JP2000052282A - Robot travelling in t-shaped branch pipe and its directional control method - Google Patents

Robot travelling in t-shaped branch pipe and its directional control method

Info

Publication number
JP2000052282A
JP2000052282A JP10226335A JP22633598A JP2000052282A JP 2000052282 A JP2000052282 A JP 2000052282A JP 10226335 A JP10226335 A JP 10226335A JP 22633598 A JP22633598 A JP 22633598A JP 2000052282 A JP2000052282 A JP 2000052282A
Authority
JP
Japan
Prior art keywords
pipe
robot
traveling
travelling
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10226335A
Other languages
Japanese (ja)
Inventor
Takeshi Nagayama
毅 永山
Tsuneyasu Onishi
常康 大西
Masanori Kurata
正典 倉田
Katsura Fujii
桂 藤井
Toru Inaoka
徹 稲岡
Kenichi Miyazaki
賢一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Agriculture Forestry and Fisheries Ministry of
Original Assignee
Japan Agriculture Forestry and Fisheries Ministry of
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Agriculture Forestry and Fisheries Ministry of filed Critical Japan Agriculture Forestry and Fisheries Ministry of
Priority to JP10226335A priority Critical patent/JP2000052282A/en
Publication of JP2000052282A publication Critical patent/JP2000052282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve working efficiency of inspection by carrying out travelling control of travelling drive wheels provided on segments on a front end and a rear end and steering control of the travelling drive wheels through a controller out of a pipe connected by a robot and a cable. SOLUTION: An inspection head 6 is integrally provided frontward and backward on segments of a front end and a rear end, and a travelling drive wheel and a driven wheel making contact with a pipe inner surface are furnished. A travelling motor 9 as travelling power is provided on the travelling drive wheel, and a sterring mechanism to change a travelling direction of the travelling drive wheel and a steering motor 11 are provided. Lead wires of equipment 17-20 for inspection equipped on the inspection heads 6 provided on the segments of the front end and the rear end, an electric power source wire of the travelling motor of the travelling drive wheel, a steering motor control wire and an electric power source wire of the steering mechanism of the travelling drive wheel are constitued to be included in a cable 21 to connect a robot and a controller 22 out of the pipe to each other. Consequently, it is possible to improve efficiency of work of inspection, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、人が入ることの
不可能な小口径の地下埋設管その他の配管類の損傷乃至
現状を検査する手段として管内を走行させる検査ロボッ
トの技術分野に属し、更に云えば、管内の直進走行や屈
曲(エルボ管)走行はもとよりのこと、T字分岐管内ま
たは十字管内へほぼ直角に向きを変えて進入し走行す
る、T字分岐管内走行ロボット及びその方向制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of an inspection robot which travels in a pipe as a means for inspecting a damaged or present condition of a small-diameter underground pipe or other piping which cannot be entered by a person, More specifically, a traveling robot in a T-junction pipe and a direction control thereof that travels while changing the direction at a substantially right angle into a T-junction pipe or a cruciform pipe, as well as straight traveling and bending (elbow pipe) traveling in the pipe. About the method.

【0002】[0002]

【従来の技術】従来、配管類の損傷乃至現状を検査する
手段として管内を走行させる検査ロボットの技術はかな
り研究され、実用例も多い。例えば、 特開昭64−63844号、及び特開昭64−65
438号公報に記載された管内走行装置は、複数の体節
を相互に一軸芯の回りに揺動自在に連結し、体節を前記
芯の回りに旋回させる旋回操作手段を設け、前端の体節
にカメラを設け、前記カメラからの情報を映像化するモ
ニタを設け、モニタによる体節の姿勢監視をしながら前
記の旋回操作手段を遠隔操作する構成であり、管の屈曲
部を走行可能とされている。
2. Description of the Related Art Conventionally, the technology of an inspection robot that travels in a pipe as means for inspecting the damage or the present condition of pipes has been considerably studied, and there are many practical examples. For example, JP-A-64-63844 and JP-A-64-65
The in-pipe traveling device described in Japanese Patent Publication No. 438 discloses a turning operation means for connecting a plurality of segments to each other so as to be able to swing around a single axis, and turning the segments around the core. A camera is provided at the node, a monitor for visualizing information from the camera is provided, and the turning operation means is remotely operated while monitoring the posture of the body segment by the monitor. Have been.

【0003】 特開平4−931838号公報に記載
された管内走行ロボットは、屈曲管やT字分岐管、十字
配管等に対する方向転換や直進走行を容易、確実に行わ
せるために、伸縮と屈曲が自在な複数の体節を一連に連
結し、各体節には管内面に当接する放射方向の突っ張り
機構を設け、前端の体節に管内部の点検装置を取付け、
前記点検装置による映像を観察するモニタを備えた構成
とされている。
[0003] The in-pipe traveling robot described in Japanese Patent Application Laid-Open No. 4-9331838 has an expansion and contraction and bending in order to easily and reliably perform a direction change and a straight traveling on a bent pipe, a T-shaped branch pipe, a cross pipe, and the like. Connect a plurality of free segments in series, provide a radial tensioning mechanism in contact with the inner surface of the tube in each segment, and attach an inspection device inside the tube to the front end segment,
It is configured to include a monitor for observing an image by the inspection device.

【0004】 特開平8−304294号公報に記載
された管内走行ロボットは、無線操縦により制御される
もので、前方部分と後方部分をチューブにより屈曲自在
に連結した構成であり、前方部分と後方部分に向けられ
た合計3個の車輪により屈曲走行を円滑に行う構成とさ
れている。
The in-pipe traveling robot described in Japanese Patent Application Laid-Open No. 8-304294 is controlled by radio control, and has a configuration in which a front portion and a rear portion are flexibly connected by a tube. The vehicle is configured to smoothly bend and travel with a total of three wheels directed toward the vehicle.

【0005】 特開平9−218160号公報に記載
された管内走行ロボットは、本体フレームを膨縮させる
ことが可能な構成であり、配管の途中に設けられた小口
径管から出入り自在な構成とされている。
The in-pipe traveling robot described in Japanese Patent Application Laid-Open No. 9-218160 has a configuration capable of expanding and contracting a main body frame, and is configured to be able to freely enter and exit a small-diameter pipe provided in the middle of a pipe. ing.

【0006】[0006]

【発明が解決しようとする課題】上記したように、従来
の管内走行ロボットは、使用の目的などに応じて種々な
構造、性能のものが開発されている。
As described above, conventional in-pipe traveling robots having various structures and performances have been developed according to the purpose of use.

【0007】ところで、配管類の損傷乃至現状を検査す
る管内走行ロボットに重要な機能、性能は、鉛直方向の
上下を含むT字分岐管内への進入、走行が可能な方向制
御を実現することと考えられる。このような機能を具備
してはじめて、多様な配管路のいずれの場所へも自由自
在に行き来させることが可能となるからである。
[0007] By the way, an important function and performance of the in-pipe traveling robot for inspecting the damage or the present condition of the pipes is to realize a directional control capable of entering and traveling in a T-shaped branch pipe including up and down in the vertical direction. Conceivable. Only when such a function is provided, it is possible to freely move to and from any place of various piping paths.

【0008】この点、上記の管内走行ロボットは、十
字管の直進通過はもとより、T字分岐管内への進入、走
行が可能であると記載されている点が注目される。しか
しながら、この管内走行ロボットは、伸縮及び屈曲自在
な複数の伸縮ユニットを直列に接続した構成である。更
に云えば、伸縮ユニットは、コイルスプリングを主フレ
ームとし、その胴体内部に伸縮駆動手段として複数のエ
アーチューブを配置し、前記エアーチューブを駆動する
圧縮空気を送り込む空気管と電気ケーブルを接続してい
る。そして、二つの突っ張り機構を介して管内面に固定
し、その状態で前後のフリーな各伸縮ユニットを順次に
伸縮動作または屈曲動作させるものであるから、ロボッ
トの構造及び各動作がたいへん複雑である。また、方向
制御も全ての伸縮ユニットの個別制御を必要とするが故
に複雑を極め、管内走行速度は各伸縮ユニットの芋虫の
如き伸縮動作の繰り返しによるため、かなり遅いことも
重なって、管内検査の能率が低い、という問題点が認め
られる。
[0008] In this regard, it is noted that the above-described in-pipe traveling robot is described as being capable of entering and traveling into a T-shaped branch pipe, as well as straight passage through a cross pipe. However, this in-pipe traveling robot has a configuration in which a plurality of telescopic units that can be extended and retracted are connected in series. Furthermore, the telescopic unit has a coil spring as a main frame, a plurality of air tubes as telescopic driving means disposed inside the body, and an electric pipe connected to an air pipe for sending compressed air for driving the air tube and an electric cable. I have. Then, it is fixed to the inner surface of the tube via two tension mechanisms, and in this state, the front and rear free telescopic units are sequentially expanded and contracted or bent, so that the structure and each operation of the robot are very complicated. . In addition, the direction control also requires individual control of all telescopic units, which is extremely complicated, and the traveling speed in the pipe is due to the repetition of the telescopic operation of each telescopic unit like a caterpillar. The problem is that efficiency is low.

【0009】従って、本発明の目的は、ロボット自体の
構造が簡単で、走行動作も単純であり、前端及び後端の
二つの体節の走行駆動輪のみの制御で済み、したがって
方向制御もすこぶる簡単であり、管内の走行速度も検査
の作業効率を高めるに十分な速さである、T字分岐管内
走行ロボット及びその方向制御方法を提供することであ
る。
Therefore, an object of the present invention is that the structure of the robot itself is simple, the traveling operation is simple, and only the traveling drive wheels of the two segments of the front end and the rear end need to be controlled. An object of the present invention is to provide a traveling robot in a T-junction pipe and a method for controlling the direction thereof, which are simple and the traveling speed in the pipe is high enough to increase the work efficiency of the inspection.

【0010】[0010]

【課題を解決するための手段】上述した課題を解決する
ための手段として、請求項1記載の発明に係るT字分岐
管内走行ロボットは、T字分岐管内への進入及び管内走
行が可能な管内走行ロボットであって、複数の体節が、
ほぼ90゜までの屈曲が可能なピン接合により一連に自
在連結されていること、前端及び後端の体節は、少なく
とも直角4方向に放射状の配置で、管内面に接する少な
くとも一対の走行駆動輪及び他の一対をなす従動輪を具
備し、前記走行駆動輪には走行モータが附属し、更に当
該走行駆動輪の走行方向を転換する操舵機構と操舵モー
タが附属されていること、前端及び後端の体節以外は、
少なくとも直角4方向に放射状の配置で、管内面に接す
る従動輪を具備していること、前端及び後端の体節に設
けられた走行駆動輪の走行制御及び同走行駆動輪の操舵
制御は、当該ロボットとケーブルで接続された管外のコ
ントローラを通じて行うことをそれぞれ特徴とする。
According to a first aspect of the present invention, there is provided a robot for traveling in a T-junction pipe, which is capable of entering the T-junction pipe and traveling in the pipe. A traveling robot, wherein a plurality of body segments are
A series of freely connected pin joints capable of bending up to about 90 °, and the front and rear end segments are arranged radially at least in four directions at right angles, and at least one pair of traveling drive wheels in contact with the inner surface of the pipe. A driving motor is attached to the traveling drive wheel, and a steering mechanism and a steering motor for changing the traveling direction of the traveling drive wheel are attached to the traveling drive wheel. Except for the end segment,
Radial arrangement at least in four directions at right angles, having a driven wheel in contact with the inner surface of the pipe, traveling control of traveling drive wheels provided on the front and rear end segments and steering control of the traveling drive wheels are: It is characterized in that it is performed through a controller outside the tube connected to the robot with a cable.

【0011】請求項2記載の発明は、請求項1に記載し
たT字分岐管内走行ロボットにおいて、前端及び後端の
体節は、前照灯とテレビカメラ及びT字分岐管の位置検
出センサー並びに走行距離測定用のパルスカウンターを
搭載していることを特徴とする。
According to a second aspect of the present invention, in the traveling robot in the T-shaped branch pipe according to the first aspect, the front end and the rear end of the body have a headlight, a television camera, and a position detection sensor for the T-shaped branch pipe. It is equipped with a pulse counter for mileage measurement.

【0012】請求項3記載の発明は、請求項1に記載し
たT字分岐管内走行ロボットにおいて、管外のコントロ
ーラは、動力源としての電源と、テレビカメラで撮影し
た映像を映し出すモニター画面、及び当該検査対象の管
路図を表示する配管マップを備えていることを特徴とす
る。
According to a third aspect of the present invention, in the T-branch traveling robot according to the first aspect, the controller outside the tube includes a power source as a power source, a monitor screen for displaying an image taken by a television camera, and A pipe map for displaying a pipe diagram of the inspection object is provided.

【0013】請求項4に記載した発明に係るT字分岐管
内走行ロボットの方向制御方法は、前記請求項1〜3に
記載した発明に係る管内走行ロボットをT字分岐管内へ
進入させるための方向制御方法であって、前照灯に照ら
された管内をテレビカメラの映像で目視確認を行いつ
つ、パルスカウンターによる測距量を配管マップと照合
してT字分岐管の位置を予測し、一定の接近位置に達し
た段階からロボットの姿勢をT字分岐管の向きに整合さ
せるべく螺旋走行を行わせ、位置検出センサーがT字分
岐管の位置を確認した信号に基いて、前端の体節を操舵
制御してその向きをT字分岐管に向かわせ、前端の体節
に後続の体節を追従走行させることを特徴とする。
According to a fourth aspect of the present invention, there is provided a direction control method for a traveling robot in a T-junction pipe according to the present invention. A control method, in which the inside of a pipe illuminated by a headlight is visually checked with an image of a television camera, and the distance measured by a pulse counter is compared with a pipe map to predict the position of the T-junction pipe, and the position is fixed. When the robot reaches the approaching position, the robot performs spiral running to match the posture of the robot with the direction of the T-junction pipe, and the position detection sensor confirms the position of the T-junction pipe, and based on the signal confirming the position of the T-junction pipe, the body segment at the front end The steering is controlled so that the direction is directed to the T-junction tube, and the following segment is caused to follow the segment at the front end.

【0014】[0014]

【発明の実施の形態及び実施例】図1〜図3は、請求項
1〜3記載の発明に係るT字分岐管内走行ロボットの実
施形態を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 3 show an embodiment of a T-branch traveling robot according to the first to third aspects of the present invention.

【0015】このT字分岐管内走行ロボットは、図4〜
図6に概要を説明したように、配管1内を直進走行する
ことは勿論のこと、同配管1の途中位置に最大90゜の
配置で接続されたT字分岐管2、それが水平方向の接続
であるか鉛直方向上下への接続であるかの別を問わず、
そのようなT字分岐管2内への進入及び管内走行が可能
に構成されている。
The traveling robot in the T-shaped branch pipe is shown in FIGS.
As described in FIG. 6, the T-branch pipe 2 is connected to the middle of the pipe 1 at a maximum position of 90 °, as well as traveling straight in the pipe 1. Regardless of whether it is a connection or a connection vertically up and down,
It is configured such that it can enter into the T-shaped branch pipe 2 and travel inside the pipe.

【0016】その手段として、管内走行ロボットの躯体
は、小口径の管内走行に適するように小さくコンパクト
に構成した複数の体節4…が、ほぼ90゜までの屈曲が
可能に自在継手5により一連に自在連結した構成とされ
ている。従って、このロボット躯体は、管内の屈曲走行
はもとより、90゜のT字分岐管内への方向転換走行も
可能である。
As a means for this, the body of the in-pipe traveling robot is composed of a plurality of segments 4... Which are small and compact so as to be suitable for in-pipe traveling with a small diameter, and are connected by a universal joint 5 capable of bending to approximately 90 °. It is configured so as to be freely connected to. Therefore, this robot body can not only bend in the pipe but also change its direction into a 90-degree T-shaped branch pipe.

【0017】特に前端及び後端の体節4には、管内の検
査に必要な器具を装備した半球形状の検査ヘッド6が前
向き及び後ろ向き(図4など参照)に一体的に設けられ
ていると共に、少なくとも直角4方向に放射状の配置
で、管内面に接する一対の走行駆動輪7、7、及び他の
一対をなす従動輪8、8を備えている。従って、一対の
走行駆動輪7、7及び一対の従動輪8、8は常に管内の
直角2方向の直径線上の2面に接して走行する。前記走
行駆動輪7には走行動力としての走行モータ9が附属
し、更に当該走行駆動輪7の走行方向を転換する操舵機
構10と操舵モータ11が附属している。前記一対の従
動輪8は、当該ロボットの自重量の支持と走行方向、姿
勢を安定化させることが可能であるようにコイルバネ等
によるサスペンション機構16で管内面へ押し付けら
れ、少なくとも管内径の多少の変化を許容して走行する
構成とされている。従って、前端及び後端の体節のみが
走行駆動ユニットであり、他の中間の体節は従動ユニッ
トである。
In particular, hemispherical inspection heads 6 equipped with instruments necessary for the inspection of the inside of the tube are provided integrally on the body segment 4 at the front end and the rear end in a forward direction and a rearward direction (see FIG. 4 and the like). And a pair of traveling drive wheels 7, 7 in contact with the inner surface of the pipe and another pair of driven wheels 8, 8 in radial arrangement at least in four directions at right angles. Accordingly, the pair of traveling drive wheels 7, 7 and the pair of driven wheels 8, 8 always travel in contact with two surfaces on the diameter line in two perpendicular directions in the pipe. A traveling motor 9 as traveling power is attached to the traveling drive wheel 7, and further, a steering mechanism 10 and a steering motor 11 for changing the traveling direction of the traveling drive wheel 7 are attached. The pair of driven wheels 8 are pressed against the inner surface of the pipe by a suspension mechanism 16 such as a coil spring so that the robot can support its own weight, stabilize the running direction and posture, and have at least a small inner diameter of the pipe. The vehicle is configured to travel while allowing a change. Therefore, only the front and rear end segments are traveling drive units, and the other intermediate segments are driven units.

【0018】前記の操舵機構10は、図2の実施例で
は、体節4から左右対称な配置で管1の直径線方向に突
き出された固定軸12(トラニオン軸)の根元部分に先
ず太陽歯車13が固定されている。また、前記固定軸1
2の外側部分に、該軸を中心として回転可能に駆動輪支
持体14が取り付けられ、この駆動輪支持体14に前述
の操舵モータ11が設置され、該操舵モータ11のピニ
オン11aが前記の太陽歯車13に噛み合わされてい
る。左右の走行駆動輪7、7について操舵機構10は別
個独立に構成されている。
In the embodiment shown in FIG. 2, the steering mechanism 10 is provided with a sun gear at a root portion of a fixed shaft 12 (trunnion shaft) protruding from the body section 4 in a symmetrical arrangement in the diameter direction of the pipe 1. 13 is fixed. In addition, the fixed shaft 1
A drive wheel support 14 is attached to an outer portion of the drive wheel 2 so as to be rotatable about the axis. The steering motor 11 is installed on the drive wheel support 14, and a pinion 11 a of the steering motor 11 is connected to the sun. It is meshed with the gear 13. The steering mechanism 10 is configured separately and independently for the left and right traveling drive wheels 7,7.

【0019】したがって、操舵モータ1が回転すると、
ピニオン11aと太陽歯車13との歯数逆比に基づく減
速比で駆動輪支持体14が回転し、ひいては同駆動輪支
持体14に支持された走行駆動輪7の向きを転換するこ
とになる。しかも左右の走行駆動輪7、7について、そ
の走行方向を別個に独立して自由に変えられる(操舵可
能)ので、ロボットの走行方向制御は自在であり、後述
の螺旋走行さえも可能である。
Therefore, when the steering motor 1 rotates,
The drive wheel support 14 rotates at a reduction ratio based on the reciprocal ratio of the number of teeth between the pinion 11a and the sun gear 13, and the direction of the traveling drive wheel 7 supported by the drive wheel support 14 is changed. In addition, the traveling directions of the left and right traveling drive wheels 7, 7 can be independently and freely changed (steerable), so that the traveling direction of the robot can be freely controlled, and even spiral traveling described later is possible.

【0020】前記の駆動輪支持体14に走行モータ9が
設置されている。該走行モータ9の回転軸と走行駆動輪
7の車軸とが歯車列の如き回転伝達機構15で連結され
ている。したがって前記操舵機構10の動作の如何にか
かわらず、走行駆動輪7による管内走行は支障なく自在
に行われる。そして、前記走行モータ9により回転され
る走行駆動輪7の推進力により、この管内走行ロボット
は、後続の各体節4を牽引して追従走行させ、管内走行
を設計された速度で行う。勿論、モータ制御により、ロ
ボットの走行速度を早めたり遅くする速度制御も必要に
応じて自由自在にできる。このとき同時に、後端の体節
の走行駆動輪をも前進走行させ、後ろからも押す推進力
を加えて二連機関車方式の走行を行わせることもでき
る。もっとも、後端の体節の走行駆動輪は、検査の必要
に応じて行う後進走行時に有用な存在である。
The traveling motor 9 is mounted on the driving wheel support 14. The rotation shaft of the traveling motor 9 and the axle of the traveling drive wheels 7 are connected by a rotation transmission mechanism 15 such as a gear train. Therefore, irrespective of the operation of the steering mechanism 10, traveling in the pipe by the traveling drive wheels 7 can be freely performed without any trouble. Then, the propulsion force of the traveling drive wheels 7 rotated by the traveling motor 9 causes the in-pipe traveling robot to pull and follow the following body segments 4 to perform the in-pipe traveling at a designed speed. Of course, speed control for increasing or decreasing the traveling speed of the robot can be freely performed as needed by motor control. At the same time, the traveling drive wheel of the body segment at the rear end can also be made to travel forward, and the driving of the dual locomotive system can be performed by applying a propulsive force to push from behind. However, the traveling drive wheels of the body segment at the rear end are useful when the vehicle is traveling backward when inspection is necessary.

【0021】なお、配管1の製作誤差や変形、或いは異
物の付着等に原因する管内径の変化を吸収して安定な走
行を円滑に行わしめる手段として、上記太陽歯車13を
固定した固定軸12の内端部分は、回転を抑止する角軸
のような構成として体節4へ出入り可能に取り付けら
れ、更に復元バネ30を装着したサスペンション機構が
採用されている。
As means for absorbing a change in the inner diameter of the pipe caused by a manufacturing error or deformation of the pipe 1 or adhesion of foreign matter, etc., a fixed shaft 12 on which the sun gear 13 is fixed is used as a means for smooth running. The inner end portion is mounted so as to be able to enter and exit the body segment 4 as a configuration such as a square axis for suppressing rotation, and a suspension mechanism equipped with a restoring spring 30 is employed.

【0022】一方、前端及び後端以外の体節には、図3
に示したように、少なくとも直角4方向に放射状の配置
で、管内面に接する従動輪8のみが取り付けられてい
る。各従動輪8の支持部には、やはり当該ロボットの自
重量の支持が可能であるようにバネ等による弾力的なサ
スペンション機構16が採用され、管内面へ押し付ける
構成とされている。
On the other hand, in the segments other than the front end and the rear end, FIG.
As shown in (1), only the driven wheels 8 that are in contact with the inner surface of the pipe are mounted in a radial arrangement at least in four directions at right angles. The supporting portion of each driven wheel 8 employs an elastic suspension mechanism 16 using a spring or the like so that the robot can support its own weight, and is configured to press against the inner surface of the pipe.

【0023】上記構成の管内走行ロボットにおいて、前
端及び後端の体節4にそれぞれ一体的に設けた検査ヘッ
ド6には、管内の検査に必要な器具としての前照灯17
と、テレビカメラ(CCDカメラ)18及びT字分岐管
2の位置検出センサー19並びに当該ロボットの走行距
離測定用のパルスカウンター20を搭載している(請求
項2記載の発明)。図示例の位置検出センサー19に
は、管内面へ接触する弾性な線状の接触型センサーが採
用されてれている。この位置検出センサー19は、図7
A、Bに例示したように斜め前方へ直角4方向の角錐状
配置に設けられている。
In the in-pipe traveling robot having the above structure, the inspection heads 6 provided integrally with the front and rear end segments 4 respectively have headlights 17 as instruments necessary for the inspection of the inside of the pipe.
And a television camera (CCD camera) 18, a position detection sensor 19 for the T-junction tube 2, and a pulse counter 20 for measuring the traveling distance of the robot (the invention according to claim 2). As the position detection sensor 19 in the illustrated example, an elastic linear contact-type sensor that comes into contact with the inner surface of the tube is employed. This position detection sensor 19 is provided in FIG.
As illustrated in A and B, they are provided in a pyramid arrangement in four directions at right angles diagonally forward.

【0024】更に図8に示したように、前端及び後端の
体節に設けられた検査ヘッド6に装備された上記検査用
の機器17〜20のリード線、及び走行駆動輪7の走行
モータの電源線と制御線、並びに同走行駆動輪7の操舵
機構の操舵モータ制御線と電源線等は、それぞれ当該ロ
ボットと管外のコントローラ22を接続するケーブル2
1に包含した構成とされている。
Further, as shown in FIG. 8, the lead wires of the above-mentioned inspection devices 17 to 20 mounted on the inspection head 6 provided on the front and rear end segments, and the traveling motor of the traveling drive wheel 7 The power supply line and the control line, and the steering motor control line and the power supply line of the steering mechanism of the traveling drive wheel 7 are cables 2 connecting the robot and the controller 22 outside the tube, respectively.
1 is included.

【0025】そのため管外のコントローラ22には、各
モータの電源23と、テレビカメラ18で撮影した映像
を映し出すモニター画面24、及び当該検査対象の管路
図をパソコン処理して表示する配管マップ25、並びに
管内走行ロボットを遠隔制御する制御装置26とが用意
されている(請求項3記載の発明)。
For this reason, the controller 22 outside the pipe includes a power supply 23 for each motor, a monitor screen 24 for displaying an image taken by the television camera 18, and a pipe map 25 for displaying a pipe diagram of the inspection object by processing it by a personal computer. And a control device 26 for remotely controlling the in-pipe traveling robot (the invention according to claim 3).

【0026】そこで以下には、上記構成のロボット(請
求項1〜3に記載した管内走行ロボット)を、特にT字
分岐管2内へ誘導し進入させる方向制御方法(請求項4
に記載した発明)について説明する。
In the following, a direction control method for guiding the robot having the above-described structure (the in-pipe traveling robot according to claims 1 to 3) particularly to the T-shaped branch pipe 2 (claim 4).
Will be described.

【0027】方向制御の基本は、図4〜図6に概略を図
示し、更に図11に制御フローを示したとおりである。
即ち、検査ヘッド6の前照灯17に照らされた管内をテ
レビカメラ18で撮影し、その映像をコントローラ22
のモニタ画面24に映してオペレーターの目視確認に供
する。同時にパルスカウンター20により管路基準点7
からの走行距離を連続計測し、その測距量Lを、予め検
査対象管路の設計図からパソコン処理により画像処理し
た配管マップ25上で照合して、ロボットの現在位置と
既知のT字分岐管2の位置乃至接近度を予測する。そし
て、目標とするT字分岐管2の位置へ例えば残り1m前
後の接近位置に到達した段階からは、ロボットの姿勢、
特には前端の検査ヘッド6の向きをT字分岐管2の向き
と整合させるべく螺旋走行を行わせる。螺旋走行は、上
述した操舵機構10を制御して走行駆動輪7の向きを図
9のように管路の軸線(中心線)に対し少し傾けて走行
させる。すると図10のようにロボットは全体として管
内を螺旋を描くように走行し、その結果、ロボット躯体
が管軸を中心として実質回転することになり、T字分岐
管2の位置及び向きと前端の体節及びその走行駆動輪7
の向きとを整合させることができる。
The basics of the directional control are as schematically shown in FIGS. 4 to 6 and the control flow is shown in FIG.
That is, the inside of the tube illuminated by the headlight 17 of the inspection head 6 is photographed by the television camera 18, and the image is taken by the controller 22.
On the monitor screen 24 for visual confirmation by the operator. At the same time, the pipe reference point 7 is set by the pulse counter 20.
The running distance from the robot is continuously measured, and the measured distance L is checked on a piping map 25 image-processed by a personal computer process from the design drawing of the pipe to be inspected in advance, and the current position of the robot and a known T-shaped branch are compared. The position or the degree of approach of the tube 2 is predicted. When the robot reaches the target position of the T-junction pipe 2, for example, the remaining approaching position of about 1 m, the robot posture,
In particular, the spiral running is performed so that the direction of the inspection head 6 at the front end is aligned with the direction of the T-shaped branch pipe 2. In the spiral running, the steering mechanism 10 is controlled so that the direction of the drive wheels 7 is slightly inclined with respect to the axis (center line) of the pipeline as shown in FIG. Then, as shown in FIG. 10, the robot runs in a spiral as a whole in the pipe, and as a result, the robot body substantially rotates around the pipe axis. Somites and their driving wheels 7
Can be matched with the direction.

【0028】より具体的には図4〜図6に示したよう
に、走行駆動輪7の向きは常に配管1の中心線と同一の
向きに制御するものとし、T字分岐管2に対しては、そ
の中心線と配管1の中心線との交点位置まではT字分岐
管2の中心線と直交する直径線上の位置となるように制
御する(図4A、B)。前記交点位置へ到達した段階で
走行駆動輪7の向きをT字分岐管2の中心線と平行な向
きとなるまで90゜転回させ走行を続ける(図5A、
B、図6)。走行駆動輪7の向き、姿勢は駆動輪支持体
14のローリング角、旋回角を計測して確認し制御す
る。
More specifically, as shown in FIGS. 4 to 6, the direction of the driving wheels 7 is always controlled to be the same as the center line of the pipe 1. Is controlled so that up to the intersection of the center line of the pipe 1 and the center line of the pipe 1 is located on a diameter line orthogonal to the center line of the T-shaped branch pipe 2 (FIGS. 4A and 4B). At the stage where the intersection point is reached, the traveling drive wheel 7 is turned by 90 ° until it is oriented parallel to the center line of the T-shaped branch pipe 2 to continue traveling (FIG. 5A,
B, FIG. 6). The direction and posture of the traveling drive wheels 7 are checked and controlled by measuring the rolling angle and the turning angle of the drive wheel support 14.

【0029】ロボットの前端の検査ヘッド6が図4のよ
うにT字分岐管2の位置へ到達したことは、図示例では
少なくとも1本の位置検出センサー19が非接触となっ
た信号で確認する。この検出信号に基いて、先ず前端の
体節を操舵制御して、その向きを図5のようにT字分岐
管2に向かわせる。しかる後に前端の体節に後続の体節
4を追従走行させると、以後はスムーズにT字分岐管2
内への進入と走行を続行する。もっとも、図4〜図6は
ロボットの方向制御を分り易く示したもので、実際の制
御は、図12に示したようにT字分岐管2の位置への到
達度に従い、走行駆動輪7の向きを少しずつ転換操作
し、最終的に90°の方向転換をスムーズに進めること
をになる。
The fact that the inspection head 6 at the front end of the robot has reached the position of the T-shaped branch pipe 2 as shown in FIG. 4 is confirmed by a signal indicating that at least one position detection sensor 19 has come out of contact in the illustrated example. . Based on this detection signal, the front end of the body segment is first subjected to steering control, and the direction is directed to the T-shaped branch pipe 2 as shown in FIG. Thereafter, when the following segment 4 is caused to follow the segment at the front end, the T-junction pipe 2 smoothly moves thereafter.
Continue to enter and drive inside. However, FIGS. 4 to 6 show the direction control of the robot in an easily understandable manner, and the actual control is based on the degree of reaching the position of the T-shaped branch pipe 2 as shown in FIG. The direction is changed little by little, and finally the direction change of 90 ° proceeds smoothly.

【0030】要するに、本発明の方向制御方法は、T字
分岐管2の位置の予測と操舵機構10の制御のおよそ2
項目で簡単、確実にT字分岐管内への進入、走行制御が
達成されるのである。
In short, the directional control method according to the present invention is capable of predicting the position of the T-junction pipe 2 and controlling the steering mechanism 10 approximately.
The entry and running control into the T-shaped branch pipe can be easily and reliably achieved by the items.

【0031】[0031]

【発明が奏する効果】請求項1〜3記載の発明に係るT
字分岐管内走行ロボット、及び請求項4に記載した発明
に係る方向制御方法によれば、ロボットをT字分岐管内
へ進入、走行させることが自由自在であり、よって配管
路のいずれの場所へも自由に行き来させて検査等の目的
達成に大きく寄与する。
The T according to the first to third aspects of the present invention.
According to the traveling robot in the T-shaped branch pipe and the directional control method according to the invention described in claim 4, the robot can freely enter and run into the T-shaped branch pipe, and therefore can be moved to any place in the piping path. It can be freely moved back and forth and contributes greatly to the achievement of the purpose such as inspection.

【0032】また、T字分岐管内へ進入、走行させるた
めのロボットの構造、及びその方向制御装置も簡単であ
り、実用性が高い。
Further, the structure of the robot for entering and traveling into the T-shaped branch pipe and the direction control device thereof are simple and highly practical.

【0033】更に、ロボットの管内走行速度も十分に速
くでき、検査等の作業の能率を高めることにも寄与す
る。
Further, the traveling speed in the pipe of the robot can be made sufficiently high, which contributes to the improvement of the efficiency of work such as inspection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る管内走行ロボットの構造概要を示
した断面図である。
FIG. 1 is a sectional view showing an outline of the structure of a pipe running robot according to the present invention.

【図2】図1の2−2線矢視断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】図1の3−3線矢視断面図である。FIG. 3 is a sectional view taken along line 3-3 of FIG. 1;

【図4】A、BはロボットがT字分岐管内へ進入する直
前の状況を示した説明図である。
FIGS. 4A and 4B are explanatory diagrams showing a situation immediately before a robot enters a T-shaped branch pipe.

【図5】A、Bはロボットの前端がT字分岐管内に向か
って方向転換した段階の説明図である。
FIGS. 5A and 5B are explanatory views of a stage in which the front end of the robot has changed its direction into the T-shaped branch pipe.

【図6】ロボットのT字分岐管内への進入が進んだ段階
の説明図である。
FIG. 6 is an explanatory diagram of a stage in which the robot has advanced into a T-junction pipe.

【図7】A、Bは位置検出センサーの配置を示した説明
図である。
FIGS. 7A and 7B are explanatory diagrams showing an arrangement of a position detection sensor. FIGS.

【図8】ロボットに搭載した機器と管外のコントローラ
ーの関係を示した説明図である。
FIG. 8 is an explanatory diagram showing a relationship between a device mounted on the robot and a controller outside the tube.

【図9】ロボットの螺旋走行の説明図である。FIG. 9 is an explanatory diagram of spiral running of the robot.

【図10】ロボットの螺旋走行の説明図である。FIG. 10 is an explanatory diagram of spiral running of the robot.

【図11】ロボットの方向制御を説明したフロー図であ
る。
FIG. 11 is a flowchart illustrating direction control of the robot.

【図12】ロボットの方向転換の説明図である。FIG. 12 is an explanatory diagram of a direction change of the robot.

【符号の説明】[Explanation of symbols]

1 配管 2 T字分岐管 4 体節 5 自在継手 7 走行駆動輪 8 従動輪 9 走行モータ 10 操舵機構 11 操舵モータ 21 ケーブル 22 コントローラ 17 前照灯 18 テレビカメラ 19 位置検出センサー 20 パルスカウンター 23 電源 24 モニター画面 25 配管マップ Reference Signs List 1 pipe 2 T-shaped branch pipe 4 body section 5 universal joint 7 traveling drive wheel 8 driven wheel 9 traveling motor 10 steering mechanism 11 steering motor 21 cable 22 controller 17 headlight 18 television camera 19 position detection sensor 20 pulse counter 23 power supply 24 Monitor screen 25 Piping map

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉田 正典 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 藤井 桂 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 稲岡 徹 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 宮崎 賢一 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 Fターム(参考) 2G051 AA82 AA83 AB20 AC16 BA20 CA03 CA04 CA11 EB01 EB02 FA02 3F059 AA11 BB04 CA06 DA08 DB04 DC08 DD01 FB01 3F060 BA03 CA17 GA13 GD03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masanori Kurata 8-21-1, Ginza, Chuo-ku, Tokyo Inside Takenaka Corporation Tokyo Main Store (72) Inventor Katsura Fujii 8-21 Ginza, Ginza, Chuo-ku, Tokyo No. 1 Takenaka Corporation Tokyo Main Store (72) Inventor Toru Inaoka 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside Technical Research Center Takenaka Corporation (72) Inventor Kenichi Miyazaki Otsuka One, Inzai City, Chiba Prefecture 5th Street 1 F-Term in Takenaka Corporation Technical Research Institute (reference) 2G051 AA82 AA83 AB20 AC16 BA20 CA03 CA04 CA11 EB01 EB02 FA02 3F059 AA11 BB04 CA06 DA08 DB04 DC08 DD01 FB01 3F060 BA03 CA17 GA13 GD03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】T字分岐管内への進入及び管内走行が可能
な管内走行ロボットであって、 複数の体節が、ほぼ90゜までの屈曲が可能なピン接合
により一連に自在連結されていること、 前端及び後端の体節は、少なくとも直角4方向に放射状
の配置で、管内面に接する少なくとも一対の走行駆動輪
及び他の一対をなす従動輪を具備し、前記走行駆動輪に
は走行モータが附属し、更に当該走行駆動輪の走行方向
を転換する操舵機構と操舵モータが附属されているこ
と、 前端及び後端の体節以外は、少なくとも直角4方向に放
射状の配置で、管内面に接する従動輪を具備しているこ
と、 前端及び後端の体節に設けられた走行駆動輪の走行制御
及び同走行駆動輪の操舵制御は、当該ロボットとケーブ
ルで接続された管外のコントローラを通じて行うことを
それぞれ特徴とする、T字分岐管内走行ロボット。
An in-pipe traveling robot capable of entering a T-junction pipe and traveling in a pipe, wherein a plurality of body segments are freely connected in series by a pin joint that can be bent to approximately 90 °. The front end and the rear end of the body are provided with at least one pair of traveling drive wheels and another pair of driven wheels in contact with the inner surface of the pipe in a radial arrangement at least in four directions at right angles. A motor is attached, and a steering mechanism for changing the traveling direction of the traveling drive wheel and a steering motor are attached. Except for the front and rear end segments, the inner surface of the pipe is radially arranged at least in four directions at right angles. The driving control of the driving wheels provided on the front and rear end segments and the steering control of the driving wheels are performed by an extra-tube controller connected to the robot by a cable. Do through A robot running in a T-junction pipe, characterized in that:
【請求項2】前端及び後端の体節は、前照灯とテレビカ
メラ及びT字分岐管の位置検出センサー並びに走行距離
測定用のパルスカウンターを搭載していることを特徴と
する、請求項1に記載したT字分岐管内走行ロボット。
2. The front and rear end segments are equipped with a headlight, a television camera, a position detection sensor for a T-junction tube, and a pulse counter for measuring a traveling distance. 2. The robot for traveling in a T-shaped branch pipe described in 1.
【請求項3】管外のコントローラは、動力源としての電
源と、テレビカメラで撮影した映像を映し出すモニター
画面、及び当該検査対象の管路図を表示する配管マップ
を備えていることを特徴とする、請求項1に記載したT
字分岐管内走行ロボット。
3. A controller outside the pipe comprising a power source as a power source, a monitor screen for displaying an image taken by a television camera, and a pipe map for displaying a pipe diagram of the inspection object. The T according to claim 1,
A robot that moves in a branch pipe.
【請求項4】請求項1〜3に記載した管内走行ロボット
をT字分岐管内へ進入させるための方向制御方法であっ
て、 前照灯に照らされた管内をテレビカメラの映像で目視確
認を行いつつ、パルスカウンターによる測距量を配管マ
ップと照合してT字分岐管の位置を予測し、一定の接近
位置に到達した段階からはロボットの姿勢をT字分岐管
の向きに整合させるべく螺旋走行を行わせ、位置検出セ
ンサーがT字分岐管の位置を確認した信号に基いて、前
端の体節を操舵制御してその向きをT字分岐管に向かわ
せ、前端の体節に後続の体節を追従走行させることを特
徴とする、T字分岐管内走行ロボットの方向制御方法。
4. A directional control method for causing a traveling robot in a pipe according to claim 1 to enter a T-shaped branch pipe, wherein the pipe illuminated by a headlight is visually checked with an image of a television camera. While performing, the position of the T-junction is predicted by comparing the distance measured by the pulse counter with the piping map, and after reaching a certain approach position, the posture of the robot is adjusted to the direction of the T-junction. The helical running is performed and the position detection sensor controls the steering of the front end segment based on the signal confirming the position of the T-junction tube so that the direction is directed to the T-junction tube and follows the front end segment. A direction control method for a robot running in a T-junction pipe, characterized in that the robot moves following a body segment.
JP10226335A 1998-08-10 1998-08-10 Robot travelling in t-shaped branch pipe and its directional control method Pending JP2000052282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10226335A JP2000052282A (en) 1998-08-10 1998-08-10 Robot travelling in t-shaped branch pipe and its directional control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10226335A JP2000052282A (en) 1998-08-10 1998-08-10 Robot travelling in t-shaped branch pipe and its directional control method

Publications (1)

Publication Number Publication Date
JP2000052282A true JP2000052282A (en) 2000-02-22

Family

ID=16843563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10226335A Pending JP2000052282A (en) 1998-08-10 1998-08-10 Robot travelling in t-shaped branch pipe and its directional control method

Country Status (1)

Country Link
JP (1) JP2000052282A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205790A (en) * 2005-01-25 2006-08-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology In-tube traveling device, and piping inspection device
KR100646079B1 (en) 2005-09-16 2006-11-14 주식회사 비즈탑 Diagnosis and washing micro robot for the in side of house water supply feed pipe
JP2007132769A (en) * 2005-11-10 2007-05-31 Hitachi Ltd Underwater inspection device
WO2009001054A1 (en) 2007-06-23 2008-12-31 Oliver Crispin Robotics Limited Robotic arm with a plurality of articulated segments
JP2011016467A (en) * 2009-07-09 2011-01-27 Osaka Gas Co Ltd In-pipe moving device
JP4677595B1 (en) * 2010-09-30 2011-04-27 国立大学法人東京工業大学 Pipe inspection device
JP2011161563A (en) * 2010-02-09 2011-08-25 Osaka Gas Co Ltd In-pipe moving device
JP2011161564A (en) * 2010-02-09 2011-08-25 Osaka Gas Co Ltd In-pipe moving device
JP2012183911A (en) * 2011-03-04 2012-09-27 Osaka Gas Co Ltd In-pipe moving device
JP2014147997A (en) * 2013-01-31 2014-08-21 Honda Motor Co Ltd Moving work robot
KR101440374B1 (en) 2013-08-09 2014-09-18 연세대학교 산학협력단 Mobile Robot Having Flexible Link for Inside of Pipe and Working Equipment Having the Same
KR20150010030A (en) * 2013-07-17 2015-01-28 삼성전자주식회사 Robot device for inspecting pipe line by using map matching and control method thereof
WO2015081135A1 (en) * 2013-11-30 2015-06-04 Saudi Arabian Oil Company Modular mobile inspection vehicle
KR101552807B1 (en) 2015-01-21 2015-09-14 성균관대학교산학협력단 Method for inspecting pipeline of in-pipe inspection robot using position sensing device module
CN105953028A (en) * 2016-07-07 2016-09-21 西南石油大学 Pipeline robot suitable for detection of multi-branch pipeline networks
CN106564060A (en) * 2016-10-26 2017-04-19 南京航空航天大学 Narrow space precise operation robot mechanism and working method
CN107813323A (en) * 2017-11-29 2018-03-20 成都大学 A kind of bionic type ant robot
CN108006364A (en) * 2017-07-07 2018-05-08 贵州大学 A kind of multifunctional pipe and deep-well search and rescue robot
CN109404826A (en) * 2018-12-11 2019-03-01 绍兴上虞复旦协创绿色照明研究院有限公司 A kind of pipeline interior lighting device
JP2019140514A (en) * 2018-02-09 2019-08-22 オリンパス株式会社 Tube inspection system
JP2019526462A (en) * 2017-05-24 2019-09-19 中国鉱業大学China university of mining and technology Serpentine inspection robot mechanism for elevator car guide by magnetic wheel drive
US10451222B2 (en) 2017-07-12 2019-10-22 Saudi Arabian Oil Company Magnetic crawler vehicle with passive rear-facing apparatus
CN112356038A (en) * 2020-09-27 2021-02-12 深圳供电局有限公司 Cable trench inspection robot
WO2021100149A1 (en) * 2019-11-20 2021-05-27 オリンパス株式会社 In-pipe travel device
CN113203000A (en) * 2021-04-30 2021-08-03 杭州申昊科技股份有限公司 Pipeline robot based on defect detection
CN115871809A (en) * 2022-11-30 2023-03-31 国网江苏省电力有限公司南通供电分公司 Electric power inspection walking mechanism

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205790A (en) * 2005-01-25 2006-08-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology In-tube traveling device, and piping inspection device
JP4660213B2 (en) * 2005-01-25 2011-03-30 RoboPlusひびきの株式会社 In-pipe travel device and piping inspection device
KR100646079B1 (en) 2005-09-16 2006-11-14 주식회사 비즈탑 Diagnosis and washing micro robot for the in side of house water supply feed pipe
JP2007132769A (en) * 2005-11-10 2007-05-31 Hitachi Ltd Underwater inspection device
WO2009001054A1 (en) 2007-06-23 2008-12-31 Oliver Crispin Robotics Limited Robotic arm with a plurality of articulated segments
JP2011016467A (en) * 2009-07-09 2011-01-27 Osaka Gas Co Ltd In-pipe moving device
JP2011161563A (en) * 2010-02-09 2011-08-25 Osaka Gas Co Ltd In-pipe moving device
JP2011161564A (en) * 2010-02-09 2011-08-25 Osaka Gas Co Ltd In-pipe moving device
JP4677595B1 (en) * 2010-09-30 2011-04-27 国立大学法人東京工業大学 Pipe inspection device
JP2012076475A (en) * 2010-09-30 2012-04-19 Tokyo Institute Of Technology Device for testing piping
JP2012183911A (en) * 2011-03-04 2012-09-27 Osaka Gas Co Ltd In-pipe moving device
JP2014147997A (en) * 2013-01-31 2014-08-21 Honda Motor Co Ltd Moving work robot
KR102083366B1 (en) * 2013-07-17 2020-03-03 삼성전자 주식회사 Robot device for inspecting pipe line by using map matching and control method thereof
KR20150010030A (en) * 2013-07-17 2015-01-28 삼성전자주식회사 Robot device for inspecting pipe line by using map matching and control method thereof
KR101440374B1 (en) 2013-08-09 2014-09-18 연세대학교 산학협력단 Mobile Robot Having Flexible Link for Inside of Pipe and Working Equipment Having the Same
US9863919B2 (en) 2013-11-30 2018-01-09 Saudi Arabian Oil Company Modular mobile inspection vehicle
WO2015081135A1 (en) * 2013-11-30 2015-06-04 Saudi Arabian Oil Company Modular mobile inspection vehicle
CN106170371A (en) * 2013-11-30 2016-11-30 沙特阿拉伯石油公司 Modularity movable type checks vehicle
KR101552807B1 (en) 2015-01-21 2015-09-14 성균관대학교산학협력단 Method for inspecting pipeline of in-pipe inspection robot using position sensing device module
CN105953028B (en) * 2016-07-07 2018-03-30 西南石油大学 A kind of pipe robot suitable for the detection of multiple-limb pipe network
CN105953028A (en) * 2016-07-07 2016-09-21 西南石油大学 Pipeline robot suitable for detection of multi-branch pipeline networks
CN106564060A (en) * 2016-10-26 2017-04-19 南京航空航天大学 Narrow space precise operation robot mechanism and working method
JP2019526462A (en) * 2017-05-24 2019-09-19 中国鉱業大学China university of mining and technology Serpentine inspection robot mechanism for elevator car guide by magnetic wheel drive
CN108006364A (en) * 2017-07-07 2018-05-08 贵州大学 A kind of multifunctional pipe and deep-well search and rescue robot
US11060669B2 (en) 2017-07-12 2021-07-13 Saudi Arabian Oil Company Magnetic crawler vehicle with passive rear-facing apparatus
US10451222B2 (en) 2017-07-12 2019-10-22 Saudi Arabian Oil Company Magnetic crawler vehicle with passive rear-facing apparatus
US11098854B2 (en) 2017-07-12 2021-08-24 Saudi Arabian Oil Company Magnetic crawler vehicle with passive rear-facing apparatus
CN107813323A (en) * 2017-11-29 2018-03-20 成都大学 A kind of bionic type ant robot
CN107813323B (en) * 2017-11-29 2024-03-19 成都大学 Bionic ant robot
JP2019140514A (en) * 2018-02-09 2019-08-22 オリンパス株式会社 Tube inspection system
CN109404826A (en) * 2018-12-11 2019-03-01 绍兴上虞复旦协创绿色照明研究院有限公司 A kind of pipeline interior lighting device
WO2021100149A1 (en) * 2019-11-20 2021-05-27 オリンパス株式会社 In-pipe travel device
CN112356038B (en) * 2020-09-27 2022-07-22 深圳供电局有限公司 Cable trench inspection robot
CN112356038A (en) * 2020-09-27 2021-02-12 深圳供电局有限公司 Cable trench inspection robot
CN113203000A (en) * 2021-04-30 2021-08-03 杭州申昊科技股份有限公司 Pipeline robot based on defect detection
CN115871809A (en) * 2022-11-30 2023-03-31 国网江苏省电力有限公司南通供电分公司 Electric power inspection walking mechanism

Similar Documents

Publication Publication Date Title
JP2000052282A (en) Robot travelling in t-shaped branch pipe and its directional control method
JP4677595B1 (en) Pipe inspection device
US7182025B2 (en) Autonomous robotic crawler for in-pipe inspection
JP2533027B2 (en) Autonomous mobile piping maintenance robot
CN107380291A (en) Mode of doing more physical exercises pipeline outer wall climbing detection robot
KR20120103869A (en) Steerable pipeline inspection robot
JPH0544390B2 (en)
JP2015224001A (en) Mobile device in piping
JPH07329841A (en) Spirally traveling robot for inspecting linear and cylindrical object
JPS6120843A (en) Travelling instrument for inspecting inside pipe
Ishikawa et al. Investigation of odometry method of pipe line shape by peristaltic crawling robot combined with inner sensor
JP4845341B2 (en) Control method of joint robot
JPH0487784A (en) Running vehicle in pipe
Yabe et al. New in-pipe robot capable of coping with various diameters
JPS6129759A (en) Inspecting and running device for conduit tube
JPS63282637A (en) In-piping running instrument
JPH0621012Y2 (en) In-pipe traveling device
JPH08230666A (en) In-pipe traveling device
JPH0618285Y2 (en) In-pipe traveling device
JP2002220049A (en) Intra-piping working robot
JPH038310B2 (en)
JPH04217475A (en) Moving robot
JP2001254904A (en) Inspection device for furnace wall tube of boiler
US20230128262A1 (en) Modular Robotic Inspection System
JPH07232639A (en) Running device in pipe