JP2000051693A - Manufacture of catalyst for gas-phase catalytic oxidation for hydrocarbon - Google Patents

Manufacture of catalyst for gas-phase catalytic oxidation for hydrocarbon

Info

Publication number
JP2000051693A
JP2000051693A JP10236351A JP23635198A JP2000051693A JP 2000051693 A JP2000051693 A JP 2000051693A JP 10236351 A JP10236351 A JP 10236351A JP 23635198 A JP23635198 A JP 23635198A JP 2000051693 A JP2000051693 A JP 2000051693A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
metallic
acrylic acid
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10236351A
Other languages
Japanese (ja)
Inventor
Mamoru Takahashi
衛 高橋
Shinrin To
新林 屠
Shunryo Hirose
俊良 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP10236351A priority Critical patent/JP2000051693A/en
Publication of JP2000051693A publication Critical patent/JP2000051693A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the selection rate of an acrylic acid by catalytically oxidizing hydrocarbons in the gas phase with high catalytic activity by making a metallic oxide whose percentage of a metallic element is expressed by a specific composition formula or an inorganic mixture containing the oxide, come into contact with hydrogen peroxide. SOLUTION: A metallic oxide, the percentage of a metallic element of which is represented by the formula: MoViSbjAk (wherein, A is one or more kinds of metallic element selected from the group of Nb,Ta,Sn,W,Ti,Co and the like and Ce; (i) and (j) are each 0.01-1.5 and j/i = 0.3-1; k is 0.001-3.0) or an inorganic mixture containing the metallic oxide, is manufactured by dissolving or dispersing a chemical compound containing Mo, V, Sb and the other metallic part in water or an organic solvent and mixing each of these components as uniformly as possible. After mixing the components sufficiently, a liquid medium is removed and the remaining solid mixture is ground to the appropriate grain size. Further the grinds are brought into contact with a hydrogen peroxide solution and the powder of the metallix oxide or the inorganic mixture is obtained through a separation process. Thus it is possible to manufacture acrylic acid at a high yield by catalytically oxidizing hydrocarbons in the gas phase with high catalytic acitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の気相接
触酸化において使用される金属酸化物系触媒の製造方法
に関するものである。
[0001] The present invention relates to a method for producing a metal oxide-based catalyst used in gas phase catalytic oxidation of hydrocarbons.

【0002】[0002]

【従来技術およびその問題点】モリブデン(Mo)、バ
ナジウム(V)、アンチモン(Sb)を含有する金属酸
化物は、炭化水素の気相接触酸化用の触媒として知られ
ており、以下に説明するように多数提案がある。すなわ
ち、プロパンからのアクリル酸合成(特開平9−316
023号公報)、プロパンとアンモニアの反応によるア
クリロニトリル合成(特開平9−157241号公報)
およびイソブタンを出発物質とするメタクロレインまた
はメタクリル酸の合成(特開平9−278680号公
報)等の気相接触酸化反応において、Mo−V−Sb−
Nb系触媒が使用されている。上記のような金属酸化物
系触媒は、一般的にそれぞれの触媒に必要とされる複数
の金属元素を含む溶液から、蒸発乾固または沈澱により
固形物を得た後、それを焼成することにより製造されて
いる。また、別法として、上記のような溶液を調製する
ことなく、複数の無機化合物同士を固体のままで混合し
た後、焼成するという方法もある。
2. Description of the Related Art Metal oxides containing molybdenum (Mo), vanadium (V) and antimony (Sb) are known as catalysts for gas phase catalytic oxidation of hydrocarbons and will be described below. There are many suggestions. That is, the synthesis of acrylic acid from propane (JP-A-9-316)
023), acrylonitrile synthesis by reaction of propane and ammonia (JP-A-9-157241)
In a gas phase catalytic oxidation reaction such as the synthesis of methacrolein or methacrylic acid starting from isobutane and isobutane (JP-A-9-278680), Mo-V-Sb-
An Nb-based catalyst is used. The above-mentioned metal oxide-based catalyst is generally obtained by evaporating to dryness or depositing a solid from a solution containing a plurality of metal elements required for each catalyst, and then calcining the solid. Being manufactured. As another method, there is a method in which a plurality of inorganic compounds are mixed in a solid state without preparing the above-mentioned solution, and then fired.

【0003】しかしながら、上記の方法によって得られ
る炭化水素の気相接触酸化用の触媒の活性は、微妙に製
造条件によって変化するというように、従来の方法で再
現性良く活性の高い触媒を得ることは容易でなかった。
Mo−V−Te系触媒に関しては、上記問題を解決する
ために、該触媒を蓚酸、クエン酸、塩酸または硫酸等に
より処理することことが提案されている(特開平8−5
7319号公報)。本発明者らは、上記と同様な酸処理
をMo−V−Sb系触媒に適用し、得られた触媒をプロ
パンからのアクリル酸製造反応に適用してみたが、後記
比較例2のとおり、アクリル酸の選択率が著しく低下す
るという結果であった。
[0003] However, the activity of the catalyst for gas phase catalytic oxidation of hydrocarbons obtained by the above-mentioned method slightly varies depending on the production conditions. Was not easy.
With respect to the Mo-V-Te catalyst, it has been proposed to treat the catalyst with oxalic acid, citric acid, hydrochloric acid, sulfuric acid or the like in order to solve the above problem (Japanese Patent Laid-Open No. 8-5).
No. 7319). The present inventors applied the same acid treatment to the Mo-V-Sb-based catalyst and applied the resulting catalyst to an acrylic acid production reaction from propane, as described in Comparative Example 2 below. The result was that the selectivity of acrylic acid was significantly reduced.

【0004】[0004]

【課題を解決するための手段】本発明らは、上記課題を
解決するため鋭意検討した結果、本発明を完成するに至
った。すなわち、本発明は、金属元素の割合が下記組成
式(I)で表される金属酸化物または該酸化物を含む無
機混合物を、過酸化水素水と接触させることを特徴とす
る炭化水素の気相接触酸化用触媒の製造方法である。 MoViSbjAk (I) (式中、Aは、Nb、Ta、Sn、W、Ti、Ni、F
e、Cr、CoおよびCeからなる群から選ばれた1種
以上の金属元素である。iおよびjは、各々0.01〜
1.5でかつj/i=0.3〜1であり、またkは、
0.001〜3.0である。) 以下、本発明についてさらに詳しく説明する。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. That is, the present invention provides a method for producing a hydrocarbon gas comprising contacting a metal oxide having a metal element ratio represented by the following composition formula (I) or an inorganic mixture containing the oxide with a hydrogen peroxide solution. This is a method for producing a catalyst for phase contact oxidation. MoViSbjAk (I) (where A is Nb, Ta, Sn, W, Ti, Ni, F
At least one metal element selected from the group consisting of e, Cr, Co and Ce. i and j are each 0.01 to
1.5 and j / i = 0.3-1 and k is
It is 0.001-3.0. Hereinafter, the present invention will be described in more detail.

【0005】[0005]

【発明の実施の形態】本発明における前記組成式(I)
で表される金属酸化物または該酸化物を含む無機混合物
は、従来炭化水素の気相接触酸化用触媒として使用され
ていたものであり、従来公知の方法により製造できる。
すなわち、Mo、V、Sbおよびその他の金属成分を含
有する各種化合物を、水または有機溶剤に溶解または分
散させ、各成分をできるかぎり均一になるよう混合す
る。金属成分を含有する化合物としては、酸化物、塩化
物、水酸化物、アンモニウム塩、硝酸塩およびアルコキ
シド等が挙げられ、具体的には、モリブデン酸、モリブ
デン酸アンモニウム、酸化モリブデン、酸化バナジウ
ム、塩化アンチモン、酢酸アンチモン、ニオブ酸、酸化
ニオブおよびメタバナジン酸アンモニウム等がある。
BEST MODE FOR CARRYING OUT THE INVENTION The composition formula (I) in the present invention
The metal oxide represented by the formula or an inorganic mixture containing the oxide has been conventionally used as a catalyst for gas phase catalytic oxidation of hydrocarbons, and can be produced by a conventionally known method.
That is, various compounds containing Mo, V, Sb and other metal components are dissolved or dispersed in water or an organic solvent, and the components are mixed so as to be as uniform as possible. Examples of the compound containing a metal component include oxides, chlorides, hydroxides, ammonium salts, nitrates, and alkoxides. Specific examples include molybdic acid, ammonium molybdate, molybdenum oxide, vanadium oxide, and antimony chloride. , Antimony acetate, niobate, niobium oxide and ammonium metavanadate.

【0006】上記金属化合物溶液または分散液を攪拌
し、各化合物を十分に混合させた後、液状媒体を除去し
て固体混合物を得る。液状媒体の除去方法としては、蒸
発乾固、噴霧乾燥または真空乾燥等が使用できる。得ら
れた固体混合物を温度300〜900℃、より好ましく
は450〜700℃で焼成する。焼成の雰囲気として
は、窒素、アルゴンまたは空気が採用でき、焼成時間は
1〜20時間程度が好ましい。上記方法によって得られ
る金属酸化物触媒は、適当な粒度に粉砕することが好ま
しい。粉砕方法としては、乾式または湿式のいずれも使
用でき、装置としては乳鉢およびボールミル等が挙げら
れる。
[0006] The above-mentioned metal compound solution or dispersion is stirred to sufficiently mix each compound, and then the liquid medium is removed to obtain a solid mixture. As a method for removing the liquid medium, evaporation to dryness, spray drying, vacuum drying, or the like can be used. The obtained solid mixture is calcined at a temperature of 300 to 900C, more preferably 450 to 700C. As the firing atmosphere, nitrogen, argon or air can be adopted, and the firing time is preferably about 1 to 20 hours. The metal oxide catalyst obtained by the above method is preferably ground to an appropriate particle size. As a pulverizing method, either a dry type or a wet type can be used, and examples of the apparatus include a mortar and a ball mill.

【0007】金属酸化物触媒の機械的強度の向上等のた
めに、上記金属酸化物に、Si、Al、ZrまたはTi
等の酸化物を加えた後、造粒しても良い。かかる希釈剤
の好ましい使用量は、混合物全体を基準にして、1〜9
0重量%である。
In order to improve the mechanical strength of the metal oxide catalyst, Si, Al, Zr or Ti is added to the metal oxide.
After adding an oxide such as this, granulation may be performed. Preferred amounts of such diluents are from 1 to 9 based on the total mixture.
0% by weight.

【0008】本発明においては、上記方法によって得ら
れる金属酸化物粉末、または該粉末に希釈剤が混合され
た無機混合物粉末を、以下に述べる方法等により過酸化
水素水と接触させる。過酸化水素水と接触させる上記金
属酸化物粉末または無機混合物粉末の粒径は、特に限定
されないが、比較的短時間の接触によって触媒の活性を
向上させることができる点で、0.1μm〜2mm程度が
好ましい。上記金属酸化物固体を、例えばボールミル等
により粉砕することにより、0.1〜20μm程度の粒
径のものが得られるし、またかかる微細粒子のものを成
型器で整粒した場合には、1〜2mm程度の粒径のもの
が得られる。使用する過酸化水素水としては、過酸化水
素の濃度が0.05〜35重量%のものが好ましく、本
発明においては、上記金属酸化物粉末または無機混合物
粉末をかかる過酸化水素水に10分以上浸漬することが
好ましい。より好まししい浸漬時間は、1〜20時間で
ある。浸漬の期間中、所望により分散液を攪拌しても良
い。金属酸化物粉末または無機混合物粉末と過酸化水素
水を接触させる際の好ましい温度は室温である。別な接
触方法としては、金属酸化物粉末または無機混合物粉末
を充填した管内に過酸化水素水を流すという方法もあ
る。
In the present invention, the metal oxide powder obtained by the above method or the inorganic mixture powder obtained by mixing the powder with a diluent is brought into contact with a hydrogen peroxide solution by the following method or the like. The particle size of the metal oxide powder or the inorganic mixture powder to be brought into contact with the hydrogen peroxide solution is not particularly limited, but is 0.1 μm to 2 mm in that the activity of the catalyst can be improved by a relatively short contact. The degree is preferred. The above-mentioned metal oxide solid is pulverized with, for example, a ball mill or the like to obtain a particle having a particle size of about 0.1 to 20 μm. A particle having a particle size of about 2 mm is obtained. The aqueous hydrogen peroxide used is preferably one having a hydrogen peroxide concentration of 0.05 to 35% by weight. In the present invention, the metal oxide powder or the inorganic mixture powder is added to the aqueous hydrogen peroxide for 10 minutes. It is preferable to soak. A more preferred immersion time is 1 to 20 hours. During the immersion, the dispersion may be agitated as desired. The preferred temperature for bringing the metal oxide powder or the inorganic mixture powder into contact with the hydrogen peroxide solution is room temperature. As another contact method, there is a method of flowing a hydrogen peroxide solution into a tube filled with a metal oxide powder or an inorganic mixture powder.

【0009】上記処理の後、過酸化水素水から金属酸化
物粉末または無機混合物粉末を分離するが、分離方法と
して、濾過、デカンテーション、遠心分離等が使用でき
る。得られた粉末は、そのままでも炭化水素の気相接触
酸化用触媒として使用できるが、数回の水洗を行い、そ
の後乾燥させて使用することがより好ましい。乾燥させ
た金属酸化物粉末または無機混合物粉末を、所望により
さらに400〜700℃で焼成しても良い。得られる金
属酸化物系触媒は、無担体の状態でも使用できるが、適
当な粒度を有するシリカ、アルミナ、シリカアルミナお
よびシリコンカーバイド等の担体に担持させた状態でも
使用できる。なお、本発明の触媒の製造方法は、気相接
触酸化反応に使用されて活性が低下した金属酸化物系触
媒を出発原料として用いることもできる。
After the above treatment, the metal oxide powder or the inorganic mixture powder is separated from the hydrogen peroxide solution. As a separation method, filtration, decantation, centrifugation or the like can be used. The obtained powder can be used as it is as a catalyst for gas phase catalytic oxidation of hydrocarbons, but it is more preferable to wash it several times with water and then dry it. The dried metal oxide powder or inorganic mixture powder may be further fired at 400 to 700 ° C. if desired. The resulting metal oxide-based catalyst can be used in the state of no carrier, but can also be used in the state of being supported on a carrier such as silica, alumina, silica-alumina and silicon carbide having an appropriate particle size. In the method for producing a catalyst of the present invention, a metal oxide-based catalyst whose activity has been reduced by being used in a gas phase catalytic oxidation reaction can also be used as a starting material.

【0010】本発明により得られる触媒は、炭化水素の
中でも反応性の低いアルカンの部分酸化反応において優
れた活性を有しており、プロパンからのアクリル酸製
造、プロパンのアンモ酸化によるアクリロニトリル製造
およびエチレンの製造等にも適用でき、特にプロパンか
らのアクリル酸製造において、顕著な効果を奏する。な
お、かかる性能を有する本発明の触媒は、プロピレン等
のアルケンの酸化に適用しても、優れた効果を奏するも
のと推測される。プロパンの気相接触酸化反応によりア
クリル酸を製造するためには、プロパンおよび酸素含有
ガスを触媒を充填した温度350〜500℃の反応器
に、ガス空間速度300〜5000/hrで通過させる。
酸素含有ガスとしては、空気または酸素ガスを水蒸気、
炭酸ガスまたは窒素ガス等で希釈したものを使用でき
る。
The catalyst obtained by the present invention has an excellent activity in the partial oxidation reaction of alkanes having low reactivity among hydrocarbons, and produces acrylic acid from propane, acrylonitrile by ammoxidation of propane, and ethylene. The production of acrylic acid from propane is particularly effective. It is presumed that the catalyst of the present invention having such performance exhibits excellent effects even when applied to the oxidation of alkenes such as propylene. In order to produce acrylic acid by a gas phase catalytic oxidation reaction of propane, propane and an oxygen-containing gas are passed through a reactor filled with a catalyst at a temperature of 350 to 500 ° C at a gas space velocity of 300 to 5000 / hr.
As the oxygen-containing gas, air or oxygen gas is converted into steam,
Those diluted with carbon dioxide gas or nitrogen gas or the like can be used.

【0011】以下、実施例および比較例を挙げて、本発
明をさらに具体的に説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

【実施例1】(複合金属酸化物の製造)300mlのガ
ラス製フラスコ内の蒸留水130ml中に、メタバナジ
ン酸アンモニウム6.15gを加え、撹拌下で加熱溶解
させた後、三酸化アンチモン5.87gおよびモリブデ
ン酸アンモニウム30.9gを加えた。上記成分からな
る混合液を360回転/分の速度で攪拌機を回転させな
がら、窒素ガス雰囲気下で16時間加熱還流した。その
後さらに、攪拌しながら、1.54重量%の過酸化水素
水40gを5時間かけて滴下した。得られた青いコロイ
ド分散液状の分散液を室温まで冷却し、そこに蓚酸8.
82gおよびニオブ酸2.33gを75mlの蒸留水に
溶解した常温の水溶液を加えた。得られた混合液を30
分間激しく撹拌した後、120℃で蒸発乾固させた。得
られた金属化合物混合物を290℃で5時間焼成した
後、窒素ガス気流中で600℃で2時間焼成することに
より、複合金属酸化物を得た。この酸化物の原子比は、
Mo/V/Sb/Nb=1.0/0.3/0.23/
0.08であった。
Example 1 (Production of a composite metal oxide) 6.15 g of ammonium metavanadate was added to 130 ml of distilled water in a 300 ml glass flask, and dissolved under heating with stirring, and 5.87 g of antimony trioxide was added. And 30.9 g of ammonium molybdate. The mixture comprising the above components was heated and refluxed for 16 hours in a nitrogen gas atmosphere while rotating the stirrer at a rate of 360 rpm. Thereafter, while stirring, 40 g of 1.54% by weight aqueous hydrogen peroxide was added dropwise over 5 hours. The resulting blue colloidal dispersion was cooled to room temperature, and oxalic acid was added thereto.
A room temperature aqueous solution in which 82 g and 2.33 g of niobic acid were dissolved in 75 ml of distilled water was added. The obtained mixture is mixed with 30
After vigorous stirring for minutes, the mixture was evaporated to dryness at 120 ° C. The obtained metal compound mixture was fired at 290 ° C. for 5 hours, and then fired at 600 ° C. for 2 hours in a nitrogen gas stream to obtain a composite metal oxide. The atomic ratio of this oxide is
Mo / V / Sb / Nb = 1.0 / 0.3 / 0.23 /
0.08.

【0012】(複合金属酸化物の過酸化水素水による処
理)上記の方法で製造された複合金属酸化物5gを粒径
20μm以下に粉砕した後、5重量%の過酸化水素水5
0ml中に添加し、得られた分散液を室温で2時間攪拌
した。次いで、該分散液から遠心分離によって複合金属
酸化物を取り出し、それを脱イオン水50mlで2回洗
浄した。その後、空気中で120℃で乾燥した後、打錠
成形し、16〜30メッシュに整粒し、これを触媒とし
て以下のアクリル酸製造反応に使用した。
(Treatment of Composite Metal Oxide with Hydrogen Peroxide Solution) 5 g of the composite metal oxide produced by the above method is pulverized to a particle size of 20 μm or less, and then 5% by weight of hydrogen peroxide solution
0 ml and the resulting dispersion was stirred at room temperature for 2 hours. Next, the composite metal oxide was removed from the dispersion by centrifugation and washed twice with 50 ml of deionized water. Then, after drying in air at 120 ° C., the mixture was tableted, sized to 16 to 30 mesh, and used as a catalyst in the following acrylic acid production reaction.

【0013】(アクリル酸製造反応)上記触媒1.5ml
(2.22g)を10mmφの石英製の反応管に充填し
た。反応管は400℃に加温し、そこにプロパン4.4
%、酸素ガス7.0%、窒素ガス26.3%および水蒸
気62.3%からなる混合ガスをSV=1800/hr
の速度で供給することにより、アクリル酸を合成した。
その結果は、表1に記載のとおりである。なお、転化
率、選択率および収率は、以下の計算式によって算出し
た(いずれもモル数により計算)。 ・プロパン転化率(%)=(供給プロパン−未反応プロ
パン)/供給プロパン ・アクリル酸選択率(%)=生成アクリル酸/(供給プ
ロパン−未反応プロパン) ・アクリル酸収率(%)=プロパン転化率×アクリル酸
選択率
(Acrylic acid production reaction) 1.5 ml of the above catalyst
(2.22 g) was charged into a 10 mmφ quartz reaction tube. The reaction tube was heated to 400 ° C., and propane 4.4 was added thereto.
%, Oxygen gas 7.0%, nitrogen gas 26.3%, and steam 62.3% as a SV = 1800 / hr.
Acrylic acid was synthesized by supplying at a speed of.
The results are as shown in Table 1. The conversion, the selectivity, and the yield were calculated by the following formulas (all calculated by the number of moles). -Propane conversion (%) = (supply propane-unreacted propane) / supply propane-Acrylic acid selectivity (%) = formed acrylic acid / (supply propane-unreacted propane)-Acrylic acid yield (%) = propane Conversion x Acrylic acid selectivity

【0014】[0014]

【比較例1】実施例1で製造した複合金属酸化物を過酸
化水素水による処理を行うことなく、そのまま触媒とし
て使用する以外、すべて実施例1と同様にしてアクリル
酸製造反応を行った。結果は、表1のとおりである。
Comparative Example 1 Acrylic acid production reaction was carried out in the same manner as in Example 1 except that the composite metal oxide produced in Example 1 was used as a catalyst without treatment with aqueous hydrogen peroxide. The results are as shown in Table 1.

【0015】[0015]

【比較例2】実施例1で製造した複合金属酸化物5gを
粒径20μm以下に粉砕した後、10重量%の蓚酸水溶
液50ml中に添加し、得られた分散液を50℃で2時
間攪拌した。次いで、該分散液から遠心分離によって複
合金属酸化物を取り出し、それを脱イオン水50mlで
2回洗浄した。その後、空気中で120℃で乾燥した
後、打錠成形し、16〜30メッシュに整粒し、これを
触媒として用いる以外はすべて実施例1と同様にしてア
クリル酸製造反応を行った。結果は、表1のとおりであ
る。
Comparative Example 2 5 g of the composite metal oxide produced in Example 1 was pulverized to a particle diameter of 20 μm or less, added to 50 ml of a 10% by weight aqueous oxalic acid solution, and the resulting dispersion was stirred at 50 ° C. for 2 hours. did. Next, the composite metal oxide was removed from the dispersion by centrifugation and washed twice with 50 ml of deionized water. Then, after drying in air at 120 ° C., the mixture was tableted, sized to 16 to 30 mesh, and the acrylic acid production reaction was carried out in the same manner as in Example 1 except that this was used as a catalyst. The results are as shown in Table 1.

【0016】[0016]

【表1】 表中の数値の単位はいずれも%である。[Table 1] The unit of each numerical value in the table is%.

【0017】[0017]

【発明の効果】本発明によって得られる金属酸化物触媒
は、炭化水素の気相接触酸化反応の触媒として高い活性
を有し、特にプロパンからアクリル酸を製造する気相接
触酸化反応に使用されると、高収率でアクリル酸が製造
できる。
The metal oxide catalyst obtained by the present invention has a high activity as a catalyst for the gas phase catalytic oxidation reaction of hydrocarbons, and is particularly used for the gas phase catalytic oxidation reaction for producing acrylic acid from propane. Acrylic acid can be produced in high yield.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA08 BC26A BC26B BC26C BC43A BC43C BC50A BC50C BC54A BC54B BC54C BC55A BC55C BC56A BC56C BC58A BC58C BC59A BC59B BC59C BC60A BC60C BC66A BC66C BC67A BC67C BC68A BC68C BD01A BD01B BD01C BD02A BD02B BD02C CB07 CB17 CB74 DA05 FA08 FC02 FC04 4H006 AC12 AC46 BA08 BA10 BA11 BA12 BA13 BA14 BA19 BA20 BA21 BA30 BC13 BE30 4H039 CA21 CA65 CC10 CC30  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4G069 AA08 BC26A BC26B BC26C BC43A BC43C BC50A BC50C BC54A BC54B BC54C BC55A BC55C BC56A BC56C BC58A BC58C BC59A BC59B BC59C BC60A BC60C BC66A BC66C BC67A BC67B01 BC68 BC01 BD68 DA05 FA08 FC02 FC04 4H006 AC12 AC46 BA08 BA10 BA11 BA12 BA13 BA14 BA19 BA20 BA21 BA30 BC13 BE30 4H039 CA21 CA65 CC10 CC30

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属元素の割合が下記組成式(I)で表
される金属酸化物または該酸化物を含む無機混合物を、
過酸化水素水と接触させることを特徴とする炭化水素の
気相接触酸化用触媒の製造方法。 MoViSbjAk (I) (式中、Aは、Nb、Ta、Sn、W、Ti、Ni、F
e、Cr、CoおよびCeからなる群から選ばれた1種
以上の金属元素である。iおよびjは、各々0.01〜
1.5でかつj/i=0.3〜1であり、またkは、
0.001〜3.0である。)
A metal oxide having a metal element ratio represented by the following composition formula (I) or an inorganic mixture containing the oxide:
A method for producing a catalyst for gas phase catalytic oxidation of hydrocarbons, which is brought into contact with hydrogen peroxide water. MoViSbjAk (I) (where A is Nb, Ta, Sn, W, Ti, Ni, F
At least one metal element selected from the group consisting of e, Cr, Co and Ce. i and j are each 0.01 to
1.5 and j / i = 0.3-1 and k is
It is 0.001-3.0. )
【請求項2】 上記炭化水素がプロパンである請求項1
記載の炭化水素の気相接触酸化用触媒の製造方法。
2. The method of claim 1, wherein said hydrocarbon is propane.
A process for producing the catalyst for gas phase catalytic oxidation of hydrocarbons according to the above.
JP10236351A 1998-08-07 1998-08-07 Manufacture of catalyst for gas-phase catalytic oxidation for hydrocarbon Pending JP2000051693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236351A JP2000051693A (en) 1998-08-07 1998-08-07 Manufacture of catalyst for gas-phase catalytic oxidation for hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236351A JP2000051693A (en) 1998-08-07 1998-08-07 Manufacture of catalyst for gas-phase catalytic oxidation for hydrocarbon

Publications (1)

Publication Number Publication Date
JP2000051693A true JP2000051693A (en) 2000-02-22

Family

ID=16999527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236351A Pending JP2000051693A (en) 1998-08-07 1998-08-07 Manufacture of catalyst for gas-phase catalytic oxidation for hydrocarbon

Country Status (1)

Country Link
JP (1) JP2000051693A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7378541B2 (en) 2000-12-13 2008-05-27 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7498463B2 (en) 2000-12-13 2009-03-03 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone

Similar Documents

Publication Publication Date Title
RU2495024C2 (en) Method for oxidative ammonolysis or oxidation of propane and isobutane
JP5608263B2 (en) Catalyst system with high activity and selectivity for the production of unsaturated nitriles and process for producing unsaturated nitriles from the corresponding olefins
JP3500682B2 (en) Catalyst for the production of nitriles from alkanes
JPS6118729A (en) Oxydehydrogenation of ethane to ethylene
US20110218352A1 (en) Method of making mixed metal oxide catalysts for ammoxidation and/or oxidation of lower alkane hydrocarbons
US10576461B2 (en) Catalyst for ethane ODH
JP4166334B2 (en) Method for preparing oxidation catalyst
KR20090110917A (en) Process for the ammoxidation of propane and isobutane using mixed metal oxide catalysts
JP4174852B2 (en) Acrylic acid production method
JPH0857319A (en) Method for activating metal oxide catalyst
KR20020079591A (en) Nox treated mixed metal oxide catalyst
JP2000254496A (en) Catalyst for production of acrylic acid
JP4081824B2 (en) Acrylic acid production method
KR100809463B1 (en) Alkane oxidation catalyst, process for producing the same, and process for producing oxygen-containing unsaturated compound
JP2000070714A (en) Production of catalyst for production of unsaturated nitrile
JPH11343262A (en) Production of acrylic acid
JPH11226408A (en) Production of metal oxide catalyst
JP3959836B2 (en) Method for producing a catalyst for acrylic acid production
JPH11169716A (en) Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
US7754910B2 (en) Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
JP4049363B2 (en) Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound
JP2000051693A (en) Manufacture of catalyst for gas-phase catalytic oxidation for hydrocarbon
JPH1157479A (en) Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof
JPH07144132A (en) Production of catalyst for producing nitrile
JPH07289907A (en) Production of catalyst for producing nitrile