JP2000054062A - High friction steel material for joint, and its production - Google Patents

High friction steel material for joint, and its production

Info

Publication number
JP2000054062A
JP2000054062A JP23235898A JP23235898A JP2000054062A JP 2000054062 A JP2000054062 A JP 2000054062A JP 23235898 A JP23235898 A JP 23235898A JP 23235898 A JP23235898 A JP 23235898A JP 2000054062 A JP2000054062 A JP 2000054062A
Authority
JP
Japan
Prior art keywords
steel material
steel
oxide layer
weight
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23235898A
Other languages
Japanese (ja)
Inventor
Koichi Yamamoto
広一 山本
Hiroaki Satou
寛哲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23235898A priority Critical patent/JP2000054062A/en
Publication of JP2000054062A publication Critical patent/JP2000054062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the formation of an internal oxidation layer and to prevent intergranular oxidation by adding slight amounts of Ni, Cu, and Mo to a steel and controlling the concentration Ni/Cu and the thickness of an Ni-, Cu-, and Mo-concentrated layer formed on an internal oxidation layer, respectively. SOLUTION: The steel has a composition which consists of, by weight, 0.15-0.20% C, 0.4-1.6% Mn, <=0.1% Si, 0.1-0.5% Cr, 0.001-0.10% Al, 0.3-1.5% Ni, 0.3-1.5% Cu, 0.1-0.7% Mo, 0.001-0.010% N, and the balance Fe and in which the concentration of Ni/Cu is regulated to >=0.8. A cast billet of the steel is reheated to 1100 to 1300 deg.C and hot rolling is started, and rolling where cumulative draft at <=950 deg.C becomes >=40%, is applied. By this method, the steel material, which has an internal oxidation layer of <=2 μm thick in the steel-material surface and also has an Ni-, Cu-, and Mo-concentrated layer of >=2 μm thick on the internal oxidation layer and in which the sum of the concentrations of these elements is regulated to >=4.0% and the thickness with a Vickers hardness exceeding Hv 420 in the region between the surface and a position at a depth of 3 mm from the surface is regulated to >=0.5 mm, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建造物の構造部
材、特に、建造物の接合部材として使用される高張力圧
延形鋼から成形されるスプリットT形鋼、継ぎ手用圧延
鋼板などの継ぎ手用部材およびその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural member of a building, and more particularly to a joint such as a split T-section steel and a rolled steel plate for a joint formed from a high-tensile-rolled section steel used as a joining member of a building. The present invention relates to a member and a method for manufacturing the member.

【0002】[0002]

【従来の技術】建造物の超高層化、安全基準の厳格化等
から、柱用に用いられる鋼材は、一層の高張力化、高靱
性化、低降伏比、溶接接合部の高度の信頼性が求められ
ている。このような要求特性を満足するためには、従来
は圧延終了後に焼準処理等の熱処理を施すことが行われ
てきた。しかし、当然のことながら、この熱処理工程の
付加により製造コストが上昇したため、圧延ままで高性
能の材質特性および溶接接合特性が得られるような新し
い合金設計による形鋼鋼材とその製造方法の開発の必要
に迫られている。
2. Description of the Related Art Steel materials used for columns are required to have higher tensile strength, higher toughness, lower yield ratio, and higher reliability of welded joints due to the increasing height of buildings and stricter safety standards. Is required. In order to satisfy such required characteristics, conventionally, heat treatment such as normalizing treatment has been performed after the completion of rolling. However, as a matter of course, the addition of this heat treatment step increased the production cost, and the development of a shaped steel material by a new alloy design and a method for producing the same using a new alloy so that high-performance material properties and weld joint properties can be obtained as-rolled We are in need.

【0003】上記形鋼鋼材としては、圧延H形鋼が多く
用いられているが、H形鋼をユニバーサル圧延により製
造すると、圧延造形上からの圧延条件(圧延温度、圧下
率)の制限およびその形状の特異性からウェブ、フラン
ジ、フィレットの各部位で圧延仕上げ温度、圧下率、冷
却速度に差が生じ、例えば溶接構造用圧延鋼材(JIS
G3106)等の基準に満たない部位が生じる。更に
圧延造形により製品の寸法精度を得るために高温圧延を
指向するので板厚の厚いフランジ部は高温圧延となり、
圧延終了後の鋼材冷却も徐冷となる。その結果、ミクロ
組織は粗大化し、強度、靱性が低下する。
[0003] Rolled H-section steel is often used as the above-mentioned steel section, but when an H-section steel is manufactured by universal rolling, restrictions on rolling conditions (rolling temperature, rolling reduction) from rolling molding and restrictions thereof are imposed. Due to the peculiarity of the shape, differences occur in the rolling finish temperature, rolling reduction, and cooling rate in each part of the web, flange, and fillet. For example, a rolled steel material for a welding structure (JIS
G3106) and the like. Furthermore, since high-temperature rolling is aimed at in order to obtain the dimensional accuracy of the product by rolling molding, the thick flange part becomes high-temperature rolling,
The cooling of the steel material after the end of the rolling is also gradually cooled. As a result, the microstructure becomes coarse and the strength and toughness decrease.

【0004】一方、圧延プロセスでの組織微細化法とし
て、TMCPがあるが、形鋼圧延では圧延条件に制限が
あるので鋼材でのTMCPのような低温・大圧下圧延の
適用は困難である。また厚鋼板分野ではVNのような窒
化物の析出効果を利用し鷹強度・高靱性鋼を製造する、
例えば特公昭62−50548号公報、特公昭62−5
4862号公報に開示された技術が提案されている。し
かしながらこれらの方法を本発明が対称とする継ぎ手用
部材の製造に適用した場合には、高濃度の固溶Nを含有
することから、生成するベイナイト組織内に高炭素島状
マルテンサイトを生成し、靱性が著しく低下して規格値
をクリアすることは困難であった。
On the other hand, there is TMCP as a method of refining the structure in the rolling process, but it is difficult to apply low-temperature and large-reduction rolling such as TMCP to steel materials because the rolling conditions are limited in section steel rolling. In the field of heavy steel plates, it manufactures hawk-strength and high-toughness steels using the precipitation effect of nitrides such as VN.
For example, JP-B-62-50548, JP-B-62-5
A technique disclosed in Japanese Patent No. 4862 is proposed. However, when these methods are applied to the production of a symmetrical joint member according to the present invention, since high-concentration solute N is contained, high-carbon island-like martensite is formed in the generated bainite structure. In addition, the toughness was remarkably reduced, and it was difficult to clear the standard value.

【0005】更に、フランジを有する形鋼、例えばH形
鋼における柱と梁の接合は、H形鋼同士を結合する部材
はT型の鋳鋼部材或いは通常の強度・靱性を有する厚鋼
板を多数枚接合部に当接して高力ボルト接合する、いわ
ゆるダイヤフラム継ぎ手(図1)を予め施工するか、鉄
骨組み立て加工時に施工する方式を採用せざるを得なか
った。阪神大震災およびノースリジ地震では、鋼構造物
の破壊がこの溶接部の欠陥を起点に発生していた事実が
ある。また、溶接接合の信頼性の欠如から、柱と梁とを
溶接なしでT形鋼継ぎ手を介して両者をボルト接合によ
り機械接合する方法が採用されてきた。しかし、前述の
継ぎ手方法を実現するためには、より強度で表面硬化さ
せた高摩擦係数を有するT形鋼を開発する必要がある。
[0005] Further, in the joining of columns and beams in a section steel having a flange, for example, an H section steel, a member connecting the H sections is a T-shaped cast steel member or a large number of thick steel sheets having ordinary strength and toughness. A so-called diaphragm joint (FIG. 1) for contacting the joint portion and joining with high-strength bolts has to be preliminarily applied or employed during steel frame assembly processing. In the Great Hanshin Earthquake and the North Rigi Earthquake, there has been a fact that the failure of the steel structure originated from this weld defect. Also, due to the lack of reliability of the welding connection, a method of mechanically connecting the column and the beam to each other by bolt connection via a T-shaped steel joint without welding has been adopted. However, in order to realize the above-mentioned joint method, it is necessary to develop a T-section steel having a higher friction coefficient that is hardened with a higher strength.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題を
解決すべくなされたもので、建造物の構造部材、特に、
建造物の接合部材として使用される高張力圧延形鋼から
成形されるスプリットT形鋼、継ぎ手用圧延鋼板などの
継ぎ手用部材およびその製造方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has been made in consideration of the following problems.
An object of the present invention is to provide a joint member such as a split T-section steel, a rolled steel plate for a joint formed from a high-tensile rolled section steel used as a joint member of a building, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の建造物
の接合部材として使用される高張力圧延形鋼から成形さ
れるスプリットT形鋼、継ぎ手用圧延鋼板などの継ぎ手
用部材として使用される鋼材において、腐食を起点とし
て作用する内部酸化層の生成を抑制し、粒界酸化を防止
するために、Ni,Cu,Moを微量添加し、Ni/C
uの濃度比を調整し、更に、鋼材表面の内部酸化層の厚
み、内部酸化層上に形成されるNi,Cu,Moの濃化
層の厚み、これらの元素濃度の総量を制御することによ
り耐候性と耐疲労特性に優れた圧延鋼材を開発すること
に成功したものであり、その要旨は次の通りである。
The present invention is used as a joint member such as a split T-section steel or a rolled steel plate for a joint formed from a high-tensile-rolled section steel used as a joint member of the above-mentioned building. To suppress the formation of an internal oxide layer acting from corrosion as a starting point and to prevent grain boundary oxidation, a small amount of Ni, Cu, Mo
By controlling the concentration ratio of u, and further controlling the thickness of the internal oxide layer on the steel material surface, the thickness of the Ni, Cu, and Mo concentrated layers formed on the internal oxide layer, and the total amount of these element concentrations. It has succeeded in developing a rolled steel excellent in weather resistance and fatigue resistance, and the gist is as follows.

【0008】1)重量%で、C:0.15〜0.20
%、Cr:0.1〜0.5%を含有し、更に微量Ni,
CuおよびMoを必須元素として添加した建築用鋼材で
あって、Ni/Cuの濃度比が0.8以上、鋼材表面の
内部酸化層が2μm以下、前記内部酸化層上に厚さ2μ
m以上のNi,Cu,Moの濃化層を有し、かつこれら
の元素濃度の総量が4.0重量%以上で、更に表面から
3mmの深さ内でビッカース硬さHv:420を超える
厚みが0.5mm以上有することを特徴とする高摩擦継
ぎ手用鋼材。
1) In weight%, C: 0.15 to 0.20
%, Cr: 0.1 to 0.5%, and further, a trace amount of Ni,
An architectural steel material to which Cu and Mo are added as essential elements, wherein a concentration ratio of Ni / Cu is 0.8 or more, an internal oxide layer on the steel material surface is 2 μm or less, and a thickness of 2 μm is formed on the internal oxide layer.
m having a concentration layer of Ni, Cu, Mo of not less than m, and a total amount of these element concentrations of not less than 4.0% by weight, and a Vickers hardness Hv of more than 420 within a depth of 3 mm from the surface. Is 0.5 mm or more.

【0009】2)重量%で、C :0.15〜0.20
%、Mn:≦0.4%、Si:≦0.1%、Cr:≦
0.1%、Al:0.001〜0.10%、Ni:0.
8〜3.0%、Cu:0.8〜1.5%、Mo:0.4
〜0.7%、N :0.001〜0.010%、を含有
し、かつNi/Cuの濃度比が0.8以上であり、残部
がFeおよび不可、CuおよびMoを必須元素として添
加した建築用鋼材であって、鋼材表面の内部酸化層が2
μm以下、前記内部酸化層上に厚さ2μm以上のNi,
Cu,Moの濃化層を有し、かつこれらの元素濃度の総
量が4.0重量%以上で、更に表面から3mmの深さ内
でビッカース硬さHv:420を超える厚みが0.5m
m以上有することを特徴とする高摩擦継ぎ手用鋼材。
2) In weight%, C: 0.15 to 0.20
%, Mn: ≦ 0.4%, Si: ≦ 0.1%, Cr: ≦
0.1%, Al: 0.001 to 0.10%, Ni: 0.
8 to 3.0%, Cu: 0.8 to 1.5%, Mo: 0.4
0.7 to 0.7%, N: 0.001 to 0.010%, and the concentration ratio of Ni / Cu is 0.8 or more, with the balance being Fe and impossible, and Cu and Mo added as essential elements. Construction steel material, wherein the internal oxide layer on the surface of the steel material is 2
μm or less, Ni having a thickness of 2 μm or more on the internal oxide layer,
It has a concentrated layer of Cu and Mo and the total amount of these element concentrations is 4.0% by weight or more, and the thickness exceeding Vickers hardness Hv: 420 within a depth of 3 mm from the surface is 0.5 m.
A high-friction joint steel material having at least m.

【0010】3)重量%で、更に、Nb:0.005〜
0.10%、V:0.01〜0.20%、Ti:0.0
05〜0.025%、B:0.0003〜0.0030
%のいずれか1種または2種以上を含有することを特徴
とする上記2)記載の高摩擦継ぎ手用鋼材。 4)重量%で、更に、Ca:0.0005〜0.005
0%、Mg:0.0005〜0.010%、REM:
0.0005〜0.010%のいずれか1種または2種
以上を含有することを特徴とする上記2)または3)記
載の耐候性および耐疲労特性に優れた圧延鋼材。
3) By weight%, Nb: 0.005 to
0.10%, V: 0.01 to 0.20%, Ti: 0.0
05 to 0.025%, B: 0.0003 to 0.0030
% Of the steel material for high friction joints according to the above 2), wherein the steel material contains any one or more of the above-mentioned steel materials. 4) In weight%, Ca: 0.0005 to 0.005
0%, Mg: 0.0005 to 0.010%, REM:
A rolled steel material excellent in weather resistance and fatigue resistance according to the above 2) or 3), which contains any one or more of 0.0005 to 0.010%.

【0011】5)重量%で、C :0.15〜0.20
%、Mn:≦0.4%、Si:≦0.1%、Cr:≦
0.1%、Al:0.001〜0.10%、Ni:0.
8〜3.0%、Cu:0.8〜1.5%、Mo:0.4
〜0.7%、N :0.001〜0.010%、を含有
し、かつNi/Cuの濃度比が0.8以上であり、残部
がFeおよび不可避的不純物からなる鋳片を1100〜
1300℃の温度域に再加熱した後に熱延を開始し、9
50℃以下の累積圧下率が40%以上となる圧延を行
い、900℃以上で熱延を終了し、熱延ままで鋼材表面
の内部酸化層が2μm以下で、前記内部酸化層上に厚さ
2μm以上のNi,Cu,Moの濃化層を有し、これら
の元素濃度の総量が4.0重量%以上で、更に表面から
3mmの深さ内でビッカース硬さHv:420を超える
厚みが0.5mm以上有することを特徴とする高摩擦継
ぎ手用鋼材の製造方法。
5) In weight%, C: 0.15 to 0.20
%, Mn: ≦ 0.4%, Si: ≦ 0.1%, Cr: ≦
0.1%, Al: 0.001 to 0.10%, Ni: 0.
8 to 3.0%, Cu: 0.8 to 1.5%, Mo: 0.4
~ 0.7%, N: 0.001 to 0.010%, and the Ni / Cu concentration ratio is 0.8 or more, and the balance is 1100 to 1100%.
After reheating to a temperature range of 1300 ° C., hot rolling was started and 9
Rolling is performed so that the cumulative draft of 50 ° C. or less is 40% or more, hot rolling is completed at 900 ° C. or more, and the thickness of the internal oxide layer on the steel material surface is 2 μm or less as it is hot rolled. It has a concentrated layer of Ni, Cu, Mo of 2 μm or more, the total amount of these elements is 4.0% by weight or more, and the thickness exceeding Vickers hardness Hv: 420 within a depth of 3 mm from the surface. A method for producing a steel material for a high friction joint, which has a diameter of 0.5 mm or more.

【0012】6)重量%で、更に、Nb:0.005〜
0.10%、V:0.01〜0.20%、Ti:0.0
05〜0.025%、B:0.0003〜0.0030
%のいずれか1種または2種以上を含有することを特徴
とする上記5)記載の高摩擦継ぎ手用鋼材の製造方法。 7)重量%で、更に、Ca:0.0005〜0.005
0%、Mg:0.0005〜0.010%、REM:
0.0005〜0.010%のいずれか1種または2種
以上を含有することを特徴とする上記5)または6)記
載の高摩擦継ぎ手用鋼材の製造方法。
6) By weight%, Nb: 0.005 to
0.10%, V: 0.01 to 0.20%, Ti: 0.0
05 to 0.025%, B: 0.0003 to 0.0030
%, The method for producing a steel material for a high-friction joint according to the above item 5), wherein the steel material contains at least one of the following. 7) By weight%, Ca: 0.0005 to 0.005
0%, Mg: 0.0005 to 0.010%, REM:
The method for producing a steel material for a high-friction joint according to the above item 5) or 6), comprising one or more of 0.0005 to 0.010%.

【0013】[0013]

【発明の実施の形態】本発明者らは、400〜700M
Pa級のH形鋼における溶接部の破壊のメカニズムを鋭
意研究を重ねた結果、高強度・高摩擦特性を有するスプ
リットT形鋼では、高摩擦係数を満足させる表面硬度を
得るために、表面を焼き入れし、表面硬度Hv≧420
を目標としているが、焼き入れを行っても表面から0.
5mmまでは完全にはマルテンサイト変態しないことか
ら前記表面硬度が得られない。その原因としては、スラ
ブの高温加熱において、およそ20μm厚さの内部酸化
層中にはMn酸化物の生成によるMn希薄帯と(MnS
i)−Oの存在によるγ/α変態点の上昇およびSi添
加によるファイヤライトの生成により生じる粒界酸化層
形成に起因していることを見いだした。また、本発明者
らは、60Kgf級の高張力H形鋼の粒界酸化のメカニ
ズムを鋭意研究を重ねた結果、内部酸化層の生成は、高
張力H形鋼のフランジ内面に発生するシーム疵と密接な
関係があり、このシーム疵が腐食、孔食の起点として作
用し、耐候性を著しく阻害するものである。そして、こ
のシーム疵が、スラブエッジングによるフランジ内面歪
集中部での皺の形成と、この折れ込みにより発生するこ
とも解明できた。本発明者らは、このシーム疵発生防止
対策として。皺の形成抑制に寄与する微量元素添加によ
るスラブ表面での粒界酸化層の生成とその影響、そして
粒界酸化層の生成抑制について研究を重ねた。
BEST MODE FOR CARRYING OUT THE INVENTION
As a result of intensive studies on the fracture mechanism of welds in Pa-class H-section steels, the split T-section steels with high strength and high frictional properties have been developed to obtain a surface hardness that satisfies a high coefficient of friction. Hardened, surface hardness Hv ≧ 420
, But even if quenching is performed, it is 0.1 mm from the surface.
Up to 5 mm, the surface hardness cannot be obtained because the martensitic transformation does not occur completely. The reason for this is that when the slab is heated at a high temperature, the Mn diluted band and (MnS
i) It was found that this was caused by the rise of the γ / α transformation point due to the presence of -O and the formation of the grain boundary oxide layer caused by the formation of firelite by the addition of Si. Further, the present inventors have conducted intensive studies on the mechanism of grain boundary oxidation of a 60 Kgf-class high-strength H-section steel. As a result, the formation of an internal oxide layer was caused by seam flaws generated on the inner surface of the flange of the high-strength H-section steel. This seam flaw acts as a starting point of corrosion and pitting corrosion and significantly impairs weather resistance. Then, it was also clarified that the seam flaw was formed by wrinkles formed in the strain concentration portion on the inner surface of the flange due to slab edging, and that the seam flaws were caused by the breakage. The present inventors have taken measures to prevent the occurrence of seam flaws. We studied the formation and influence of the grain boundary oxide layer on the slab surface by the addition of trace elements that contribute to the suppression of wrinkle formation, and the study on the suppression of the formation of the grain boundary oxide layer.

【0014】その結果、上記問題点を改善するには、内
部酸化層の厚さの低減と、内部酸化層上への合金濃化層
の生成が想起される。先ず、粒界酸化層の形成により内
部酸化層の厚さが増加し、表面焼き入れ硬化性が低下す
ることになる。この抑制には、低Si化(粒界ファイヤ
ライトの生成阻止)と、Mnより酸化し易い元素である
Cr添加が有効である。加えて、鉄より酸化し難いC
u,Ni,Moが高温酸化により内部酸化層上へ濃化
し、これにより表面焼き入れ硬化性の向上が達成された
ものである。
As a result, in order to solve the above-mentioned problems, it is considered that the thickness of the internal oxide layer is reduced and an alloy-concentrated layer is formed on the internal oxide layer. First, the formation of the grain boundary oxide layer increases the thickness of the internal oxide layer and decreases the surface quench hardening property. To suppress this, it is effective to lower the Si (prevent the generation of grain boundary firelite) and to add Cr, which is an element that is more easily oxidized than Mn. In addition, C is less oxidizable than iron
u, Ni, and Mo are concentrated on the internal oxide layer by high-temperature oxidation, thereby improving the surface quench hardening property.

【0015】前述の内部酸化層の生成と、強化元素とし
て添加されるCr,Ni,Cu,Mo等の微量元素が大
きく影響していることが判明した。すなわち、地鉄表層
部に形成される内部酸化層は、Si,Mn,Feの単
独、複合した酸化物、すなわち、FeとMnO,SiO
2 等の粒子とが混合した脱合金層で形成されていること
が分かり、これらの元素が空気中の酸素と結合してファ
イヤライト(2SiO2FeO)として生成し、これが
溶接割れの起点となって粒界酸化が発生することが判明
した。
It has been found that the formation of the internal oxide layer described above and trace elements such as Cr, Ni, Cu, and Mo added as reinforcing elements have a large effect. That is, the internal oxide layer formed on the surface layer of the ground iron is composed of a single or composite oxide of Si, Mn, and Fe, that is, Fe and MnO, SiO
It can be seen that they are formed in a dealloyed layer in which particles such as 2 are mixed, and these elements combine with oxygen in the air to form as firelite (2SiO 2 FeO), which becomes the starting point of welding cracks. It was found that grain boundary oxidation occurred.

【0016】そして、前記粒界酸化層の生成がCrを添
加することによって、これを抑制することが可能にな
り、腐食および孔食深さ拡大抑制が可能になり、更に、
Si量を低減することによって粒界酸化ファイヤライト
の生成抑制により腐食および孔食深さ拡大抑制も可能と
なった。更に、MnSの生成防止により腐食および孔食
深さ拡大抑制もできることができた。これは、固溶S量
を低減させることによってS量をも低減させることがで
き、Ca,Mg,REMによる硫化物生成によって前記
固溶S量を低減するものである。
[0016] By adding Cr, the formation of the grain boundary oxide layer can be suppressed, and corrosion and pitting depth can be suppressed.
By reducing the amount of Si, the formation of grain boundary oxidized firelite can be suppressed, so that the corrosion and the pit depth can be suppressed from expanding. Further, the prevention of MnS formation also made it possible to suppress corrosion and increase the pit depth. This means that the amount of S can also be reduced by reducing the amount of solute S, and the amount of solute S is reduced by sulfide generation by Ca, Mg, and REM.

【0017】本発明者らは、粒界酸化の顕著なNi,C
u添加鋼について様々な鋼種を用いて実験を行った。6
0Kgf級高張力形鋼に、微量Mo,Crを添加し、真
空溶製した表1に示すインゴットを半分に切断し、再加
熱炉で1300℃内の温度で約4.5時間加熱し、組織
観察およびCMA,SEM解析によって、これらの添加
元素による粒界酸化挙動に及ぼす影響を調査した。
The present inventors have found that Ni, C with remarkable grain boundary oxidation
Experiments were performed on u-added steel using various steel types. 6
A small amount of Mo, Cr was added to a 0 Kgf-class high-strength section steel, and the vacuum-melted ingot shown in Table 1 was cut in half and heated in a reheating furnace at a temperature within 1300 ° C. for about 4.5 hours. The effects of these added elements on the grain boundary oxidation behavior were investigated by observation, CMA, and SEM analysis.

【0018】図2に、Mo,Cr,Mo+Crの添加量
を変化させた場合における、各々の合金添加量と粒界酸
化の粒界総長との関係を示す。(試料表面での断面長さ
60mm中に存在する粒界酸化部の長さの合計。)ま
た、図3aにCrフリー(Cr無添加)鋼の断面組織写
真を、また、図3bにCr:0.20%添加鋼の断面組
織写真をそれぞれ示した。この両者の断面組織写真から
分かるように、Cr:0.1〜0.1%添加によって粒
界酸化が顕著に抑制されていることが明らかである。一
方、Moは、図2からも分かるように粒界酸化を促進す
る傾向がある。
FIG. 2 shows the relationship between the addition amount of each alloy and the total length of the grain boundary oxidation in the case where the addition amounts of Mo, Cr, and Mo + Cr are changed. (Total length of grain boundary oxidized portions existing in a cross-sectional length of 60 mm on the sample surface.) FIG. 3A is a photograph of a cross-sectional structure of a Cr-free (Cr-free) steel, and FIG. The cross-sectional structure photographs of the 0.20% added steel are shown. As can be seen from these cross-sectional structure photographs, it is clear that grain boundary oxidation is significantly suppressed by the addition of 0.1 to 0.1% of Cr. On the other hand, Mo tends to promote grain boundary oxidation, as can be seen from FIG.

【0019】更に、本発明者らは、Mo:0.20%、
Cr:0.2%、Mo:0.1%+Cr:0.1%をそ
れぞれ添加した鋼についてCMA解析を行ったところ、
Moはスケール中に酸化物として分散しているのに対
し、Crは内部酸化層内にCr酸化物として分散してい
ることが判明した。この傾向は、MoとCrを複合添加
した場合においては極めて顕著になり、Moはスケール
中と内部酸化層の表面とに、Crは内部酸化層中にのみ
存在することも分かった。更に、Cr:0.20%添加
鋼のCMA解析した同一部位についての、Crと〔O〕
の複合濃度分布を調査した結果、〔O〕の閾値レベルを
下げていくと、Cr酸化物の分布領域がスケール/内部
酸化層界面付近から内部の方に拡がっており、Cr酸化
物中のO/Cr比が低減する傾向が認められることも分
かった。更に、上記の鋼と同一試料の内部酸化層の深さ
方向中央部についてSEM解析を行ったところ、Mo:
0.20%鋼の粒界酸化層の先端部では、ファイヤライ
ト(2FeO・SiO2 )と推定されるSiとOが検出
され、内部酸化層中の酸化物粒子からはSiとOに加
え、Mnが検出された。一方、Cr:0.20%添加鋼
では、内部酸化層中の酸化物粒子にはSiとOに加えて
Crも検出された。
Further, the present inventors have found that Mo: 0.20%,
CMA analysis was performed on steel to which Cr: 0.2%, Mo: 0.1% + Cr: 0.1% were added.
It was found that Mo was dispersed as oxide in the scale, whereas Cr was dispersed as Cr oxide in the internal oxide layer. This tendency was extremely remarkable when Mo and Cr were added in combination. It was also found that Mo was present only in the scale and on the surface of the internal oxide layer, and that Cr was present only in the internal oxide layer. Further, Cr and [O] at the same site where the Cr: 0.20% added steel was subjected to CMA analysis
As a result of investigating the composite concentration distribution of Cr, when the threshold level of [O] was lowered, the distribution region of Cr oxide was expanded from the vicinity of the scale / internal oxide layer interface to the inside. It was also found that the / Cr ratio tended to decrease. Further, when the SEM analysis was performed on the central part in the depth direction of the internal oxide layer of the same sample as the above steel, Mo:
At the tip of the grain boundary oxide layer of 0.20% steel, Si and O estimated to be firelite (2FeO.SiO 2 ) are detected, and from the oxide particles in the internal oxide layer, in addition to Si and O, Mn was detected. On the other hand, in the steel with 0.20% Cr added, Cr was detected in the oxide particles in the internal oxide layer in addition to Si and O.

【0020】そこで、耐溶接割れを向上させるための種
々の要因を検討し、前述のCr添加による粒界酸化層の
生成を抑制する機構が以下の要因に起因するものと考え
られる。酸素は、表面からγ粒界をパスに内方拡散す
るが、CrはFeより酸化し易いために直ちにCr酸化
物を生成するため、粒界酸化層を形成しない、Cr2
3 と、FeOとは容易にFeO・Cr2 3 スピネル
を生成すし、このスピネルには、多量の陽イオン空孔を
要すると考えられ、この陽イオン空孔を介して拡散する
CrおよびFeイオンとγ粒界を経て内方拡散してくる
酸素とが化合し、酸化物を形成するために、酸素の粒界
拡散が阻害される、FeO・Cr2 3 スピネルを生
成することにより、低融点のファイヤライトの生成が抑
制され、粒界酸化層を形成しない、である。
Then, various factors for improving the resistance to welding cracking are examined, and it is considered that the mechanism for suppressing the formation of the grain boundary oxide layer due to the addition of Cr is caused by the following factors. Oxygen, although inward diffusion of γ grain boundaries in the path from the surface, Cr is to produce immediately Cr oxide for easily oxidized than Fe, does not form a grain boundary oxidized layer, Cr 2
O 3 and FeO easily produce FeO · Cr 2 O 3 spinel, which is thought to require a large amount of cation vacancies. Cr and Fe diffuse through the cation vacancies. Ions and oxygen that diffuses inward through the γ grain boundaries combine to form FeO.Cr 2 O 3 spinel, which inhibits grain boundary diffusion of oxygen to form oxides. The generation of low melting point firelite is suppressed, and no grain boundary oxide layer is formed.

【0021】このように、本発明においては、上述のフ
ァイヤライト生成の原因となるSiを極力低減させ、内
部酸化層を極端に薄くし、更に、Mn量の低減により、
孔食の起点となり耐候性を著しく阻害するMnSの生成
が少なくすることで、耐孔食性および耐候性に優れた高
張力H形鋼が得られる。また、本発明においては含有S
量の低減に加え、Ca,Mg,REMを添加することで
硫化物生成により固溶S量も併せて低減可能になるもの
である。
As described above, in the present invention, Si, which causes the above-mentioned firelite formation, is reduced as much as possible, the internal oxide layer is made extremely thin, and the Mn content is reduced.
By reducing the generation of MnS, which is a starting point of pitting corrosion and significantly impairs weather resistance, a high-tensile H-section steel excellent in pitting corrosion resistance and weather resistance can be obtained. In the present invention, the content S
By adding Ca, Mg, and REM in addition to reducing the amount, the amount of dissolved S can be reduced together with the formation of sulfide.

【0022】更に、本発明においては、前述の耐候性向
上の要因を製造プロセスの観点から探索し、Ni,C
u,Moが添加された高張力H形鋼の場合には、内部酸
化層上にNi,Cu,Moの濃化層が形成され、その濃
化層形成量がスラブ加熱温度の高低に非常に左右される
ことを知見し、特に、スラブ加熱が1100℃〜130
0℃、好ましくは1300℃で4.5時間、という高温
で行われる場合には図4bに示すように、前述のNi,
Cu,Moの濃化層が2μm以下の厚みで形成されてい
ることも知見した。一方、従来のような1100℃以下
という低温スラブ加熱の場合では、図4aに示すよう
に、生成されないか、生成しても極めて薄い濃化層であ
ることが分かり、このために。腐食および孔食深さも抑
制され、安定錆の生成速度上昇効果による 耐候性向上
が図れるものである。
Further, in the present invention, the above-mentioned factors for improving the weather resistance are searched from the viewpoint of the manufacturing process, and Ni, C
In the case of a high-strength H-section steel to which u and Mo are added, a concentrated layer of Ni, Cu, and Mo is formed on the internal oxide layer, and the amount of the concentrated layer formed is extremely dependent on the slab heating temperature. That the slab heating is 1100 ° C. to 130 ° C.
When performed at a high temperature of 0 ° C., preferably at 1300 ° C. for 4.5 hours, as shown in FIG.
It was also found that a Cu, Mo concentrated layer was formed with a thickness of 2 μm or less. On the other hand, in the case of the conventional low-temperature slab heating of 1100 ° C. or less, as shown in FIG. Corrosion and pit depth are also suppressed, and weather resistance can be improved by the effect of increasing the generation rate of stable rust.

【0023】一方、耐疲労強度という観点からみると、
前述したように、鉄(FeO)より酸化し易いSi,M
nのそれぞれの量を低減させることによって腐食に起点
として作用する内部酸化層の生成を著しく抑制すること
により、内部酸化層の生成に伴う軟化層・粒界酸化層に
よる疲労強度低下を防止することができる。なお、前記
粒界酸化層はノッチ効果による応力集中を生じ、同様に
疲労強度低下させる原因ともなっている。また、Si量
を低減させることによって、粒界酸化ファイヤライト層
の生成抑制作用から疲労強度が上昇させることができ
る。更に、前述したような1100℃〜1300℃、好
ましくは1300℃で4.5時間、という高温スラブ加
熱により、酸化による内部酸化層上へのNi,Cu,M
oの濃化層が2μm以下の厚みで形成されるため、表面
層内部酸化層の軟化抑制効果によって疲労強度が上昇す
る。また、この疲労強度は、降伏強度および引張強度と
ほぼ直線的な関係にあるため、降伏強度および引張強度
の上昇に伴い疲労強度も上昇することになる。
On the other hand, from the viewpoint of fatigue strength,
As described above, Si and M are more easily oxidized than iron (FeO).
By reducing the amount of each of n, the generation of an internal oxide layer acting as a starting point for corrosion is significantly suppressed, thereby preventing a reduction in fatigue strength due to a softened layer and a grain boundary oxide layer accompanying the generation of an internal oxide layer. Can be. The grain boundary oxide layer causes stress concentration due to the notch effect, and similarly causes a reduction in fatigue strength. In addition, by reducing the amount of Si, the fatigue strength can be increased due to the effect of suppressing generation of the grain boundary oxidized firelite layer. Further, by heating the slab at a high temperature of 1100 ° C. to 1300 ° C., preferably 1300 ° C. for 4.5 hours as described above, Ni, Cu, M
Since the o-enriched layer is formed with a thickness of 2 μm or less, the fatigue strength increases due to the effect of suppressing the softening of the oxide layer inside the surface layer. Further, since the fatigue strength has a substantially linear relationship with the yield strength and the tensile strength, the fatigue strength increases with the increase in the yield strength and the tensile strength.

【0024】次に、本発明による高摩擦継ぎ手用鋼材の
合金成分範囲とその製造方法について詳細に説明する。
炭素(C)は、60Kgf級の高張力H形鋼の母材の降
伏強度および引張強度を確保するために、0.15〜
0.20%の範囲で添加する。珪素(Si)は、母材の
強度確保、溶鋼の予備脱酸などに必要であるが、0.1
%以上の添加は、MnSi・Oを形成し、内部酸化層増
加、および粒界酸化を促す2SiO 2FeOを形成する
傾向を強めることになるので少ない程好ましく、上限を
0.1%とする。
Next, the range of alloy components of the steel material for a high friction joint according to the present invention and the method for producing the same will be described in detail.
Carbon (C) is 0.15 to 50% in order to secure the yield strength and tensile strength of the base material of the high-tensile H-section steel of 60 kgf class.
Add in the range of 0.20%. Silicon (Si) is necessary for securing the strength of the base material, preliminary deoxidation of molten steel, and the like.
% Or more is preferable because it forms MnSi.O and increases the tendency to form 2SiO 2 FeO which promotes the increase of the internal oxide layer and the grain boundary oxidation.

【0025】マンガン(Mn)は、母材の強度確保に必
要な元素であるが、母材および溶接部の靱性および割れ
性に対する許容濃度、およびMnSを生成し、孔食の起
点となり耐候性を著しく阻害するため、その上限を1.
6%とする必要がある。クロム(Cr)は、本発明にお
いては重要な元素であり、FeO・Cr2 3スピネル
を生成することにより、低融点のファイヤライトを生成
が抑制して粒界酸化層を形成しないために、また母材強
度上昇の意味からも、少なくとも0.1%以上は必要で
あるが0.5%を超える過剰な添加は、Cr・Oとなっ
て内部酸化層を形成して腐食の起点となるため、その上
限を0.5%とする。
Manganese (Mn) is an element necessary for securing the strength of the base material, but forms an allowable concentration for the toughness and cracking of the base material and the welded portion, and MnS, and serves as a starting point of pitting corrosion and weather resistance. Because it significantly inhibits, the upper limit is set to 1.
It needs to be 6%. Chromium (Cr) is an important element in the present invention. Since the generation of FeO.Cr 2 O 3 spinel suppresses the production of low melting point firelite and does not form a grain boundary oxide layer, From the standpoint of increasing the base material strength, at least 0.1% or more is necessary, but an excessive addition exceeding 0.5% becomes Cr.O, forms an internal oxide layer, and becomes a starting point of corrosion. Therefore, the upper limit is set to 0.5%.

【0026】アルミニウム(Al)は、強力な脱酸元素
であり、脱酸と鋼の清浄化およびAlNを析出させ固溶
Nを固定し、靱性を向上させるために0.1%を上限と
して添加される。しかし、Ca,Mg,REM等を添加
し、これらの微細酸化物を積極的に利用する場合には、
多量のAl量添加ではCa,Mg,REM等の微細酸化
物形成を阻害するために、できるだけ少ない方が好まし
い。
Aluminum (Al) is a powerful deoxidizing element, and is added with an upper limit of 0.1% in order to deoxidize and clean steel, precipitate AlN, fix dissolved N, and improve toughness. Is done. However, when Ca, Mg, REM, etc. are added and these fine oxides are used positively,
When a large amount of Al is added, the formation of fine oxides such as Ca, Mg, and REM is hindered.

【0027】次に、本発明ではNi,Cu,Moの添加
が必須となる。これらの元素は共に高強度化元素とし
て、いずれも母材の靱性を高め、しかも内部酸化層上に
2μm以上のNi,Cu,Moを濃化層を形成する重要
な元素である。Niの添加量は、0.3〜3.0%、C
uは0.3〜1.5%の範囲で添加される。Moは母材
強度および高温強度確保に有効な元素であるが、過剰な
添加はMo炭化物を析出して固溶Moとして焼き入れ性
向上効果が飽和するので0.1〜0.7%の範囲で添加
する必要がある。
Next, in the present invention, addition of Ni, Cu and Mo is essential. Both of these elements are important elements for enhancing the toughness of the base material and forming a layer of Ni, Cu, and Mo having a thickness of 2 μm or more on the internal oxide layer, as elements for increasing the strength. The addition amount of Ni is 0.3 to 3.0%,
u is added in the range of 0.3 to 1.5%. Mo is an element effective for securing the base metal strength and high-temperature strength. However, an excessive addition precipitates Mo carbides and saturates the hardenability improving effect as solid solution Mo. Need to be added.

【0028】更に、本発明では、更なる添加元素として
Nb,V,Ti,Bの何れか1種または2種以上を適量
含むことが有効である。ニオブ(Nb)およびバナジウ
ム(V)は、焼き入性を上昇させ、強度を増加させる目
的から、Nb:0.005〜0.10%、V:0.01
〜0.20%がそれぞれ添加される。しかし、Nbの場
合には0.005%、Vの場合には0.20%を超える
とNb炭窒化物或いはV炭窒化物の析出量が増加し、固
溶Nb或いは固溶Vとしての効果が飽和するためNb:
0.10%、V:0.20%を上限とし、また、焼き入
れ性、母材の強度確保の点からは下限をNb:0.00
5%、V:0.01%とした。
Further, in the present invention, it is effective to include an appropriate amount of one or more of Nb, V, Ti, and B as further additional elements. Niobium (Nb) and vanadium (V) are Nb: 0.005 to 0.10%, V: 0.01 for the purpose of increasing hardenability and increasing strength.
~ 0.20% is added in each case. However, when the content exceeds 0.005% in the case of Nb and 0.20% in the case of V, the precipitation amount of Nb carbonitride or V carbonitride increases, and the effect as solid solution Nb or solid solution V is increased. Is saturated and Nb:
The upper limits are 0.10% and V: 0.20%, and the lower limits are Nb: 0.00 in terms of hardenability and strength of the base material.
5%, V: 0.01%.

【0029】チタン(Ti)は、TiNを析出し、固溶
Nを低減することにより島状マルテンサイトの生成を抑
制し、微細析出したTiNはγ相の微細化に寄与する。
これらのTiの作用により組織を微細化し強度・靱性を
向上させる。しかし、0.1%以上の過剰な添加は、T
iCを析出し、その析出効果により母材および溶接熱影
響部の靱性を劣化させるので上限を0.1%とした。
Titanium (Ti) precipitates TiN and suppresses the formation of island martensite by reducing solid solution N, and the finely precipitated TiN contributes to the refinement of the γ phase.
By the action of these Tis, the structure is refined and the strength and toughness are improved. However, an excessive addition of 0.1% or more causes T
Since iC is precipitated and the toughness of the base metal and the heat affected zone is deteriorated by the precipitation effect, the upper limit is set to 0.1%.

【0030】ボロン(B)は、鋼材の焼き入れ性に重要
な元素であり、0.0003〜0.0030%添加され
る。窒素(N)は、窒化物を形成し、γ粒の結晶化に寄
与するが、過剰な固溶Nは靱性を劣化させるのでNの含
有量は0.001〜0.010%添加される。マグネシ
ウム、Ca、REMは孔食の起点となり耐候性を低下さ
せるMnSの生成を防止する目的で、より高温安定性の
高いMg,Ca,REMの硫化物を形成させイオウを固
定するために添加するものである。
Boron (B) is an important element for the hardenability of steel, and is added in an amount of 0.0003 to 0.0030%. Nitrogen (N) forms nitrides and contributes to crystallization of γ grains. However, since excess solute N degrades toughness, the content of N is 0.001 to 0.010%. Magnesium, Ca, and REM are added to form sulfides of Mg, Ca, and REM with higher temperature stability and to fix sulfur for the purpose of preventing the generation of MnS that becomes a starting point of pitting corrosion and lowers the weather resistance. Things.

【0031】また、マグネシウム(Mg)は、合金化に
よりMg含有濃度を低減し、溶鋼への添加時の脱酸反応
を抑制し、添加時の安全確保とMgの歩留まりを向上さ
せ、更にMgOの微細酸化物を生成させ、これらを微細
分散させることにより鋼の強度および靱性向上に寄与さ
せる目的で0.0005〜0.010%添加する。ま
た、Ca,REMは、いずれもスラブ割れ防止の目的か
らそれぞれ0.0005〜0.005%、0.0005
〜0.010%の範囲で添加される。
Further, magnesium (Mg) reduces the Mg content by alloying, suppresses the deoxidation reaction at the time of addition to molten steel, secures safety at the time of addition and improves the yield of Mg, and further improves the yield of MgO. 0.0005 to 0.010% is added for the purpose of generating fine oxides and finely dispersing them to contribute to improvement in strength and toughness of steel. Ca and REM are 0.0005 to 0.005% and 0.0005%, respectively, for the purpose of preventing slab cracking.
It is added in the range of ~ 0.010%.

【0032】Ni/Cuの濃度比を0.8以上にする理
由は、Cu添加鋼の高温加熱による表面割れを防止する
ためである。この割れは、1100℃以上の高温加熱に
より内部酸化層上にCuが濃縮し、溶融Cuがγ粒界に
侵入しCu溶融割れを生じる。この防止には、1100
℃以下の低温加熱をするか、Ni/Cu≧0.8のNi
添加し高融点化することにより防止できるためである。
The reason for setting the concentration ratio of Ni / Cu to 0.8 or more is to prevent surface cracking of the Cu-added steel due to high-temperature heating. In this crack, Cu is concentrated on the internal oxide layer by heating at a high temperature of 1100 ° C. or more, and the molten Cu enters the γ grain boundary to cause Cu melting crack. To prevent this, 1100
Heat at low temperature below ℃ or Ni / Cu ≧ 0.8Ni
This is because it can be prevented by adding and increasing the melting point.

【0033】鋼材表面の内部酸化層の厚さを2μm以下
とする理由は、実際に、20μm厚さの内部酸化層存在
はおよそ20倍の200μm深さまで表面軟化層を形成
させる。内部酸化層厚さ2μmでは表面軟化層深さ20
μmとなり疲労および腐食の防止には限界の厚さである
ことから内部酸化層2μm以下とした。また、Ni,C
u,Moの濃化層の厚さを2μm以上とする理由は、E
PMAでの測定結果から、Ni,Cu,Mo濃化層厚さ
が2μm以下では耐候性効果が小さいことが塩水噴霧試
験により確認されたことから2μm以上とした。更に、
上記Ni,Cu,Moの元素濃度の総量を4.0重量%
以上とした理由は、1250℃の加熱実験によると、内
部酸化層上へのCu,Niの濃化度は、およそ5〜10
倍であり、Moは2〜5倍であった。しかも、これらの
濃度の総和が4.0重量%以下では目標の耐候性・疲労
特性が達成できないためである。
The reason that the thickness of the internal oxide layer on the surface of the steel material is set to 2 μm or less is that the presence of the internal oxide layer having a thickness of 20 μm actually forms the surface softened layer to a depth of 200 μm, which is about 20 times. When the thickness of the internal oxide layer is 2 μm, the depth of the surface softened layer is 20
μm, which is a limit thickness for preventing fatigue and corrosion. Ni, C
The reason why the thickness of the concentrated layer of u and Mo is set to 2 μm or more is as follows.
From the results of measurement with PMA, it was confirmed by a salt spray test that the weather resistance effect was small when the thickness of the Ni, Cu, and Mo concentrated layers was 2 μm or less, so the thickness was set to 2 μm or more. Furthermore,
The total amount of the above elemental concentrations of Ni, Cu, and Mo is 4.0% by weight.
The reason for the above is that according to a heating experiment at 1250 ° C., the concentration of Cu and Ni on the internal oxide layer is about 5 to 10%.
And Mo was 2 to 5 times. Moreover, if the total of these concentrations is 4.0% by weight or less, the desired weather resistance and fatigue characteristics cannot be achieved.

【0034】加えて、表面硬度Hv420を超える厚み
が0.5mm以上を必要とする理由は、表面に突起加工
し、この突起の梁鋼材への食い込みにより継ぎ手性能を
高めるためである。したがって、硬化層は硬く、厚いほ
どその効果は高まるが、必要な高摩擦係数を測定した結
果、これらの値が得られたので、表面硬度Hv420を
超える厚みが0.5mm以上との制限を加えた。
In addition, the reason why the thickness exceeding the surface hardness Hv420 is required to be 0.5 mm or more is to improve the joint performance by forming a projection on the surface and cutting the projection into the beam steel material. Therefore, the hardened layer is harder and the effect increases as the thickness becomes thicker. However, as a result of measuring the required high friction coefficient, these values were obtained, so that the thickness exceeding the surface hardness Hv420 was limited to 0.5 mm or more. Was.

【0035】次に、本発明における製造方法について説
明する。本発明において重要なプロセスは、スラブ加熱
温度を1100〜1300℃の高温スラブ加熱を行う必
要がある。これは、前述の高温スラブ加熱において、高
温加熱酸化により内部酸化層上へのNi,Cu,Moの
濃化層を2μm以上の厚さで形成させるものである。
Next, the manufacturing method of the present invention will be described. An important process in the present invention is to perform high-temperature slab heating at a slab heating temperature of 1100 to 1300 ° C. This is to form a concentrated layer of Ni, Cu, Mo on the internal oxide layer with a thickness of 2 μm or more by the high-temperature heating oxidation in the above-mentioned high-temperature slab heating.

【0036】高温加熱酸化において、内部酸化層上へN
i,Cu,Moが濃化する理由は、これら金属の酸化物
の生成エネルギーは鉄酸化物(FeO)より高いため、
酸化物を生成できず内部酸化層上に取り残され濃化する
ためである。1250℃加熱結果では、Ni,Cu,M
oの濃化層が、およそ30μm厚さほど形成される。こ
れが圧延により延伸され、延伸比に対応しほぼ比例して
薄くなる。すなわち、厚さが1/10になった場合は、
ほぼその厚さは3μmとなる。
In the high temperature heating oxidation, N is deposited on the internal oxide layer.
The reason why i, Cu, and Mo are concentrated is that the formation energy of these metal oxides is higher than that of iron oxide (FeO).
This is because oxides cannot be generated and are left on the internal oxide layer to be concentrated. As a result of heating at 1250 ° C., Ni, Cu, M
A thick layer of o is formed with a thickness of about 30 μm. This is stretched by rolling, and becomes thinner almost in proportion to the stretching ratio. That is, when the thickness is reduced to 1/10,
Its thickness is approximately 3 μm.

【0037】更に、前述のように、高温で加熱されたス
ラブは熱間圧延に付されるが、この熱間圧延において
は、950℃以下での累積圧下率が40%以上となる圧
延を行う必要がある。950℃以下での累積圧下率が4
0%以上で熱延する理由は、圧延温度と圧下率を制御す
る制御圧延により組織微細化を達成するには、オーステ
ナイトの再結晶・未再結晶温度域において、40%以上
の圧下を加える必要があるためである。
Further, as described above, the slab heated at a high temperature is subjected to hot rolling. In this hot rolling, rolling is performed so that the cumulative draft at 950 ° C. or less is 40% or more. There is a need. Cumulative reduction at 950 ° C or lower is 4
The reason for hot rolling at 0% or more is that in order to achieve microstructure refinement by controlling rolling temperature and rolling reduction, it is necessary to apply a reduction of 40% or more in the austenite recrystallization / non-recrystallization temperature range. Because there is.

【0038】[0038]

【実施例】<実施例1>試作H形鋼として、表1に示す
化学成分値を有する鋼を転炉溶製し、合金を添加後、予
備脱酸処理を行い、溶鋼の酸素濃度を調整後、Mg合
金、Ca,REMを添加し、連続鋳造により250〜3
00mm厚鋳片に鋳造した。
<Example 1> As a prototype H-section steel, a steel having the chemical composition values shown in Table 1 was melted in a converter, an alloy was added, and a preliminary deoxidation treatment was performed to adjust the oxygen concentration of the molten steel. Thereafter, an Mg alloy, Ca, and REM are added, and 250 to 3
It was cast into a 00 mm thick slab.

【0039】[0039]

【表1】 鋳片の冷却はモールド下方の二次冷却帯の水量と鋳片の
引き抜き速度の選択により制御した。このようにして得
た鋳片を1280℃の高温で加熱し、粗圧延工程を経て
図5に示すユニバーサル圧延装置列でH形鋼に圧延し
た。この時の圧延・加速冷却条件を表2に示した。
[Table 1] The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the speed of drawing the slab. The slab thus obtained was heated at a high temperature of 1280 ° C., and after being subjected to a rough rolling step, was rolled into an H-beam by a universal rolling mill row shown in FIG. The rolling and accelerated cooling conditions at this time are shown in Table 2.

【0040】[0040]

【表2】 この圧延で得られたH形鋼の機械的性質を表3に示し
た。
[Table 2] Table 3 shows the mechanical properties of the H-section steel obtained by this rolling.

【0041】[0041]

【表3】 図6にH形鋼の断面形状および機械試験片の採取位置を
示した。図6において、フランジ2の板厚t2 の中心部
(1/2t2 )でフランジ幅全長(B)の1/4(1/
4B)から採取した試験片を用い前述の機械的特性を求
めた。この部位について機械的特性を求めた理由は、フ
ランジ1/4F部はH形鋼の平均的な機械的特性を示
し、H形鋼の機械的特性を代表できると判断したもので
ある。
[Table 3] FIG. 6 shows the cross-sectional shape of the H-section steel and the sampling position of the mechanical test piece. In FIG. 6, at the center (1 / 2t 2 ) of the thickness t 2 of the flange 2, 1/4 (1/1) of the entire flange width (B) is used.
The mechanical properties described above were determined using a test piece taken from 4B). The reason for obtaining the mechanical properties of this portion is that the flange 1 / 4F portion shows the average mechanical properties of the H-section steel and can represent the mechanical properties of the H-section steel.

【0042】このように、本発明による鋼組成と製造方
法の両者の条件が全て満足された時に表3に示すよう
な、十分な強度、低温靱性を有する高摩擦継手用鋼材の
生産が可能になる。なお、本発明が対象とする圧延形鋼
は、上記実施例のH形鋼に限らずI形鋼、山形鋼、溝形
鋼、不等辺不等厚山形鋼等のフランジを有する形鋼にも
適用できることは勿論である。
As described above, when all the conditions of the steel composition and the production method according to the present invention are all satisfied, it is possible to produce a steel material for a high friction joint having sufficient strength and low temperature toughness as shown in Table 3. Become. In addition, the rolled section steel to which the present invention is applied is not limited to the H section steel of the above-described embodiment, but may be a section steel having a flange such as an I section steel, an angle section steel, a groove section steel, an unequal thickness angle section steel, or the like. Of course, it can be applied.

【0043】[0043]

【発明の効果】以上述べたように、本発明は、建造物の
構造部材、特に、建造物の接合部材として使用される高
張力圧延形鋼から成形されるスプリットT形鋼、継ぎ手
用圧延鋼板などの継ぎ手用部材およびその製造方法を提
供することが可能になる。
As described above, the present invention relates to a structural member of a building, in particular, a split T-shaped steel and a rolled steel plate for a joint formed from a high tension rolled steel used as a joining member of a building. It is possible to provide a joint member such as the above and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ダイヤフラム継ぎ手を示す図。FIG. 1 is a diagram showing a diaphragm joint.

【図2】粒界酸化に及ぼすMo,Crの影響を示す図。FIG. 2 is a diagram showing the influence of Mo and Cr on grain boundary oxidation.

【図3】aは、従来のCrフリー鋼の断面組織図、b
は,本発明によるCr:0.20%添加鋼の断面組織
図。
3A is a cross-sectional structure diagram of a conventional Cr-free steel, and FIG.
1 is a cross-sectional structure diagram of Cr: 0.20% added steel according to the present invention.

【図4】aは、従来の形鋼におけるNi,Cu,Moの
濃化層の生成状態を示す図、bは本発明によるNi,C
u,Moの濃化層の生成状態を示す図。
4A is a view showing a state of formation of a concentrated layer of Ni, Cu and Mo in a conventional section steel, and FIG. 4B is a view showing Ni and C according to the present invention.
The figure which shows the formation state of the concentrated layer of u and Mo.

【図5】本発明において使用されるユニバーサル圧延装
置列を示す図。
FIG. 5 is a diagram showing a universal rolling mill row used in the present invention.

【図6】H形鋼の断面形状および機械試験片の採取位置
を示す図。
FIG. 6 is a diagram showing a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.15〜0.20%、
Cr:0.1〜0.5%を含有し、更に微量Ni,Cu
およびMoを必須元素として添加した建築用鋼材であっ
て、Ni/Cuの濃度比が0.8以上、鋼材表面の内部
酸化層が2μm以下、前記内部酸化層上に厚さ2μm以
上のNi,Cu,Moの濃化層を有し、かつこれらの元
素濃度の総量が4.0重量%以上で、更に表面から3m
mの深さ内でビッカース硬さHv:420を超える厚み
が0.5mm以上有することを特徴とする高摩擦継ぎ手
用鋼材。
(1) C: 0.15 to 0.20% by weight,
Cr: 0.1 to 0.5%, and trace amounts of Ni and Cu
And Mo as an essential element, wherein the Ni / Cu concentration ratio is 0.8 or more, the internal oxide layer on the steel material surface is 2 μm or less, and Ni, 2 μm or more in thickness on the internal oxide layer. It has a concentrated layer of Cu and Mo, and the total amount of these elements is 4.0% by weight or more, and 3 m from the surface.
A steel material for high-friction joints, wherein a thickness exceeding Vickers hardness Hv: 420 within a depth of m is 0.5 mm or more.
【請求項2】 重量%で、C :0.15〜0.20
%、 Mn:0.4〜1.6%、 Si:≦0.1%、 Cr:0.1〜0.5%、 Al:0.001〜0.10%、 Ni:0.3〜1.5%、 Cu:0.3〜1.5%、 Mo:0.1〜0.7%、 N :0.001〜0.010%、 を含有し、かつNi/Cuの濃度比が0.8以上であ
り、残部がFeおよび不可避的不純物からなり、更にN
i,CuおよびMoを必須元素として添加した建築用鋼
材であって、鋼材表面の内部酸化層が2μm以下、前記
内部酸化層上に厚さ2μm以上のNi,Cu,Moの濃
化層を有し、かつこれらの元素濃度の総量が4.0重量
%以上で、更に表面から3mmの深さ内でビッカース硬
さHv:420を超える厚みが0.5mm以上有するこ
とを特徴とする高摩擦継ぎ手用鋼材。
2. C: 0.15 to 0.20% by weight
%, Mn: 0.4 to 1.6%, Si: ≤ 0.1%, Cr: 0.1 to 0.5%, Al: 0.001 to 0.10%, Ni: 0.3 to 1 0.5%, Cu: 0.3-1.5%, Mo: 0.1-0.7%, N: 0.001-0.010%, and the concentration ratio of Ni / Cu is 0. .8 or more, the balance being Fe and unavoidable impurities.
An architectural steel material to which i, Cu and Mo are added as essential elements, wherein an internal oxide layer on the surface of the steel material is 2 μm or less, and a concentrated layer of Ni, Cu and Mo with a thickness of 2 μm or more is provided on the internal oxide layer. A high friction joint characterized in that the total concentration of these elements is 4.0% by weight or more and the thickness exceeding Vickers hardness Hv: 420 is 0.5 mm or more within a depth of 3 mm from the surface. For steel.
【請求項3】 重量%で、更に、Nb:0.005〜
0.10%、V:0.01〜0.20%、Ti:0.0
05〜0.025%、B:0.0003〜0.0030
%のいずれか1種または2種以上を含有することを特徴
とする請求項2記載の高摩擦継ぎ手用鋼材。
3. Nb: 0.005 to 5% by weight
0.10%, V: 0.01 to 0.20%, Ti: 0.0
05 to 0.025%, B: 0.0003 to 0.0030
The steel material for a high friction joint according to claim 2, wherein the steel material contains any one or two or more of the following.
【請求項4】 重量%で、更に、Ca:0.0005〜
0.0050%、Mg:0.0005〜0.010%、
REM:0.0005〜0.010%のいずれか1種ま
たは2種以上を含有することを特徴とする請求項2また
は3記載の耐候性および耐疲労特性に優れた圧延鋼材。
4. The method according to claim 1, further comprising:
0.0050%, Mg: 0.0005 to 0.010%,
The rolled steel material having excellent weather resistance and fatigue resistance according to claim 2 or 3, wherein one or more of REM: 0.0005 to 0.010% is contained.
【請求項5】 重量%で、C :0.15〜0.20
%、 Mn:0.4〜1.6%、 Si:≦0.1%、 Cr:0.1〜0.5%、 Al:0.001〜0.10%、 Ni:0.3〜1.5%、 Cu:0.3〜1.5%、 Mo:0.1〜0.7%、 N :0.001〜0.010%、 を含有し、かつNi/Cuの濃度比が0.8以上であ
り、残部がFeおよび不可避的不純物からなる鋳片を1
100〜1300℃の温度域に再加熱した後に熱延を開
始し、950℃以下の累積圧下率が40%以上となる圧
延を行い、鋼材表面の内部酸化層が2μm以下で、前記
内部酸化層上に厚さ2μm以上のNi,Cu,Moの濃
化層を有し、これらの元素濃度の総量が4.0重量%以
上で、更に表面から3mmの深さ内でビッカース硬さH
v:420を超える厚みが0.5mm以上有することを
特徴とする高摩擦継ぎ手用鋼材の製造方法。
5. C: 0.15 to 0.20 by weight%
%, Mn: 0.4 to 1.6%, Si: ≤ 0.1%, Cr: 0.1 to 0.5%, Al: 0.001 to 0.10%, Ni: 0.3 to 1 0.5%, Cu: 0.3-1.5%, Mo: 0.1-0.7%, N: 0.001-0.010%, and the concentration ratio of Ni / Cu is 0. 0.8 or more, and the balance is 1 piece of slabs composed of Fe and unavoidable impurities.
After reheating to a temperature range of 100 to 1300 ° C., hot rolling is started, and rolling is performed so that the cumulative draft of 950 ° C. or less becomes 40% or more, and the internal oxide layer on the steel material surface is 2 μm or less, and the internal oxide layer is formed. It has a concentrated layer of Ni, Cu, and Mo having a thickness of 2 μm or more, and has a Vickers hardness H within a depth of 3 mm from the surface when the total amount of these element concentrations is 4.0% by weight or more.
v: A method for producing a steel material for a high friction joint, wherein a thickness exceeding 420 is 0.5 mm or more.
【請求項6】 重量%で、更に、Nb:0.005〜
0.10%、V:0.01〜0.20%、Ti:0.0
05〜0.025%、B:0.0003〜0.0030
%のいずれか1種または2種以上を含有することを特徴
とする請求項5記載の高摩擦継ぎ手用鋼材の製造方法。
6. Nb: 0.005 to 5% by weight
0.10%, V: 0.01 to 0.20%, Ti: 0.0
05 to 0.025%, B: 0.0003 to 0.0030
The method for producing a steel material for a high-friction joint according to claim 5, wherein the steel material contains one or more of the following.
【請求項7】 重量%で、更に、Ca:0.0005〜
0.0050%、Mg:0.0005〜0.010%、
REM:0.0005〜0.010%のいずれか1種ま
たは2種以上を含有することを特徴とする請求項5また
は6記載の高摩擦継ぎ手用鋼材の製造方法。
7. In% by weight, Ca: 0.0005 to
0.0050%, Mg: 0.0005 to 0.010%,
The method for producing a steel material for a high friction joint according to claim 5, wherein the steel material contains one or more of REM: 0.0005 to 0.010%.
JP23235898A 1998-08-05 1998-08-05 High friction steel material for joint, and its production Pending JP2000054062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23235898A JP2000054062A (en) 1998-08-05 1998-08-05 High friction steel material for joint, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23235898A JP2000054062A (en) 1998-08-05 1998-08-05 High friction steel material for joint, and its production

Publications (1)

Publication Number Publication Date
JP2000054062A true JP2000054062A (en) 2000-02-22

Family

ID=16937969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23235898A Pending JP2000054062A (en) 1998-08-05 1998-08-05 High friction steel material for joint, and its production

Country Status (1)

Country Link
JP (1) JP2000054062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729412A (en) * 2019-09-19 2022-07-08 纽科尔公司 Ultra-high strength weathering steel for hot stamping applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729412A (en) * 2019-09-19 2022-07-08 纽科尔公司 Ultra-high strength weathering steel for hot stamping applications

Similar Documents

Publication Publication Date Title
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP4975888B2 (en) Ni-added steel sheet and manufacturing method thereof
JP6665525B2 (en) H-shaped steel for low temperature and method for producing the same
KR101635008B1 (en) Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
US8715432B2 (en) Fire-resistant steel superior in weld joint reheat embrittlement resistance and toughness and method of production of same
JP6354572B2 (en) Low-temperature H-section steel and its manufacturing method
JP5760519B2 (en) Rolled H-section steel with excellent toughness and method for producing the same
JP6645107B2 (en) H-section steel and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
WO2014175122A1 (en) H-shaped steel and method for producing same
JP4418391B2 (en) High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP2008111165A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
KR100361472B1 (en) Structural steel excellent in wear resistance and fatigue resistance property and method of producing the same
JP2000345289A (en) On-line type weather resistant thick steel plate
JP6421638B2 (en) Low-temperature H-section steel and its manufacturing method
JP6662156B2 (en) H-shaped steel for low temperature and method for producing the same
JP2002294404A (en) High carbon hot rolling steel material suitable for friction pressure welding and production method therefor
JPWO2019180957A1 (en) Rolled H-section steel and manufacturing method thereof
JP2002294391A (en) Steel for building structure and production method therefor
JP6295632B2 (en) High strength H-section steel with excellent toughness
JP2000054062A (en) High friction steel material for joint, and its production
JP4057711B2 (en) Rolled steel material excellent in weather resistance and fatigue resistance and method for producing the same
JPS6293346A (en) High strength steel excellent in cod characteristics in weld zone
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060120

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A132

A521 Written amendment

Effective date: 20060414

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060613

Free format text: JAPANESE INTERMEDIATE CODE: A02