化に応じた正又は負の単パルス波形の零
点マーカの表示信号を形成する。Further, a voltmeter circuit 16 as an applied voltage side processing circuit provided between the other end of the voltage detection resistor 12 and the ground measures the applied voltage from the current of the voltage detection resistor 12 and determines the phase zero thereof. (Zero cross point) is detected, and a display signal of a zero point marker having a positive or negative single pulse waveform corresponding to, for example, a change in polarity of the applied voltage is formed.
【0030】そして、放電電圧側処理回路15及び電圧
計回路16の表示信号が加算器17により加算されて合
成され、この合成信号の波形がCRT18に画面表示さ
れる。Then, the display signals of the discharge voltage side processing circuit 15 and the voltmeter circuit 16 are added and combined by the adder 17, and the waveform of the combined signal is displayed on the CRT 18 on the screen.
【0031】このとき、CRT18の表示画面,すなわ
ち図3のモニタ画面18’は、図5の電圧波形a,bに
相当する電圧波形c,dに零点マーカeが付加された画
面になる。At this time, the display screen of the CRT 18, that is, the monitor screen 18 'in FIG. 3 is a screen in which the zero-point marker e is added to the voltage waveforms c and d corresponding to the voltage waveforms a and b in FIG.
【0032】そして、接続点αの分圧から供試巻線機器
1の端部uと端部v,wとの間の印加電圧が直接検出さ
れ、この検出に基づき、印加電圧の位相零点に同期して
零点マーカeが形成され、このマーカeがモニタ画面1
8’に部分放電の電圧波形c,dとともに表示される。Then, the applied voltage between the end u and the ends v, w of the test winding device 1 is directly detected from the divided voltage at the connection point α, and based on this detection, the applied voltage is set to the phase zero point. Synchronously, a zero point marker e is formed.
8 'is displayed together with the voltage waveforms c and d of the partial discharge.
【0033】そのため、零点マーカeの表示から供試巻
線機器1の印加電圧の位相零点をずれなく容易に把握す
ることができ、零点マーカeと電圧波形dとの間隔等か
ら前記印加電圧の位相零点を基準にして部分放電の発生
位相をずれなく容易に把握することができる。Therefore, the phase zero of the applied voltage of the test winding device 1 can be easily grasped from the display of the zero marker e without any deviation, and the applied voltage can be easily determined based on the interval between the zero marker e and the voltage waveform d. The occurrence phase of the partial discharge can be easily grasped without a shift based on the phase zero point.
【0034】なお、印加電圧が上限電圧(例えば275
000V)まで上昇すると、着目巻線を巻線2vに変え
て印加電圧を再び0Vから上限電圧まで上昇し、その
後、着目巻線を巻線2wに変えて印加電圧を0Vから上
限電圧まで上昇し、試験をくり返す。The applied voltage is equal to the upper limit voltage (for example, 275
000V), the target winding is changed to the winding 2v, and the applied voltage is increased again from 0V to the upper limit voltage. Thereafter, the target winding is changed to the winding 2w, and the applied voltage is increased from 0V to the upper limit voltage. , Repeat the test.
【0035】そして、これらの試験によって得られた部
分放電の発生位相及び発生パターンに基づき、部分放電
の発生個所(位置)を精度よく特定することができ、リ
アクトル,巻線トランス等の巻線機器につき、高精度の
レヤー間絶縁検証や部分放電発生個所の特定が行え、部
分放電による絶縁破壊の発生を工場等で事前に検出し、
この種巻線機器の品質及び信頼性を著しく向上すること
ができる。Based on the phase and pattern of occurrence of the partial discharge obtained by these tests, the location (position) where the partial discharge occurs can be specified with high accuracy, and winding equipment such as a reactor and a winding transformer can be used. With this method, it is possible to perform high-precision insulation verification between layers and to specify the location of the occurrence of partial discharge.
The quality and reliability of this type of winding equipment can be significantly improved.
【0036】ところで、図1からも明らかなように、供
試巻線機器1が3相機器の場合、中性点3のコンデンサ
ブッシング4に分圧コンデンサ11,電圧検出抵抗12
を接続すれば、着目巻線を巻線2uから巻線2v,2w
に変えて試験をくり返すときに、分圧コンデンサ11,
電圧検出抵抗12の接続を変える必要がなく、効率よく
レヤーコロナ試験が行える利点がある。As is apparent from FIG. 1, when the test winding device 1 is a three-phase device, a voltage dividing capacitor 11 and a voltage detecting resistor 12 are connected to the capacitor bushing 4 at the neutral point 3.
Are connected, the target winding is changed from the winding 2u to the windings 2v and 2w.
When the test is repeated, the voltage dividing capacitor 11,
There is no need to change the connection of the voltage detection resistor 12, and there is an advantage that the layer corona test can be performed efficiently.
【0037】なお、分圧コンデンサ11,電圧検出抵抗
12は、中性点3のコンデンサブッシング4に接続する
代わりに、着目巻線の端部u,v又はwのコンデンサブ
ッシング4に接続してもよく、この場合も前記と同様の
部分放電の発生位相の検出が行える。The voltage dividing capacitor 11 and the voltage detecting resistor 12 may be connected to the capacitor bushing 4 at the end u, v or w of the target winding instead of being connected to the capacitor bushing 4 at the neutral point 3. Also in this case, the detection phase of the partial discharge similar to the above can be detected.
【0038】そして、供試巻線機器は単相,3相,…の
種々の巻線機器であってよいのは勿論である。Of course, the test winding equipment may be various winding equipment of single phase, three phase,....
【0039】さらに、高周波電源7の周波数,電圧及び
直列共振による昇圧量等が前記実施の形態と異なってい
ても同様に適用することができる。Further, the present invention can be similarly applied even if the frequency, voltage, boosting amount due to series resonance, and the like of the high frequency power supply 7 are different from those of the above-described embodiment.
【0040】また、コロナ計測器13の内部構成やモニ
タ画面18’の部分放電の電圧波形,零点マーカの表示
は前記実施の形態のものに限られるものではない。The internal configuration of the corona measuring device 13, the voltage waveform of the partial discharge on the monitor screen 18 ', and the display of the zero point marker are not limited to those of the above-described embodiment.
【0041】[0041]
【発明の効果】本発明は、以下に記載する効果を奏す
る。供試巻線機器1の実際の印加電圧の分圧を分圧コン
デンサ11により発生し、この分圧を電圧検出抵抗12
により電流に変換して検出することができる。The present invention has the following effects. A divided voltage of the actual applied voltage of the test winding device 1 is generated by a voltage dividing capacitor 11, and the divided voltage is divided by a voltage detecting resistor 12.
Thus, the current can be converted into current and detected.
【0042】さらに、コロナ測定器13の表示処理手段
(表示処理部14)により、供試巻線機器1の実際の印
加電圧の位相零点に同期して零点マーカeを形成し、こ
の零点マーカeを部分放電の電圧波形とともに画面表示
することができる。Further, the display processing means (display processing unit 14) of the corona measuring device 13 forms a zero-point marker e in synchronization with the phase zero of the actually applied voltage of the test winding device 1, and the zero-point marker e Can be displayed on the screen together with the voltage waveform of the partial discharge.
【0043】そして、コロナ測定器13に画面表示され
た零点マーカeにより、供試巻線機器1の印加電圧の位
相零点を直ちに知ることができ、この零点を基準にして
部分放電の発生位相をずれなく容易に把握することがで
き、この結果から供試巻線機器1の部分放電の発生位置
(個所)等を正確に把握し、レヤー間絶縁検証等を精度
よく行うことができる。Then, the zero point marker e displayed on the screen of the corona measuring device 13 makes it possible to immediately know the phase zero point of the applied voltage of the test winding device 1, and to determine the partial discharge generation phase based on this zero point. It can be easily grasped without any deviation, and from this result, the position (point) where partial discharge occurs in the test winding device 1 can be grasped accurately, and insulation verification between layers can be performed with high accuracy.
【図1】本発明の実施の1形態の結線図である。FIG. 1 is a connection diagram of one embodiment of the present invention.
【図2】図1のコロナ測定器の詳細な回路ブロック図で
ある。FIG. 2 is a detailed circuit block diagram of the corona measuring device of FIG.
【図3】図2のCRTのモニタ画面の正面図である。FIG. 3 is a front view of a monitor screen of the CRT in FIG. 2;
【図4】従来回路の結線図である。FIG. 4 is a connection diagram of a conventional circuit.
【図5】図4のコロナ測定器のモニタ画面の正面図であ
る。5 is a front view of a monitor screen of the corona measuring device of FIG.
1 供試巻線機器 2u,2v,2w 巻線 3 中性点 4 コンデンサブッシング 6 共振用コンデンサ 7 高周波電源 11 分圧コンデンサ 12 電圧検出抵抗 13 コロナ測定器 14 表示処理部 18 CRT e 零点マーカ DESCRIPTION OF SYMBOLS 1 Test winding apparatus 2u, 2v, 2w winding 3 Neutral point 4 Capacitor bushing 6 Resonance capacitor 7 High frequency power supply 11 Voltage dividing capacitor 12 Voltage detection resistor 13 Corona measuring instrument 14 Display processing unit 18 CRT e Zero point marker
Claims (1)
直列共振法により昇圧して供試巻線機器の着目巻線の端
部と残りの巻線の端部との間に印加し、 前記供試巻線機器に発生した部分放電の電圧をコロナ測
定器により検知し、 前記部分放電の電圧波形を前記コロナ測定器により画面
表示するレヤーコロナ試験回路において、 前記供試巻線機器の中性点又は前記着目巻線の端部のコ
ンデンサブッシングと大地との間に設けられ,前記供試
巻線機器の印加電圧の分圧を発生する分圧コンデンサ
と、 前記コンデンサブッシング,前記分圧コンデンサの接続
点と前記コロナ測定器との間に設けられ,前記分圧を電
流に変換する電圧検出抵抗と、 前記コロナ測定器に設けられ,前記電圧検出抵抗を通流
する電流から前記印加電圧の位相零点を検出し,前記位
相零点に同期した零点マーカを形成して前記画面表示に
付加する表示処理手段とを備えたことを特徴とするレヤ
ーコロナ試験回路。1. An AC voltage having a frequency higher than a system frequency,
The voltage is boosted by the series resonance method and applied between the end of the target winding of the test winding device and the end of the remaining winding, and the voltage of the partial discharge generated in the test winding device is corona measured. In the layer corona test circuit which detects the voltage waveform of the partial discharge on the screen by the corona measuring device, the capacitor bushing at the neutral point of the test winding device or at the end of the winding of interest and the ground. A voltage dividing capacitor, which is provided between the capacitor bushing and the voltage dividing capacitor, and is provided between the connection point of the capacitor bushing and the voltage dividing capacitor and the corona measuring device; A voltage detection resistor for converting a pressure into a current, and a phase zero point of the applied voltage, which is provided in the corona measuring device and detects a phase zero of the applied voltage from a current flowing through the voltage detection resistor, and forms a zero point marker synchronized with the phase zero. Said Reyakorona test circuit, characterized in that a display processing means for adding to the surface display.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22729398A JP3376924B2 (en) | 1998-08-11 | 1998-08-11 | Layer corona test circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22729398A JP3376924B2 (en) | 1998-08-11 | 1998-08-11 | Layer corona test circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000055975A true JP2000055975A (en) | 2000-02-25 |
JP3376924B2 JP3376924B2 (en) | 2003-02-17 |
Family
ID=16858552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22729398A Expired - Lifetime JP3376924B2 (en) | 1998-08-11 | 1998-08-11 | Layer corona test circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3376924B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012149971A (en) * | 2011-01-19 | 2012-08-09 | Hitachi Ltd | Partial discharge test method for inverter-driven rotating electrical machine |
-
1998
- 1998-08-11 JP JP22729398A patent/JP3376924B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012149971A (en) * | 2011-01-19 | 2012-08-09 | Hitachi Ltd | Partial discharge test method for inverter-driven rotating electrical machine |
Also Published As
Publication number | Publication date |
---|---|
JP3376924B2 (en) | 2003-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1572458A (en) | Method of and apparatus for eddy current testing of objects of magnetic material | |
Crotti et al. | Calibration of MV voltage instrument transformer in a wide frequency range | |
EP0706663B1 (en) | Electrical test instrument | |
JPS6255571A (en) | Automatic insulating characteristic analyzer | |
JP3376924B2 (en) | Layer corona test circuit | |
JP2000097982A (en) | Coil testing and evaluating device | |
JPH03176678A (en) | Evaluating method with ac for ic tester | |
JP7080757B2 (en) | Impedance measuring device and impedance measuring method | |
JP3155311B2 (en) | Micro ammeter and micro current measurement method | |
RU2184999C1 (en) | Method for measuring short-circuit inductance of transformer for flaw inspection of windings | |
JPH11271385A (en) | Method for diagnosing partial discharge state | |
TWI281029B (en) | Automatic compensation method of AC leakage current, constituent circuits, and testing device using the circuit | |
JP2738828B2 (en) | Method and apparatus for measuring capacitance | |
JPH05297038A (en) | Grounding-resistance testing instrument | |
JPH05190637A (en) | Test method of semiconductor integrated circuit | |
Madhar et al. | Simultaneous Electrical and UHF Measurement of DC-PD from Point-Plane Defect | |
JP3225517B2 (en) | Calculation method of voltage waveform deviation rate | |
JPH0396872A (en) | Method and device for testing coil | |
JPH10154316A (en) | Magnetic field generating method and magnetic characteristic measuring method using the same | |
Besri et al. | Using confidence factor to improve reliability of wide frequency range impedance measurement. Application to HF transformer characterization | |
GlaB et al. | Model-Based Testing of Instrument Transformers Utilizing Impulse Response Measurements | |
WO2000017853A9 (en) | Multi-pulse sampling of signals using force sampling | |
JP2573412B2 (en) | Magnetic head testing equipment | |
JPH0632255B2 (en) | Method of measuring leakage current of lightning arrester | |
JPH0466878A (en) | Apparatus and method for measuring electrostatic capacitance, resistance and inductance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121206 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131206 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |