JP2000055850A - Method for detecting failure in device for measuring concentration of ammonium nitrogen - Google Patents

Method for detecting failure in device for measuring concentration of ammonium nitrogen

Info

Publication number
JP2000055850A
JP2000055850A JP10228762A JP22876298A JP2000055850A JP 2000055850 A JP2000055850 A JP 2000055850A JP 10228762 A JP10228762 A JP 10228762A JP 22876298 A JP22876298 A JP 22876298A JP 2000055850 A JP2000055850 A JP 2000055850A
Authority
JP
Japan
Prior art keywords
gas permeable
calibration
permeable membrane
span
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10228762A
Other languages
Japanese (ja)
Inventor
Katsutoshi Nose
勝利 野瀬
Susumu Nagasaki
進 長崎
Nagatake Takase
長武 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10228762A priority Critical patent/JP2000055850A/en
Publication of JP2000055850A publication Critical patent/JP2000055850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the failure in a device for continuously performing measurement according to a time sequence even if the failure occurs. SOLUTION: In a device for continuously measuring the concentration of alkali nitrogen in inspection water, the inspection water is allowed to flow to the outside of a gas-permeable film 2 of a gas permeability separation column 1, a carrier liquid is allowed to flow to the inside by the pump, a strong alkali solution is added to the inspection water from the pump, and the reduction of the conductivity of the carrier liquid due to the neutralization reaction with the carrier liquid after the generation alkali gas permeates through the film 2 is measured by a cell. In the device, a calibration liquid is allowed to flow at a constant interval using the pump, the conductivity is measured, and a span value is calibrated in auto-span calibration, the span value of the auto-span calibration is compared with the upper-limit value being set with a width in advance, and the deterioration of the film 2 is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、下水処理場、河
川、湖沼、海水などの水中のアンモニア性窒素濃度を測
定する、ガス抽出置換電気伝導度変化測定方式のアンモ
ニア性窒素濃度測定装置における故障検出方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure in an ammonia-nitrogen-concentration measuring apparatus of a gas extraction displacement electric conductivity change measuring method for measuring the ammonia-nitrogen concentration in water such as sewage treatment plants, rivers, lakes and seawater. It relates to a detection method.

【0002】[0002]

【従来の技術】従来、ガス抽出置換電気伝導度変化測定
方式のアンモニア窒素濃度測定装置について説明する。
2. Description of the Related Art Conventionally, a description will be given of an ammonia nitrogen concentration measuring apparatus of a gas extraction displacement electric conductivity change measuring method.

【0003】(1)測定原理 図1について、管状のアンモニア透過分離カラム1は内
部に管状のガス透過膜2を有し、膜2の外側に測定水
(検水)を流し、膜2の内側にキャリア液(硫酸)を流
す。ガス透過膜2の外側を流れる測定水に水酸化ナトリ
ウムのような強アルカリ溶液を添加すると、測定水中の
アンモニウムイオンはアンモニアガスとなり、ガス透過
膜2を透過してキャリア液内に入る。
(1) Principle of Measurement Referring to FIG. 1, a tubular ammonia permeable separation column 1 has a tubular gas permeable membrane 2 inside, a measuring water (water sample) flows outside the membrane 2, and an inside of the membrane 2 The carrier liquid (sulfuric acid). When a strong alkaline solution such as sodium hydroxide is added to the measurement water flowing outside the gas permeable membrane 2, ammonium ions in the measurement water become ammonia gas and pass through the gas permeable membrane 2 and enter the carrier liquid.

【0004】キャリア液側では、アンモニアと硫酸の間
で中和反応が起こり、それに伴い硫酸の導電度(率)が
減少する。装置はこの導電度の減少量とアンモニア性窒
素濃度が比例関係にあることを利用してアンモニア性窒
素濃度を測定する。
On the carrier liquid side, a neutralization reaction occurs between ammonia and sulfuric acid, and the conductivity (rate) of sulfuric acid decreases accordingly. The apparatus measures the ammonia nitrogen concentration using the fact that the amount of decrease in the conductivity and the ammonia nitrogen concentration are in a proportional relationship.

【0005】(2)装置の構成 図2に流路構成を図3に電気伝導度測定回路を示す。図
2において、1はアンモニア透過分離カラム、5は恒温
槽、6はプリクーラ、7は検水または校正液と強アルカ
リ溶液を混合してカラム1に供給するミキサ、8はキャ
リア液中の空気を除去するエアトラップ、9はキャリア
液のカラム1通過前と後の電気伝導度を測定する導電度
検出セルである。
(2) Configuration of Apparatus FIG. 2 shows the configuration of the flow path, and FIG. 3 shows an electric conductivity measuring circuit. In FIG. 2, 1 is an ammonia permeation separation column, 5 is a thermostat, 6 is a precooler, 7 is a mixer for mixing a test or calibration solution and a strong alkaline solution and supplying it to the column 1, and 8 is air in the carrier liquid. The air trap 9 to be removed is a conductivity detection cell for measuring the conductivity before and after the carrier liquid passes through the column 1.

【0006】また、P1は上記強アルカリ液11を供給
するアルカリポンプ、P2は上記キャリア液を送る硫酸
ポンプ、P3は検水槽13からの検水又は校正液14又
は洗浄水15,洗浄薬液16を供給する検水ポンプ、S
V1〜SV3及びSV8は流路切替バルブ、SV4〜S
V5,SV7及びBV1,BV2は流路バルブを示す。
[0006] P1 is an alkaline pump for supplying the strong alkaline solution 11, P2 is a sulfuric acid pump for delivering the carrier solution, and P3 is a test or calibration solution 14 or cleaning water 15 and a cleaning solution 16 from a test tank 13. Supply water pump, S
V1 to SV3 and SV8 are flow path switching valves, and SV4 to SV
V5, SV7 and BV1, BV2 indicate flow path valves.

【0007】流路構成(図2)の動作を説明する。測定
開始により、検水ポンプP3は検水槽13の検水をバル
ブSV8,SV3を介して吸引し、硫酸ポンプP2は硫
酸12をバルブSV2を介して吸引し、アルカリポンプ
P1は強アルカリ溶液11をバルブSV1を介して吸引
する。
The operation of the flow path configuration (FIG. 2) will be described. Upon the start of the measurement, the water test pump P3 sucks the water sample in the water test tank 13 through the valves SV8 and SV3, the sulfuric acid pump P2 sucks the sulfuric acid 12 through the valve SV2, and the alkali pump P1 sucks the strong alkaline solution 11. Suction is performed via the valve SV1.

【0008】吸引後硫酸ポンプP2が吐出し、硫酸をバ
ルブSV2,エアトラップ8,導電度検出セル9の電極
9R,ガス透過膜2の内側,導電度検出セル9の電極9
Sの流路に流す。
After the suction, the sulfuric acid pump P2 discharges the sulfuric acid to discharge sulfuric acid into the valve SV2, the air trap 8, the electrode 9R of the conductivity detection cell 9, the inside of the gas permeable membrane 2, and the electrode 9 of the conductivity detection cell 9.
Flow through the S channel.

【0009】上記硫酸ポンプP2の吐出と同時に検水ポ
ンプS3が吐出し、検水をバルブSV3,SV4,ミキ
サ7,ガス透過分離カラム1の流路に流す。
At the same time as the discharge of the sulfuric acid pump P2, the water sample pump S3 discharges, and the test water flows through the valves SV3, SV4, the mixer 7, and the gas permeation separation column 1.

【0010】導電度検出セル9の電極9S,9Rで検出
する硫酸の電気導電度が安定したらアルカリポンプP1
を吐出させ、強アルカリ溶液をバルブSV1,ミキサ
7,ガス透過分離カラム1の流路に流し、ガス透過分離
カラム1に流れる検水に強アルカリ溶液を混合する。
When the electrical conductivity of the sulfuric acid detected by the electrodes 9S and 9R of the conductivity detecting cell 9 becomes stable, the alkaline pump P1
Is discharged, and the strong alkaline solution flows through the valve SV1, the mixer 7, and the flow path of the gas permeation separation column 1, and the strong alkali solution is mixed with the test water flowing through the gas permeation separation column 1.

【0011】ガス透過膜分離カラム1内では、強アルカ
リ溶液の添加により発生したアンモニアガスがガス透過
膜2の内側を流れる硫酸側に移動し、電極9Sを流れる
硫酸の電気導電度が減少する。
In the gas permeable membrane separation column 1, the ammonia gas generated by the addition of the strong alkali solution moves to the sulfuric acid side flowing inside the gas permeable membrane 2, and the electric conductivity of the sulfuric acid flowing through the electrode 9S decreases.

【0012】図3について、電気伝導度測定回路は、発
信器21出力を緩衝アンプ22を介して電極9Sに入力
すると共にアンプ22の出力を補償アンプ23を介して
電極9Rに入力し、電極9R及び9Sの出力をそれぞれ
アンプ24及び25を介して整流器26及び27で整流
し、差動アンプ28で増幅し、レンジ調整抵抗VR2
よびスパン調整抵抗VR3を有するアンプ29からアン
モニア性窒素濃度検出値が出力するように構成されてい
る。
Referring to FIG. 3, the electrical conductivity measuring circuit inputs the output of the oscillator 21 to the electrode 9S via the buffer amplifier 22 and the output of the amplifier 22 to the electrode 9R via the compensation amplifier 23. and the output of 9S via respective amplifiers 24 and 25 is rectified by the rectifier 26 and 27, amplified by the differential amplifier 28, the ammonium nitrogen concentration detected from the amplifier 29 with a range adjustment resistor VR 2 and span adjustment resistor VR 3 The value is configured to output.

【0013】また、装置の流路(図2)にはさまざまな
工夫が施されている。測定流路に空気が混入すると計測
に大きく影響する。そのため、ガス透過分離カラム1,
導電度検出セル9などを低温恒温槽5(約10℃)内に
設置し、さらに各配管をプリクーラ6で積極的に冷却し
て検水、キャリアなどからの気泡発生を抑制している。
また、測定系を恒温にすることは計測値の温度依存性を
低下させる効果もある。
Various measures have been taken for the flow path (FIG. 2) of the apparatus. If air enters the measurement flow path, it greatly affects the measurement. Therefore, the gas permeation separation column 1,
The conductivity detection cell 9 and the like are installed in the low-temperature constant temperature bath 5 (about 10 ° C.), and each pipe is actively cooled by the precooler 6 to suppress water detection and generation of bubbles from the carrier.
Also, keeping the measurement system at a constant temperature has the effect of reducing the temperature dependence of the measured value.

【0014】その他気泡対策としてキャリア流路にはエ
アートラップ8が設けられている。また、検水槽13か
ら混入する空気は検水ポンプP3内にトラップし、測定
の最後にバルブSV7を通してドレインする工程になっ
ている。
In addition, an air trap 8 is provided in the carrier channel as a measure against bubbles. In addition, the air entering from the water test tank 13 is trapped in the water test pump P3, and is drained through the valve SV7 at the end of the measurement.

【0015】図4に上記装置のタイムシーケンスチャー
トを示す。図中の記号の内容は次のとおりである。
FIG. 4 shows a time sequence chart of the above apparatus. The contents of the symbols in the figure are as follows.

【0016】 WAIT :硫酸の流し初めから指示が安定するまでの待ち時間 TIMES :NaOHの注入回数/測定 INJ−T :NaOHの注入(=吐出)時間 MEAS.−T :検水を流す(=吐出する)時間 それぞれの値は同時に満たす必要がある。WAIT: Waiting time from the beginning of sulfuric acid flow until the indication stabilizes TIMES: Number of NaOH injections / measurement INJ-T: NaOH injection (= discharge) time MEAS. -T: Time for flowing (= discharging) the sample water Each value must be satisfied simultaneously.

【0017】(MEAS.−T)>(WAIT)+
((INJ−T)*2)*(TIMES) HCL :洗浄液(塩酸)の吸引時間を秒単位
で設定する。
(MEAS.-T)> (WAIT) +
((INJ-T) * 2) * (TIMES) HCL: Sets the suction time of the cleaning liquid (hydrochloric acid) in seconds.

【0018】WATER :稀釈水の吸引時間を秒
単位で設定する。[HCL]と[WATER]の値によ
り洗浄液の稀釈比率が決まる。
WATER: Sets the dilution water suction time in seconds. The dilution ratio of the cleaning solution is determined by the values of [HCL] and [WATER].

【0019】AT−SPAN :自動スパン校正の周期
を時間単位で設定する「0」を設定した場合は、校正は
行わない。 INTERVAL:測定周期(30分単位) 図5にアンモニア性窒素濃度検出アルゴリズムを示す。
AT-SPAN: When "0" is set, which sets the cycle of automatic span calibration in units of time, no calibration is performed. INTERVAL: Measurement cycle (30-minute unit) FIG. 5 shows an algorithm for detecting ammonia nitrogen concentration.

【0020】電気伝導度測定回路(図3)より得られる
アンモニア性窒素濃度検出波形のピーク高さを図5のよ
うに求めている。ピーク高さを求めるにあたって[ZE
RO]点の計測は重要な要素になるが、ここでは[ZE
RO]点を、[WAIT]が終了してアルカリの注入を
開始した直後の5秒間の検出レベルを平均した値として
決定している。 ピーク高さ[V]=頂点電圧[V]−ZERO電圧
[V] また、スパン値の求め方は、標準液(校正液)の測定を
行い、得られたアンモニア性窒素濃度検出波形のピーク
高さ[V]から求める。 (スパン値)[ppm/V]=(校正液の濃度)[mg/L]/
(ピーク高さ)[V] アンモニア性窒素濃度[mL/L]の求め方は、検水を
測定して得られたピーク高さ[V]とあらかじめ校正液
を測定して求めていたスパン値[ppm/V]から導き
出す。アンモニア性窒素濃度[mg/L]=スパン値[p
pm/V]*ピーク高さ[V]スパン校正は、上記検水の
測定に代えて校正液14(図2)を測定することによっ
て、スパン値を導き出すことである。校正液14は検水
ポンプP3を用いて流す。
The peak height of the ammonia nitrogen concentration detection waveform obtained from the electric conductivity measuring circuit (FIG. 3) is obtained as shown in FIG. When determining the peak height [ZE
Although the measurement of the [RO] point is an important factor, here [ZE
[RO] point is determined as a value obtained by averaging the detection levels for 5 seconds immediately after [WAIT] is completed and alkali injection is started. Peak height [V] = Vertex voltage [V] −ZERO voltage [V] The span value is determined by measuring a standard solution (calibration solution) and obtaining the peak height of the obtained ammonia nitrogen concentration detection waveform. From [V]. (Span value) [ppm / V] = (Calibration solution concentration) [mg / L] /
(Peak height) [V] The method for obtaining the ammonia nitrogen concentration [mL / L] is as follows: the peak height [V] obtained by measuring the sample water and the span value obtained by measuring the calibration solution in advance. It is derived from [ppm / V]. Ammonia nitrogen concentration [mg / L] = span value [p
pm / V] * Peak height [V] Span calibration is to derive a span value by measuring the calibration solution 14 (FIG. 2) instead of the measurement of the sample. The calibration liquid 14 is flowed using the water sample pump P3.

【0021】また、オートスパン校正は、検水の連続測
定の最中に一定間隔置きに校正液を測定し、スパン値を
補正することである。また、オートスパン校正の周期
は、装置内のスイッチ(図示省略)を使って時間単位で
設定する。
The auto-span calibration is to correct the span value by measuring the calibration solution at regular intervals during the continuous measurement of the sample. The cycle of the autospan calibration is set in units of time using a switch (not shown) in the apparatus.

【0022】上記流路の洗浄は検水に代えて洗浄薬液
(塩酸)16と洗浄水(蒸留水)15を検水ポンプP3
を用いて流路に流し、検水流路,ガス透過膜の洗浄を行
う。ここで、塩酸濃度は図4のように塩酸の吸引時間,
洗浄水(蒸留水)の吸引時間で塩酸を稀釈し調整する。
The washing of the above-mentioned flow path is performed by using a cleaning chemical solution (hydrochloric acid) 16 and cleaning water (distilled water) 15 in place of the water sample, using a water sample pump P3.
Then, the sample is passed through the flow path to clean the water detection flow path and the gas permeable membrane. Here, the hydrochloric acid concentration is as shown in FIG.
Dilute hydrochloric acid with suction time of washing water (distilled water) to adjust.

【0023】[0023]

【発明が解決しようとする課題】上記従来のアンモニア
性窒素濃度測定装置は、装置内において、ガス透過膜の
劣化あるいは目詰まり、流路の故障、バルブの故障等の
異常が起こっても、図4のタイムシーケンスに乗っ取っ
て、測定を続けてしまう。
In the conventional ammonia nitrogen concentration measuring apparatus described above, even if an abnormality such as deterioration or clogging of a gas permeable membrane, a failure of a flow path, or a failure of a valve occurs in the apparatus, it is possible to perform the measurement. 4 takes over the time sequence and continues the measurement.

【0024】この発明は、上記課題に鑑みてなされたも
のであり、その目的とするところは、上記装置の異常を
検出できる、ガス抽出置換電気伝導度変化測定方法を用
いたアンモニア性窒素濃度測定装置における故障検出方
法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to measure the concentration of ammoniacal nitrogen by using a method for measuring a change in the electric conductivity of a gas-exchange-substitute, which can detect an abnormality of the above-mentioned apparatus. An object of the present invention is to provide a method for detecting a failure in a device.

【0025】[0025]

【課題を解決するための手段】この発明のアンモニア性
窒素濃度装置における故障検出方法は、ガス透過分離カ
ラムのガス透過膜面の一方および他方にそれぞれ検水お
よびキャリア液を流し、検水に強アルカリ溶液を添加
し、発生したアンモニアガスがガス透過膜を透過してキ
ャリア液と中和反応してキャリア液の導電度が変化する
のを計測し、検水のアンモニア性窒素濃度を連続測定す
る装置において、そして、前記連続測定の最中に、一定
間隔置きに検水に代えて校正液を流して校正液の導電度
の変化を計測してスパン値を校正するオートスパン校正
を行い、オートスパン校正のスパン値を予め幅をもたせ
て設定した上限値と比較し、スパン値が上限値を越えた
場合ガス透過膜劣化と判断する。
According to the present invention, there is provided a method for detecting a failure in an ammoniacal nitrogen concentration apparatus, wherein a test water and a carrier liquid are supplied to one and the other of a gas permeable membrane surface of a gas permeation separation column, respectively. Add the alkaline solution, measure the ammonia gas generated permeate the gas permeable membrane, neutralize and react with the carrier liquid and change the conductivity of the carrier liquid, and continuously measure the ammonia nitrogen concentration of the test sample In the apparatus, and during the continuous measurement, an auto-span calibration for calibrating a span value by measuring a change in the conductivity of the calibration solution by flowing a calibration solution instead of water at regular intervals and measuring the span value is performed. The span value of the span calibration is compared with an upper limit value having a predetermined width, and if the span value exceeds the upper limit value, it is determined that the gas permeable membrane is deteriorated.

【0026】ガス透過膜劣化と判断された場合洗滌薬液
を流してガス透過膜の洗浄を行い、その後オートスパン
校正を行いガス透過膜が正常に復帰したか否かの判定を
行う。
When it is determined that the gas permeable membrane is deteriorated, the cleaning liquid is allowed to flow to wash the gas permeable membrane, and then the autospan calibration is performed to determine whether the gas permeable membrane has returned to normal.

【0027】または、連続測定の最中に、一定間隔置き
に検水に代えて校正液を流して校正液の導電度の変化を
計測してスパン値を校正するオートスパン校正を行い、
オートスパン校正のスパン値を監視し、スパン値が無限
大に近づいたとき装置異常と判断するものである。
Alternatively, during continuous measurement, an auto-span calibration for calibrating a span value by measuring a change in the conductivity of the calibration solution by flowing a calibration solution in place of the sample at regular intervals and measuring the change in conductivity is performed,
The span value of the auto span calibration is monitored, and when the span value approaches infinity, it is determined that the apparatus is abnormal.

【0028】[0028]

【発明の実施の形態】実施の形態1(ガス透過膜の劣化
診断機能) 上記従来の技術で説明した図1,図3からなるアンモニ
ア性窒素濃度測定装置において、処理水等検水のアンモ
ニア性窒素濃度を連続して測定すると、ガス透過分離カ
ラム1のガス透過膜2の表面に、検水中に含まれるアン
モニア性窒素と水酸化ナトリウムが反応して生成したア
ンモニアガスの透過が悪くなり、検出感度の低下を招い
てしまう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 (Diagnosis Function of Deterioration of Gas-permeable Membrane) In the ammonia nitrogen concentration measuring apparatus shown in FIGS. When the nitrogen concentration is continuously measured, the permeation of the ammonia gas generated by the reaction between the ammonium nitrogen and sodium hydroxide contained in the test water deteriorates on the surface of the gas permeable membrane 2 of the gas permeation separation column 1, and the detection is performed. This causes a reduction in sensitivity.

【0029】実施の形態1は、上記図1の装置が検出の
連続測定の最中に一定間隔置きに校正液を測定し、スパ
ン値を補正するオートスパン校正(図4参照)時に得ら
れたスパン値でガス透過膜2の劣化診断を行うものであ
る。
The first embodiment is obtained at the time of auto-span calibration (see FIG. 4) in which the apparatus shown in FIG. 1 measures a calibration solution at regular intervals during continuous measurement for detection and corrects a span value. The deterioration diagnosis of the gas permeable membrane 2 is performed by the span value.

【0030】ガス透過膜2の劣化が起こりアンモニアガ
スの透過が悪くなると、ガス透過分離カラム1から導電
度検出セル9の電極9Sを流れる流体の電気伝導度の変
化が、正常時に比べて小さくなり、最終的には電気伝導
度測定回路(図3)の出力電圧の低下を招き、オートス
パン校正時の可変抵抗VR3で調整されるスパン値が上
昇する。 スパン値[ppm/V]=校正液濃度[ppm]/ピー
クの高さ[V] そこで、予めスパン値に正常な幅を持たせることによっ
てガス透過膜2の劣化が診断可能となる。 a≦スパン値[ppm/V]≦b ここで、スパン値がbより大きければ、ガス透過膜2の
劣化ということになる。また、スパン値がaより小さけ
れば、出力電圧の異常ということになり、電気伝導度測
定回路(図3)のレンジの調整を行う必要がある。
When the deterioration of the gas permeable membrane 2 causes deterioration of the ammonia gas permeation, the change in the electric conductivity of the fluid flowing from the gas permeation / separation column 1 to the electrode 9S of the conductivity detection cell 9 becomes smaller than in the normal state. and eventually cause a decrease in the output voltage of the electric conductivity measuring circuit (FIG. 3), span value to be adjusted by the variable resistor VR 3 at the time of auto span calibration is increased. Span value [ppm / V] = Calibration solution concentration [ppm] / Peak height [V] Therefore, it is possible to diagnose the deterioration of the gas permeable membrane 2 by giving the span value a normal width in advance. a ≦ span value [ppm / V] ≦ b Here, if the span value is larger than b, it means that the gas permeable membrane 2 is deteriorated. If the span value is smaller than a, it means that the output voltage is abnormal, and it is necessary to adjust the range of the electric conductivity measuring circuit (FIG. 3).

【0031】以上のことをガス透過膜の劣化診断機能と
いい、CPU内で自己診断でき、また、スパン値の幅
a,bはスイッチ等で変更可能である。
The above-described function is referred to as a deterioration diagnosis function of the gas permeable membrane, which can be self-diagnosed in the CPU, and the spans a and b of the span value can be changed by a switch or the like.

【0032】実施の形態2(ガス透過膜の劣化診断機能
+自動復帰機能) 実施の形態2は、上記ガス透過膜の劣化診断機能により
ガス透過膜の劣化が検出された場合、自動復帰機能を働
かせる。ここでの自動復帰機能とは、上記実施の形態1
でガス透過膜の劣化と判断した後の処置のことで、塩酸
を使ってガス透過膜の洗浄を行うことである。
Embodiment 2 (Degradation Diagnosis Function of Gas Permeable Membrane + Automatic Return Function) In Embodiment 2, when the deterioration diagnosis function of the gas permeable film detects deterioration of the gas permeable film, an automatic return function is provided. Work. The automatic return function here refers to the first embodiment.
Means that the gas permeable membrane is degraded, and is to clean the gas permeable membrane using hydrochloric acid.

【0033】この塩酸洗浄工程について図2,図4を用
いて説明する。まず、バルブSV3はNC,バルブSV
4は閉じてバルブSV5を開き、検水ポンプP3で塩酸
を吸引し、バルブ5を閉じバルブSV6を開け洗浄水
(蒸留水)を吸引する。
The hydrochloric acid cleaning step will be described with reference to FIGS. First, the valve SV3 is NC, the valve SV
4 closes and opens the valve SV5, sucks hydrochloric acid by the water sample pump P3, closes the valve 5, opens the valve SV6, and sucks washing water (distilled water).

【0034】吸引した後バルブSV6を閉じバルブSV
3はNC,バルブSV4は開にし、検水ポンプP3で塩
酸をガス透過膜2の外側に吐出する。
After the suction, the valve SV6 is closed and the valve SV6 is closed.
Reference numeral 3 denotes an NC, the valve SV4 is opened, and hydrochloric acid is discharged to the outside of the gas permeable membrane 2 by a water sampling pump P3.

【0035】吐出後、バルブSV4は閉、バルブSV3
はNO、バルブSV8はNCにし、検水ポンプP3で校
正液14を吸引する。吸引後、バルブSV4は開、バル
ブSV3はNCにし、検水ポンプ3で校正液14をガス
透過膜2の外側に吐出する。このとき同時に、アルカリ
ポンプP1で水酸化ナトリウム11の吐出、吸引操作を
5回行い、ガス透過膜2の復活操作を行う。
After the discharge, the valve SV4 is closed and the valve SV3
Is NO, the valve SV8 is NC, and the calibration liquid 14 is sucked by the water sample pump P3. After the suction, the valve SV4 is opened, the valve SV3 is set to NC, and the calibration liquid 14 is discharged to the outside of the gas permeable membrane 2 by the water sampling pump 3. At this time, the operation of discharging and sucking the sodium hydroxide 11 is performed five times by the alkali pump P1, and the operation of restoring the gas permeable membrane 2 is performed.

【0036】塩酸洗浄後、上記ガス透過膜の劣化診断機
能により、オートスパン校正を行い、正常にガス透過膜
が復帰したか否かの判定を行う。
After washing with hydrochloric acid, the auto-span calibration is performed by the function of diagnosing deterioration of the gas permeable membrane to determine whether or not the gas permeable membrane has returned to normal.

【0037】上記判定を行った結果、ガス透過膜の正常
復帰が認められなければ、ガス透過膜の交換を外部出力
して知らせる。
As a result of the above determination, if the gas permeable membrane is not returned to the normal state, the replacement of the gas permeable membrane is notified to the outside by an external output.

【0038】実施の形態3(装置の故障検出方法) この故障検出方法とは、オートスパン時におけるスパン
値で検出するものである。ここで、装置の故障は、 1)ガス透過膜の目詰まり 2)流路の詰まり 3)ポンプの故障 4)バルブの故障 などである。
Embodiment 3 (Method of Detecting Failure of Apparatus) This failure detection method is a method of detecting by a span value at the time of auto span. Here, the failure of the device is 1) clogging of the gas permeable membrane 2) clogging of the flow path 3) failure of the pump 4) failure of the valve.

【0039】このような現象が装置内で起こると、電気
伝導度の変化が得られなくなり、電気伝導測定回路(図
3)の出力電圧が限りなく0に近づき、スパン値が限り
なく無限大になる。 スパン値[ppm/V]=校正液濃度[ppm]/ピー
ク高さ[V] このスパン値の無限大に増加するのを監視することで装
置の故障(異常)を検出する。
When such a phenomenon occurs in the apparatus, a change in electrical conductivity cannot be obtained, the output voltage of the electrical conductivity measuring circuit (FIG. 3) approaches zero infinitely, and the span value becomes infinite. Become. Span value [ppm / V] = Calibration solution concentration [ppm] / Peak height [V] The failure (abnormality) of the apparatus is detected by monitoring the infinity of this span value.

【0040】[0040]

【発明の効果】この発明は、上述のとおり構成されてい
るので、以下に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0041】(1)ガス透過膜の劣化診断ができるの
で、測定感度の低下を検出することができる。
(1) Since deterioration diagnosis of the gas permeable membrane can be performed, a decrease in measurement sensitivity can be detected.

【0042】(2)上記(1)のガス透過膜の劣化診断
後、ガス透過膜の洗浄を行い、オートスパン校正を行う
ことでガス透過膜の正常復帰したか否かの判定ができ
る。
(2) After the deterioration diagnosis of the gas permeable film in the above (1), the gas permeable film is washed and the auto-span calibration is performed to determine whether the gas permeable film has returned to the normal state.

【0043】(3)オートスパン校正時におにけるスパ
ン値により装置の故障を検出し、シーケンスに乗って動
き続けている装置を停止させることができる。また、装
置の故障出力を行えるので、すぐに装置の故障を知るこ
とができる。
(3) It is possible to detect a failure of the device based on the span value in the auto span calibration, and to stop the device that continues to move in the sequence. Further, since the failure output of the device can be performed, the failure of the device can be immediately known.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アンモニア性窒素濃度測定原理説明図。FIG. 1 is a diagram illustrating the principle of measuring the concentration of ammonia nitrogen.

【図2】アンモニア性窒素濃度測定装置の流路図。FIG. 2 is a flow chart of an ammoniacal nitrogen concentration measuring device.

【図3】アンモニア性窒素濃度測定装置における電気伝
導度測定回路図。
FIG. 3 is an electric conductivity measurement circuit diagram in the ammonia nitrogen concentration measurement device.

【図4】アンモニア性窒素濃度測定装置のタイムシーケ
ンスチャート。
FIG. 4 is a time sequence chart of the ammonia nitrogen concentration measuring device.

【図5】アンモニア性窒素濃度検出アルゴリズム。FIG. 5 is an algorithm for detecting an ammonia nitrogen concentration.

【符号の説明】[Explanation of symbols]

1…アンモニアガス透過分離カラム 2…ガス透過膜 5…恒温槽 6…プリクーラ 7…ミキサ 8…エアトラップ 9…導電度検出セル 9R,9S…電極 11…強アルカリ溶液(水酸化ナトリウム) 12…キャリア液(硫酸) 13…検水槽 14…校正液(標準液) 15…洗浄液 16…洗浄薬液(塩酸) P1〜P3…ポンプ BV1,BV2,SV1〜SV8…バルブ(弁)。 DESCRIPTION OF SYMBOLS 1 ... Ammonia gas permeation | separation column 2 ... Gas permeable membrane 5 ... Constant temperature bath 6 ... Precooler 7 ... Mixer 8 ... Air trap 9 ... Conductivity detection cell 9R, 9S ... Electrode 11 ... Strong alkali solution (sodium hydroxide) 12 ... Carrier Liquid (sulfuric acid) 13 ... Test tank 14 ... Calibration liquid (standard solution) 15 ... Cleaning liquid 16 ... Cleaning liquid (hydrochloric acid) P1 to P3 ... Pump BV1, BV2, SV1 to SV8 ... Valve (valve).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高瀬 長武 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 Fターム(参考) 2G058 AA01 BA07 BB15 DA02 DA03 EA03 EA05 EC01 FB02 FB12 GA12 GD01 GE01 2G060 AA06 AB04 AB07 AC03 AE17 AE21 AE26 AF03 AF08 AG08 AG11 EA08 FA01 FA15 FB02 FB03 FB07 HA02 HA06 HA07 HA09 HC07 HC10 HC15 HC24 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nagatake Takatake 2-1-1-17 Osaki, Shinagawa-ku, Tokyo F-term in Meidensha Co., Ltd. (reference) 2G058 AA01 BA07 BB15 DA02 DA03 EA03 EA05 EC01 FB02 FB12 GA12 GD01 GE01 2G060 AA06 AB04 AB07 AC03 AE17 AE21 AE26 AF03 AF08 AG08 AG11 EA08 FA01 FA15 FB02 FB03 FB07 HA02 HA06 HA07 HA09 HC07 HC10 HC15 HC24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガス透過分離カラムのガス透過膜面の一
方および他方にそれぞれ検水およびキャリア液を流し、
検水に強アルカリ溶液を添加し、発生したアンモニアガ
スがガス透過膜を透過してキャリア液と中和反応してキ
ャリア液の導電度が変化するのを計測し、検水のアンモ
ニア性窒素濃度を連続測定する装置において、 前記連続測定の最中に、一定間隔置きに検水に代えて校
正液を流して校正液の導電度の変化を計測してスパン値
を校正するオートスパン校正を行い、 オートスパン校正のスパン値を予め幅をもたせて設定し
た上限値と比較し、スパン値が上限値を越えた場合ガス
透過膜劣化と判断することを特徴とするアンモニア性窒
素濃度測定装置における故障検出方法。
Claims: 1. A sample and a carrier liquid are passed through one and the other of a gas permeable membrane surface of a gas permeable separation column.
A strong alkaline solution was added to the test water, and the generated ammonia gas permeated through the gas permeable membrane and neutralized with the carrier liquid to measure the change in the conductivity of the carrier liquid. In the device for continuous measurement, during the continuous measurement, perform auto span calibration to calibrate the span value by measuring the change in the conductivity of the calibration solution by flowing a calibration solution instead of water at regular intervals and measuring the change in the conductivity. The failure of the ammonia nitrogen concentration measuring device is characterized in that the span value of the auto span calibration is compared with an upper limit value with a predetermined width, and if the span value exceeds the upper limit value, it is determined that the gas permeable membrane has deteriorated. Detection method.
【請求項2】 請求項1において、 前記ガス透過膜劣化と判断された場合洗滌薬液を流して
ガス透過膜の洗浄を行い、 その後オートスパン校正を行いガス透過膜が正常に復帰
したか否かの判定を行うことを特徴とするアンモニア性
窒素濃度測定装置における故障検出方法。
2. The gas permeable membrane according to claim 1, wherein, when it is determined that the gas permeable membrane is deteriorated, the gas permeable membrane is washed by flowing a cleaning agent solution, and thereafter, autospan calibration is performed to determine whether the gas permeable membrane has returned to normal. A method for detecting a failure in an ammonia nitrogen concentration measuring device, characterized in that:
【請求項3】 ガス透過分離カラムのガス透過膜面の一
方および他方にそれぞれ検水およびキャリア液を流し、
検水に強アルカリ溶液を添加し、発生したアンモニアガ
スがガス透過膜を透過してキャリア液と中和反応してキ
ャリア液の導電度が変化するのを計測し、検水のアンモ
ニア性窒素濃度を連続測定する装置において、 前記連続測定の最中に、一定間隔置きに検水に代えて校
正液を流して校正液の導電度の変化を計測してスパン値
を校正するオートスパン校正を行い、 オートスパン校正のスパン値を監視し、スパン値が無限
大に近づいたとき装置異常と判断することを特徴とする
アンモニア性窒素濃度測定装置における故障検出方法。
3. A test liquid and a carrier liquid are respectively passed to one and the other of the gas permeable membrane surfaces of the gas permeable separation column,
A strong alkaline solution was added to the test water, and the generated ammonia gas permeated through the gas permeable membrane and neutralized with the carrier liquid to measure the change in the conductivity of the carrier liquid. In the device for continuous measurement, during the continuous measurement, perform auto span calibration to calibrate the span value by measuring the change in the conductivity of the calibration solution by flowing a calibration solution instead of water at regular intervals and measuring the change in the conductivity. A method for detecting a failure in an ammonia nitrogen concentration measuring device, wherein a span value of an auto span calibration is monitored, and when the span value approaches infinity, it is determined that the device is abnormal.
JP10228762A 1998-08-13 1998-08-13 Method for detecting failure in device for measuring concentration of ammonium nitrogen Pending JP2000055850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10228762A JP2000055850A (en) 1998-08-13 1998-08-13 Method for detecting failure in device for measuring concentration of ammonium nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10228762A JP2000055850A (en) 1998-08-13 1998-08-13 Method for detecting failure in device for measuring concentration of ammonium nitrogen

Publications (1)

Publication Number Publication Date
JP2000055850A true JP2000055850A (en) 2000-02-25

Family

ID=16881442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10228762A Pending JP2000055850A (en) 1998-08-13 1998-08-13 Method for detecting failure in device for measuring concentration of ammonium nitrogen

Country Status (1)

Country Link
JP (1) JP2000055850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204583A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Calibration method of liquid leakage detection sensor, and liquid leakage detection sensor
JP7368027B1 (en) 2022-04-28 2023-10-24 ビーエルテック株式会社 Flow analysis device and flow analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204583A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Calibration method of liquid leakage detection sensor, and liquid leakage detection sensor
JP7368027B1 (en) 2022-04-28 2023-10-24 ビーエルテック株式会社 Flow analysis device and flow analysis method
WO2023209956A1 (en) * 2022-04-28 2023-11-02 ビーエルテック株式会社 Flow analysis device and flow analysis method

Similar Documents

Publication Publication Date Title
US5364510A (en) Scheme for bath chemistry measurement and control for improved semiconductor wet processing
US6530262B1 (en) Method and device for determining the existence of leaks in a system with flowing fluid
US6723216B2 (en) Method and apparatus for detection of a bubble in a liquid
KR100860269B1 (en) A method and apparatus for on-line monitoring wafer cleaning solution at single wafer process and a reagent container for the apparatus
CA2476341C (en) Method for detecting a gas bubble in a liquid
Nakata et al. Determination of ammonium ion in a flow-injection system with a gas-diffusion membrane: Selection of optimal conditions for the pH indicator
JP2000055850A (en) Method for detecting failure in device for measuring concentration of ammonium nitrogen
US6734021B1 (en) Method and apparatus for measuring organic carbon content
US20070238188A1 (en) Peroxide monitor
US20210033590A1 (en) Method for determining a chemical intake capacity of a process medium in a measuring point and measuring point for determining a chemical intake capacity of a process medium
JPH11118782A (en) Ammoniacal nitrogen measuring apparatus
JP2865771B2 (en) Automatic liquid management device
JPH07308658A (en) Liquid controller
JPS61200473A (en) Method for analyzing flow of liquid specimen
JPS6353502B2 (en)
JP2000131308A (en) Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
JP2001124692A (en) Particulate measuring device
JPH08233769A (en) Liquid management system
CN106290343A (en) Total surplus line oxide real-time detection apparatus and detection method
JPS6013254A (en) Detection of contamination for flow through type analyzer
JPH10142234A (en) Oil content measuring device
JP2001050932A (en) Ammonium nitrogen concentration measurement method and device
JPH0989837A (en) Ion concentration detector
JPH04264229A (en) Method and apparatus for preparing calibration curve of dissolved gas component in liquid
KR20110040513A (en) Method of flow detecting