JP2000051368A - Conducting element for electric medical treatment - Google Patents

Conducting element for electric medical treatment

Info

Publication number
JP2000051368A
JP2000051368A JP10226801A JP22680198A JP2000051368A JP 2000051368 A JP2000051368 A JP 2000051368A JP 10226801 A JP10226801 A JP 10226801A JP 22680198 A JP22680198 A JP 22680198A JP 2000051368 A JP2000051368 A JP 2000051368A
Authority
JP
Japan
Prior art keywords
elastic body
conductive elastic
conductor
volume resistivity
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10226801A
Other languages
Japanese (ja)
Inventor
Hiroshi Haruno
博 春野
Katsuo Akiyama
勝男 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP10226801A priority Critical patent/JP2000051368A/en
Publication of JP2000051368A publication Critical patent/JP2000051368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conducting element with one side 100 mm or more long to treat the wide area of the body, having uniform resistance on the whole surface of a treating contact surface of the conducting element to produce the treatment effect in a wide range. SOLUTION: A conducting element 5 for an electric medical treatment device is formed by a conductive rubber elastic body 1 having a treating contact surface 3 and an electrically insulating protective member 4 provided to cover the back of the treating contact surface 3. The conductive rubber elastic body 1 is so constructed that at least two surfaces which have volume resistivity of 30 Ω.cm or less and are different in the volume resistivity are connected to each other, and the surface located remote from an terminal insert hole 2 is formed of a material with a smaller volume resistivity than that of the material of the surface located near the terminal insert hole 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝り、麻痺、痛み
等の治療を行う低周波または中周波治療器等に使用して
好適な電気治療器用導子(以下、単に導子という)に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor for an electric therapy device (hereinafter simply referred to as a "conductor") suitable for use in a low-frequency or medium-frequency therapy device for treating stiffness, paralysis, pain and the like.

【0002】[0002]

【従来の技術】従来、導子としては図19に示すよう
な、導電性ゴム状弾性体(以下、単に導電性弾性体とい
う)1の治療当接面3の裏面を電気絶縁性の保護部材
(以下、保護部材という)4で被覆し、導電性弾性体1
の一端に電極接続用の端子挿入孔2を設けたものが知ら
れている。導子5は、一体の導電性弾性体1からなり、
治療当接面3に設けられた導電性のゲル層を身体に密着
させて使用している。治療当接面3のサイズは、通常、
一般家庭向けタイプは角型で50×50mm程度、丸型
で直径50mm程度、業務用タイプでは角型で100×
100mm程度、丸型で直径100mm程度であった。
2. Description of the Related Art Conventionally, as a conductor, as shown in FIG. 19, a back surface of a treatment contact surface 3 of a conductive rubber-like elastic body (hereinafter simply referred to as a conductive elastic body) 1 is an electrically insulating protective member. (Hereinafter referred to as a protective member) 4 and the conductive elastic body 1
Is provided with a terminal insertion hole 2 for electrode connection at one end. The conductor 5 is made of an integral conductive elastic body 1,
The conductive gel layer provided on the treatment contact surface 3 is used in close contact with the body. The size of the treatment contact surface 3 is usually
The general household type is a square type of about 50 x 50 mm, the round type is about 50 mm in diameter, and the commercial type is a square type of 100 x 50 mm.
It was about 100 mm, round and about 100 mm in diameter.

【0003】[0003]

【発明が解決しようとする課題】従来の導子は、単一の
体積抵抗率からなる導電性弾性体を用いており、この導
電性弾性体は、絶縁性ゴム中に粉末状または鱗片状の導
電性付与材を分散させたものであり、電流は、互いに接
触している導電性付与材間を伝わって流れるが、分散状
態が同じ場合、伝わる径路が長いほど流れる電流の抵抗
が増すため、端子挿入孔からの距離に応じて抵抗値は大
きくなり、逆に流れる電流は小さくなる。
Conventional conductors use a conductive elastic body having a single volume resistivity, and this conductive elastic body is formed into a powdery or scale-like material in an insulating rubber. The conductivity-imparting material is dispersed, and the current flows through the conductivity-imparting materials that are in contact with each other, but when the dispersion state is the same, the resistance of the current flowing increases as the length of the transmitted path increases, The resistance value increases according to the distance from the terminal insertion hole, and conversely, the flowing current decreases.

【0004】身体の広い面積を治療するには、導子の導
電性弾性体のサイズを大きくしたり、形状を横長の長方
形にしたりされているが、この場合、導子の電極から離
れた部分では流れる電流が小さくなり、治療効果が低下
する。電極から離れた導子端部まで充分な電流が流れ、
治療効果が発現するようにするためには、電極端子に流
す電流をそれなりに大きくする必要があり、その結果、
端子付近では電流値が高く、電気刺激が大きくなりすぎ
て不快となるばかりでなく、人体にも危険を生じる。こ
の現象は、電極端子の先端から導電性弾性体の最も離れ
た端部までの寸法が100mmを超えると徐々に顕著に
なり、100mmを超える大きさでは、安定した治療効
果を有する導子が得られないという問題があった。
[0004] In order to treat a large area of the body, the size of the conductive elastic body of the conductor is increased or the shape of the conductor is made oblong in a horizontal direction. Then, the flowing current becomes small, and the therapeutic effect is reduced. Sufficient current flows to the end of the conductor away from the electrode,
In order for the therapeutic effect to appear, it is necessary to increase the current flowing through the electrode terminals to a certain extent. As a result,
In the vicinity of the terminal, the current value is high, and the electrical stimulation becomes too large to be uncomfortable, and also causes danger to the human body. This phenomenon becomes gradually remarkable when the dimension from the tip of the electrode terminal to the farthest end of the conductive elastic body exceeds 100 mm, and when the dimension exceeds 100 mm, a conductor having a stable therapeutic effect is obtained. There was a problem that can not be.

【0005】本発明の課題は、前記した問題点を解決し
て、身体の広い面積を治療するために、一辺の長さが1
00mmを超えるサイズを有し、導子の治療当接面の全
面で均一な抵抗値を備え、広範囲に治療効果を発現する
導子を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems and to treat a large area of the body, so that the length of each side is 1 unit.
An object of the present invention is to provide a conductor having a size exceeding 00 mm, having a uniform resistance value over the entire treatment contact surface of the conductor, and exhibiting a therapeutic effect over a wide range.

【0006】[0006]

【課題を解決するための手段】本発明の導子は、治療当
接面を有する導電性弾性体と、該治療当接面の裏面を覆
うように設けられた保護部材とからなる電気治療器用導
子であって、該導電性弾性体は、体積抵抗率が30Ω・
cm以下で体積抵抗率の異なる少なくとも2面が連接さ
れ、端子挿入孔から遠い位置にある方が端子挿入孔に近
い位置にあるものより体積抵抗率の小さい材料で形成さ
れていることを特徴としている。この導電性弾性体は、
シリコーンゴムに導電性付与材を添加して形成される。
このような構成からなる本発明の導子は、端子挿入孔の
先端から導電性弾性体の最も離れた端部までの距離が1
00mm以上であっても、治療当接面の全面で均一な抵
抗値を備え、広範囲に治療効果を発現する。
SUMMARY OF THE INVENTION According to the present invention, there is provided a guide for an electrotherapy device comprising a conductive elastic body having a treatment contact surface and a protective member provided to cover the back surface of the treatment contact surface. A conductive element, wherein the conductive elastic body has a volume resistivity of 30 Ω ·
cm or less at least two surfaces having different volume resistivity are connected to each other, and a material farther from the terminal insertion hole is formed of a material having a smaller volume resistivity than a material near the terminal insertion hole. I have. This conductive elastic body is
It is formed by adding a conductivity-imparting material to silicone rubber.
In the conductor of the present invention having such a configuration, the distance from the distal end of the terminal insertion hole to the farthest end of the conductive elastic body is one.
Even if the thickness is not less than 00 mm, a uniform resistance value is provided over the entire surface in contact with the treatment, and the therapeutic effect is exhibited in a wide range.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明するが、本発明はこれらの記載に限定される
ものではない。図1は、本発明の導子の導電性弾性体が
2面から構成されている例を示し、図2は、図1の導電
性弾性体を用いた導子を示す。図1、図2において
(a)は平面図、(b)は側面図、(c)は(a)のX
−X線に沿う断面図である。図において、導電性弾性体
1はA面とB面の2面から構成され、A面の一端に端子
挿入孔2が設けられている。治療当接面3の裏面は、保
護部材4で被覆され、導子5が形成される。治療は、導
電性弾性体1の治療当接面3を治療箇所に当接させて行
われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these descriptions. FIG. 1 shows an example in which the conductive elastic body of the conductor of the present invention has two surfaces, and FIG. 2 shows a conductor using the conductive elastic body of FIG. 1 and 2, (a) is a plan view, (b) is a side view, and (c) is X in (a).
It is sectional drawing which follows the X-ray. In the figure, a conductive elastic body 1 is composed of two surfaces A and B, and a terminal insertion hole 2 is provided at one end of the A surface. The back surface of the treatment contact surface 3 is covered with a protective member 4 to form a guide 5. The treatment is performed by bringing the treatment contact surface 3 of the conductive elastic body 1 into contact with the treatment site.

【0008】導電性弾性体1の端子挿入孔2に近いA面
の体積抵抗率をρ1 、面積をS1 とし、端子挿入孔2か
ら遠い方のB面の体積抵抗率をρ2 、面積をS2 とする
とき、詳しくは後述するがA面とB面との間にはρ1
ρ2 、S1 <S2 の関係が成立する。なお、本明細書に
おいて体積抵抗率の測定は、日本ゴム協会標準規格/導
電性ゴムおよびプラスチックの体積抵抗率試験方法;S
RIS 2301−1969(以下、SRIS 230
1と略す)にもとづく。導電性弾性体1を保護部材4で
被覆するには、成形型のキャビティ内に導電性弾性体1
であるA面とB面をセットした後、保護部材4で一体に
成形する。あるいは、導電性弾性体1と保護部材4をそ
れぞれ別体に成形した後、導電性ゴム系接着剤を用いて
両者を一体に接着してもよい。
The volume resistivity of the surface A of the conductive elastic body 1 near the terminal insertion hole 2 is ρ 1 , the area is S 1 , the volume resistivity of the surface B farther from the terminal insertion hole 2 is ρ 2 , the area Is defined as S 2 , as will be described in detail later, ρ 1 >
The relationship of ρ 2 , S 1 <S 2 holds. In this specification, the measurement of the volume resistivity is based on the Japan Rubber Association Standard / Volume resistivity test method for conductive rubber and plastic;
RIS 2301-1969 (hereinafter SRIS 230
1). In order to cover the conductive elastic body 1 with the protective member 4, the conductive elastic body 1 is placed in the cavity of the mold.
After setting the surface A and the surface B, are molded integrally with the protection member 4. Alternatively, the conductive elastic body 1 and the protective member 4 may be separately formed, and then both may be integrally bonded using a conductive rubber-based adhesive.

【0009】導電性弾性体は、ベースとなる絶縁性ゴム
状弾性体(以下、単に絶縁性弾性体という)原料に導電
性付与材を添加して形成される。絶縁性弾性体として
は、シリコーンゴム、EPDM、SEP、ポリブタジエ
ン、スチレン−ブタジエン共重合体、ブチルゴム、クロ
ロプレンゴム、アクリルゴム、アクリルシリコーンゴム
等の合成ゴムや、SIS、SBS、SEBS等の熱可塑
性ゴム状弾性体が挙げられるが、なかでも耐熱性、耐候
性、電気絶縁性に優れ、ゴム状弾性体としての適度な硬
さと弾性を備えたシリコーンゴムが最適である。
The conductive elastic body is formed by adding a conductive material to a raw material of an insulating rubber-like elastic body (hereinafter simply referred to as an insulating elastic body) as a base. Examples of the insulating elastic body include synthetic rubbers such as silicone rubber, EPDM, SEP, polybutadiene, styrene-butadiene copolymer, butyl rubber, chloroprene rubber, acrylic rubber, and acrylic silicone rubber, and thermoplastic rubbers such as SIS, SBS, and SEBS. Among them, silicone rubber, which is excellent in heat resistance, weather resistance, and electrical insulation, and has appropriate hardness and elasticity as a rubber-like elastic body, is most preferable.

【0010】導電性付与材としては、粉末状、繊維状、
針状、板状の導電性フィラーを添加したものが挙げられ
る。導電性フィラーとしてはカーボン(カーボンブラッ
ク、黒鉛(グラファイト)、炭素繊維)やニッケル等の
金属(粉、繊維)、酸化亜鉛、酸化錫、酸化亜鉛等の導
電性フィラーを凝集防止のため脂肪酸でコートしたも
の、また表面を導電処理された金属酸化物等を添加した
ものが挙げられ、これらを単独またはいくつかを組み合
せて使用することも可能である。
Powders, fibrous materials,
Needle-like and plate-like conductive fillers may be added. As conductive filler, metal (powder, fiber) such as carbon (carbon black, graphite (graphite), carbon fiber) or nickel, or conductive filler such as zinc oxide, tin oxide, zinc oxide, etc. is coated with a fatty acid to prevent aggregation. And those to which a metal oxide or the like whose surface has been subjected to a conductive treatment is added. These can be used alone or in combination of some.

【0011】絶縁性弾性体への導電性付与材の添加量
は、使用する絶縁性弾性体と導電性付与材の種類の組合
せにより異なるため、必要に応じ体積抵抗率を確認のう
え適宜選択すればよいが、一般的には、絶縁性弾性体1
00重量部に対して、30〜150重量部、好ましくは
40〜100重量部である。添加量が30重量部未満で
は得られた導電性弾性体の体積抵抗率が高い場合があ
り、その場合、電流効率が悪く、導子としては実用に耐
えないものとなる。一方、150重量部を超えると、導
電性弾性体としての可撓性、機械的特性が低下し、導子
としては実用に耐えないものとなる。
The amount of the conductivity-imparting material to be added to the insulating elastic material varies depending on the combination of the type of the insulating elastic material and the type of the conductivity-imparting material. In general, the insulating elastic body 1
The amount is 30 to 150 parts by weight, preferably 40 to 100 parts by weight, based on 00 parts by weight. If the addition amount is less than 30 parts by weight, the obtained conductive elastic body may have a high volume resistivity, in which case the current efficiency is poor and the conductor cannot be practically used. On the other hand, if it exceeds 150 parts by weight, the flexibility and mechanical properties of the conductive elastic body will be reduced, and the conductor will not be practically usable.

【0012】さらに、本発明で用いられる導電性弾性体
としては、硬化後の体積抵抗率が30Ω・cm以下とさ
れ、好ましくは10Ω・cm以下、特には0.5〜7.
0Ω・cmの範囲のものが使用される。体積抵抗率が3
0Ω・cmを超えると、抵抗が高すぎて、電気治療に極
めて高い電気出力が必要とされ、好ましくない。また、
硬化後の特性が上記の範囲に入っていれば、導電性弾性
体を一層構成に限らず、層状に積層した構成としてもよ
い。
Further, the conductive elastic material used in the present invention has a volume resistivity after curing of 30 Ω · cm or less, preferably 10 Ω · cm or less, and particularly preferably 0.5 to 7 Ω · cm.
Those having a range of 0 Ω · cm are used. Volume resistivity is 3
If it exceeds 0 Ω · cm, the resistance is too high and an extremely high electric output is required for electrotherapy, which is not preferable. Also,
As long as the properties after curing fall within the above range, the conductive elastic body is not limited to a single layer, but may be a layered layer.

【0013】導電性弾性体の治療当接面の裏面を被覆す
る保護部材は、導電性弾性体のベースに用いた絶縁性弾
性体を用いるのが、導電性弾性体と一体成形するときの
接着性を考慮するとより好ましいが、必ずしも同じ種類
の絶縁性弾性体に限定されるものではない。導電性弾性
体は、裏面を保護部材によって被覆されるが、被覆形態
としては図3(a)〜(d)に示すようなものが挙げら
れる。治療当接面の表面は、使用者の人脂に寄る汚染を
防止するためにコーティングを施したり、表面の研磨加
工や金型のブラスト加工により、表面を粗して表面タッ
クを低減するのが好ましい。
As the protective member for covering the back surface of the treatment contact surface of the conductive elastic body, the insulating elastic body used for the base of the conductive elastic body is used. It is more preferable in consideration of the properties, but is not necessarily limited to the same type of insulating elastic body. The conductive elastic body is coated on the back surface with a protective member, and examples of the coating form include those shown in FIGS. 3 (a) to 3 (d). The surface of the treatment contact surface should be coated to prevent contamination to the human fat of the user, and the surface should be roughened by polishing and blasting the mold to reduce surface tack. preferable.

【0014】本発明では、導電性弾性体を少なくとも2
面連接した構造とし、端子挿入孔を有する面に連接され
た、端子挿入孔から遠い方の導電性弾性体の体積抵抗率
を、端子挿入孔を有する面の体積抵抗率よりも低い材料
で構成したことにより、面全体に流れる電流が一定化さ
れ、安定した治療効果を発現する。ここで、複数の面が
連接された導電性弾性体の材料の体積抵抗率の大小関係
について説明する。導電性弾性体をn面が連接された構
造とし、導電性弾性体の体積抵抗率を端子挿入孔から近
い順にρ1、ρ2、ρ3…ρn−1、ρnとすると、ρ
n−1<ρn/2であり、ρn−1≧ρn/2では、連
接することによる効果が少なく、同一材料で構成した場
合との優位差がない。
In the present invention, at least two conductive elastic members are provided.
The surface elastic structure is connected to the surface with the terminal insertion hole and the volume resistivity of the conductive elastic body far from the terminal insertion hole is made of a material lower than the volume resistivity of the surface with the terminal insertion hole. As a result, the current flowing over the entire surface is stabilized, and a stable therapeutic effect is exhibited. Here, the magnitude relationship of the volume resistivity of the material of the conductive elastic body having a plurality of connected surfaces will be described. Assuming that the conductive elastic body has a structure in which n surfaces are connected, and the volume resistivity of the conductive elastic body is ρ1, ρ2, ρ3.
When n-1 <ρn / 2, and when pn-1 ≧ ρn / 2, the effect of the connection is small, and there is no superior difference from the case where the same material is used.

【0015】また、連接された導電性弾性体の占有面積
比は、導電性弾性体をn面が連接された構造とした場
合、端子挿入孔から近い順に導電性弾性体の占有面積を
S1、S2、S3…Sn−1、Sn、全体の面積をΣS
とすると、Sn−1<Snであり、かつS1<ΣS/n
である。Sn−1≧SnまたはS1≧ΣS/nでは、最
も体積抵抗率の大きい面の占有面積比が大きすぎるた
め、治療当接面の抵抗値のバラツキが大きくなり好まし
くない。
The occupied area ratio of the connected conductive elastic bodies is as follows: when the conductive elastic body has a structure in which the n-plane is connected, the occupied area of the conductive elastic body is S1, in order from the terminal insertion hole. S2, S3... Sn-1, Sn, the total area is ΔS
Then, Sn-1 <Sn and S1 <ΣS / n
It is. When Sn-1 ≧ Sn or S1 ≧ ΣS / n, the occupied area ratio of the surface having the largest volume resistivity is too large, and the variation in the resistance value of the treatment contact surface is not preferable.

【0016】導電性弾性体が2面連接された構造の導子
を成形するには、体積抵抗率の異なる2種類の導電性弾
性体材料を用意し、先ず、体積抵抗率の大きい方の材料
で電極接続用の端子挿入孔を有する面のみを成形し、し
かる後に、体積抵抗率の小さい方の材料で別に成形した
面を連接して配置し、これらの裏面全体を絶縁性弾性体
で被覆するように一体成形すればよい。
In order to form a conductor having a structure in which conductive elastic bodies are connected in two planes, two types of conductive elastic materials having different volume resistivity are prepared. First, a material having a larger volume resistivity is used. Only the surface having the terminal insertion holes for electrode connection is molded, and then the surfaces separately molded with the material with the smaller volume resistivity are connected and arranged, and the entire back surface is covered with an insulating elastic body. What is necessary is just to integrally mold so that it may perform.

【0017】[0017]

【実施例】実施例に先立ち、導電性弾性体、絶縁部材の
調製について説明する。 a.導電性弾性体の調製 ジオルガノポリシロキサン100重量部に導電性付与材
として、アセチレンブラックを60重量部添加して導電
性シリコーンゴム組成物A、ケッチェンブラック30重
量部とグラファイト10重量部添加して導電性シリコー
ンゴム組成物B、ケッチェンブラック40重量部とグラ
ファイト15重量部添加して導電性シリコーンゴム組成
物Cをそれぞれ加圧ニーダーにて混合した。これらに硬
化触媒として2,5−ジメチル−2,5−ビス(t−ブ
チルパーオキシ)ヘキサンをそれぞれ1重量部添加し、
2本ロールで混練した。
EXAMPLES Prior to the examples, preparation of a conductive elastic body and an insulating member will be described. a. Preparation of Conductive Elastic Body To 100 parts by weight of diorganopolysiloxane, 60 parts by weight of acetylene black was added as a conductivity-imparting material, and 30 parts by weight of conductive silicone rubber composition A, Ketjen black and 10 parts by weight of graphite were added. Then, conductive silicone rubber composition B, 40 parts by weight of Ketjen black and 15 parts by weight of graphite were added, and conductive silicone rubber composition C was mixed with a pressure kneader. To each of them, 1 part by weight of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane was added as a curing catalyst,
It was kneaded with two rolls.

【0018】これらの導電性シリコーンゴム組成物A、
B、C(以下、順にA材、B材、C材という)をプレス
成形(成形条件:170℃で10分、圧力200kgf
/cm2 )してシート状とし、さらに200℃の熱風乾
燥機にて4時間の二次加硫を行い、厚さ1mmのシート
を作製した。以下、A材から得られたAシート、B材か
ら得られたBシート、C材から得られたCシートの体積
抵抗率(SRIS 2301による)を測定したとこ
ろ、Aシートは15Ω・cm、Bシートは5Ω・cm、
Cシートは1Ω・cmであった。
These conductive silicone rubber compositions A,
B and C (hereinafter referred to as A material, B material and C material in this order) are press-formed (forming conditions: 170 ° C. for 10 minutes, pressure 200 kgf).
/ Cm 2 ) to form a sheet, and further subjected to secondary vulcanization for 4 hours with a hot air drier at 200 ° C. to produce a sheet having a thickness of 1 mm. Hereinafter, the volume resistivity (according to SRIS 2301) of the A sheet obtained from the A material, the B sheet obtained from the B material, and the C sheet obtained from the C material was measured. The sheet is 5Ωcm,
The C sheet was 1 Ω · cm.

【0019】b.絶縁部材の調製 導電性弾性体の治療当接面の裏面を被覆する保護部材と
して、ジオルガノポリシロキサン100重量部に、補強
用充填剤として湿式シリカ40重量部と適量の分散剤を
加えて加圧ニーダーで混合し、さらに硬化触媒として
2,5−ジメチル−2,5−ビス(t−ブチルパーオキ
シ)ヘキサンを0.5重量部添加して2本ロールで混練
し、絶縁性シリコーンゴム組成物すなわち保護部材を得
た。
B. Preparation of Insulating Member As a protective member for covering the back surface of the treatment contact surface of the conductive elastic body, 40 parts by weight of wet silica as a reinforcing filler and an appropriate amount of a dispersant are added to 100 parts by weight of diorganopolysiloxane. The mixture was mixed with a pressure kneader, and 0.5 parts by weight of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane was added as a curing catalyst, followed by kneading with two rolls. An object, that is, a protection member was obtained.

【0020】(実施例1)A材、B材を2本ロールにて
それぞれシート状に分出しし、端子挿入孔から近い部分
をA材、端子挿入孔から遠い部分をB材として導電部成
形用金型にてプレス成形(成形条件;170℃で10
分、圧力200kgf/cm2 )して一体に成形し、図
1(a)、(b)、(c)に示すような2面連接構造の
導電性弾性体を作製した。次に、上記保護部材を2本ロ
ールにてシート状に分出しし、先に作製した2面連接構
造の導電性弾性体と、導子成形用金型にてプレス成形
(成形条件;170℃で10分、圧力30kgf/cm
2 )して一体化した後、二次加硫(熱風乾燥機にて、2
00℃で4時間)を行い、図2に示す長さ200mmの
導子を得た。
(Embodiment 1) A material and a B material are separated into sheets by two rolls, and a conductive portion is formed by using a material near the terminal insertion hole as a material and a material far from the terminal insertion hole as a material B. Press molding with a metal mold (molding condition: 10 at 170 ° C)
(A pressure of 200 kgf / cm 2 ), and integrally molded to produce a conductive elastic body having a two-plane connection structure as shown in FIGS. 1 (a), 1 (b) and 1 (c). Next, the above-mentioned protective member is separated into a sheet shape by two rolls, and is press-formed with a conductive elastic body having a two-plane connection structure prepared above and a conductor forming die (forming condition: 170 ° C.). For 10 minutes, pressure 30kgf / cm
2 ) After integration, secondary vulcanization (2
2 at 00 ° C. for 4 hours to obtain a 200 mm-long conductor as shown in FIG.

【0021】(実施例2)B材、C材を2本ロールにて
それぞれシート状に分出しし、端子挿入孔から近い部分
をB材、端子挿入孔から遠い部分をC材として導電部成
形用金型にてプレス成形(成形条件;170℃で10
分、圧力200kgf/cm2 )して一体に成形し、図
4に示すような2面連接構造の導電性弾性体を作製し
た。次に、実施例1と同様にして図5に示す長さ200
mmの導子を得た。
(Embodiment 2) Materials B and C are separated into sheets by using two rolls, and a portion close to the terminal insertion hole is made of material B and a portion far from the terminal insertion hole is made of material C to form a conductive portion. Press molding with a metal mold (molding condition: 10 at 170 ° C)
And a pressure of 200 kgf / cm 2 ), and integrally molded to produce a conductive elastic body having a two-plane connection structure as shown in FIG. Next, in the same manner as in the first embodiment, the length 200 shown in FIG.
mm was obtained.

【0022】(実施例3)A材、B材およびC材を2本
ロールにてそれぞれシート状に分出しし、端子挿入孔の
ある部分から遠い部分へと順にA材、B材、C材を配列
し、導電部成形用金型にてプレス成形(成形条件;17
0℃で10分、圧力200kgf/cm2)して一体に
成形し、図6に示すような3面連接構造の導電性弾性体
を作製した。次に、実施例1と同様にして図7に示す長
さ200mmの導子を得た。
Example 3 Materials A, B, and C are separated into sheets by two rolls, and materials A, B, and C are sequentially separated from a portion having a terminal insertion hole to a portion distant from the portion. And press-molding (molding conditions; 17)
6 minutes at 0 ° C. for 10 minutes under a pressure of 200 kgf / cm 2 ) to form a conductive elastic body having a three-plane connecting structure as shown in FIG. Next, a 200 mm long conductor shown in FIG. 7 was obtained in the same manner as in Example 1.

【0023】[比較例]ジオルガノポリシロキサン10
0重量部に導電性付与材として、アセチレンブラックを
25重量部添加したものを導電性シリコーンゴム組成物
D、アセチレンブラックを15重量部添加したものを導
電性シリコーンゴム組成物Eとし、それぞれ加圧ニーダ
ーにて混合した。これらに硬化触媒として2,5−ジメ
チル−2,5−ビス(t−ブチルパーオキシ)ヘキサン
を1重量部を添加したものを2本ロールで混練した。
Comparative Example Diorganopolysiloxane 10
A conductive silicone rubber composition D was prepared by adding 25 parts by weight of acetylene black as a conductivity-imparting material to 0 parts by weight, and a conductive silicone rubber composition E was obtained by adding 15 parts by weight of acetylene black. Mix in a kneader. A mixture obtained by adding 1 part by weight of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane as a curing catalyst was kneaded with a two-roll mill.

【0024】これらの導電性シリコーンゴム組成物D、
E(以下、それぞれD材、E材という)をプレス成形
(成形条件:170℃で10分、圧力200kgf/c
2 )してシート状とし、さらに200℃の熱風乾燥機
にて4時間の二次加硫を行い厚さ1mmのシートを作製
した。以下、D材から得られたDシート、E材から得ら
れたEシートの体積抵抗率(SRIS 2301によ
る)を測定したところ、Dシートは40Ω・cm、Eシ
ートは80Ω・cmであった。
These conductive silicone rubber compositions D,
E (hereinafter, referred to as D material and E material, respectively) is press-formed (forming conditions: 170 ° C. for 10 minutes, pressure 200 kgf / c)
m 2 ) to form a sheet, and further subjected to secondary vulcanization for 4 hours using a hot air dryer at 200 ° C. to produce a sheet having a thickness of 1 mm. Hereinafter, when the volume resistivity (according to SRIS 2301) of the D sheet obtained from the D material and the E sheet obtained from the E material was measured, it was 40 Ω · cm for the D sheet and 80 Ω · cm for the E sheet.

【0025】(比較例1)A材、D材を2本ロールにて
それぞれシート状に分出しし、端子挿入孔から近い部分
をD材、端子挿入孔から遠い部分をA材として導電部成
形用金型にてプレス成形(成形条件;170℃で10
分、圧力200kgf/cm2 )して一体に成形し、図
8に示すような2面連接構造の導電性弾性体を作製し
た。次に、前記保護部材を2本ロールにてシート状に分
出しし、先に作製した2面連接構造の導電性弾性体と、
導子成形用金型にてプレス成形(成形条件;170℃で
10分、圧力30kgf/cm2 )して一体化し、さら
に二次加硫(熱風乾燥機にて、200℃で4時間)し
て、図9に示すような長さ200mmの導子を得た。
(Comparative Example 1) A material and a D material were separated into sheets by using two rolls, and a conductive portion was formed by using a D material near the terminal insertion hole and a A material far from the terminal insertion hole. Press molding with a metal mold (molding condition: 10 at 170 ° C)
And a pressure of 200 kgf / cm 2 ), and were integrally molded to produce a conductive elastic body having a two-plane connection structure as shown in FIG. Next, the protective member is separated into sheets by two rolls, and a conductive elastic body having a two-plane connecting structure manufactured earlier,
Press molding (molding conditions: 170 ° C. for 10 minutes, pressure 30 kgf / cm 2 ) using a mold for forming a conductor, and integrated, followed by secondary vulcanization (4 hours at 200 ° C. with a hot air drier). Thus, a conductor having a length of 200 mm as shown in FIG. 9 was obtained.

【0026】(比較例2)B材、D材を2本ロールにて
それぞれシート状に分出しし、端子挿入孔から近い部分
をD材、端子挿入孔から遠い部分をB材として導電部成
形用金型にてプレス成形(成形条件;170℃で10
分、圧力200kgf/cm2 )して一体化し、図10
に示すような2面連接構造の導電性弾性体を作製した。
次に、前記保護部材を2本ロールにてシート状に分出し
し、先に作製した2面連接構造の導電性弾性体と、導子
成形用金型にてプレス成形(成形条件;170℃で10
分、圧力30kgf/cm2 )して一体化し、さらに二
次加硫(熱風乾燥機にて、200℃で4時間)して、図
11に示すような長さ200mmの導子を得た。
(Comparative Example 2) A material B and a material D were separated into sheets by two rolls, and a portion near the terminal insertion hole was formed as a D material, and a portion far from the terminal insertion hole was formed as a material B, thereby forming a conductive portion. Press molding with a metal mold (molding condition: 10 at 170 ° C)
10 minutes and a pressure of 200 kgf / cm 2 ).
A conductive elastic body having a two-plane connection structure as shown in FIG.
Next, the protective member was separated into a sheet by two rolls, and the conductive elastic body having the two-plane connecting structure prepared above was press-formed with a mold for forming a conductor (forming condition: 170 ° C.). At 10
And a pressure of 30 kgf / cm 2 ), followed by secondary vulcanization (at 200 ° C. for 4 hours with a hot air drier) to obtain a 200 mm long conductor as shown in FIG.

【0027】(比較例3)A材、B材およびE材を2本
ロールにてそれぞれシート状に分出しし、端子挿入孔の
ある部分から遠い部分へと順にE材、A材、B材を配列
し、導電部成形用金型でプレス成形(成形条件;170
℃で10分、圧力200kgf/cm2 )して一体化
し、図12に示すような3面連接構造の導電性弾性体を
作製した。次に、実施例1と同様にして図13に示す長
さ200mmの導子を得た。
(Comparative Example 3) Materials A, B, and E are separated into sheets by two rolls, and the materials E, A, and B are sequentially separated from a portion having a terminal insertion hole to a portion far from the portion. And press-molding with a conductive part molding die (molding conditions: 170
12 minutes at a temperature of 200 ° C. and a pressure of 200 kgf / cm 2 ) to produce a conductive elastic body having a three-plane connection structure as shown in FIG. Next, in the same manner as in Example 1, a conductor having a length of 200 mm shown in FIG. 13 was obtained.

【0028】(比較例4)B材を2本ロールにてシート
状に分出しし、導電部成形用金型でプレス成形(成形条
件;170℃で10分、圧力200kgf/cm2 )し
て、図14に示すような1面構造の導電性弾性体を作製
した。次に、実施例1と同様にして図15に示す長さ2
00mmの導子を得た。
(Comparative Example 4) Material B was separated into a sheet by two rolls, and press-formed with a metal mold for forming a conductive part (forming conditions: 170 ° C for 10 minutes, pressure 200 kgf / cm 2 ). A conductive elastic body having a one-plane structure as shown in FIG. 14 was produced. Next, the length 2 shown in FIG.
A 00 mm lead was obtained.

【0029】(比較例5)D材を2本ロールにてシート
状に分出しし、導電部成形用金型でプレス成形(成形条
件;170℃で10分、圧力200kgf/cm2 )し
て、図16に示すような1面構造の導電性弾性体を作製
した。次に、実施例1と同様にして図17に示す長さ2
00mmの導子を得た。
(Comparative Example 5) The D material was separated into sheets by two rolls and press-formed (forming conditions: 170 ° C for 10 minutes, pressure 200 kgf / cm 2 ) using a conductive part forming die. A one-sided conductive elastic body as shown in FIG. 16 was produced. Next, the length 2 shown in FIG.
A 00 mm lead was obtained.

【0030】[抵抗値の測定]上記実施例1〜3、およ
び比較例1〜5で得た導子の抵抗値を、図18に示すよ
うに、治療当接面3上の各12点について抵抗値の測定
を行った。なお、測定は3224デジタルハイテスター
(日置電機社製、商品名)を用いて、端子挿入孔2と治
療当接面3との各測定ポイント間の抵抗値を測定した。
その結果、表1に認められるように、端子挿入孔2付近
と導子端部付近との抵抗値差は、1面構造のものより2
面以上を連接した構造のものの方が小さかった。なお、
電気治療の効果の欄において、導子の治療当接面全面に
わたって良好な電気刺激が得られたものに〇印、導子と
して不都合な点があったものに△印、導子として全く使
用に耐えないものに×印を付した。
[Measurement of Resistance Value] The resistance values of the conductors obtained in Examples 1 to 3 and Comparative Examples 1 to 5 were measured for 12 points on the treatment contact surface 3 as shown in FIG. The resistance value was measured. In addition, the resistance value between each measurement point of the terminal insertion hole 2 and the treatment contact surface 3 was measured using the 3224 digital high tester (trade name, manufactured by Hioki Electric Co., Ltd.).
As a result, as can be seen in Table 1, the difference in resistance between the vicinity of the terminal insertion hole 2 and the vicinity of the end of the conductor is 2 times larger than that of the one-sided structure.
Those with a structure connecting the faces or more were smaller. In addition,
In the column of the effect of electrotherapy, a mark 〇 indicates that good electrical stimulation was obtained over the entire treatment contact surface of the lead, and a mark △ indicates that there was an inconvenience as a guide, and was used as a guide at all. Those that could not stand were marked with x.

【0031】[0031]

【表1】 [Table 1]

【0032】[治療効果の確認]また、市販の低周波治
療器に各実施例、比較例での導子を取り付けて、治療を
行ってみたところ、実施例1〜3は良好であったが、比
較例1〜3は治療当接面の位置によって電気刺激の強さ
が異なるため不快感が生じ、また導電性弾性体が1面構
造の比較例4は、低出力状態では端子部近くでしか電気
刺激がなく、高出力状態では端部で電気刺激があるもの
の端子部近くでの電気刺激が強すぎ、同じく導電性弾性
体が1面構造の比較例5は、低出力状態では殆ど電気刺
激がなく、高出力状態でも端子部近くでしか電気刺激が
なく、いずれも使用に耐えないものであった。
[Confirmation of therapeutic effect] The treatment was carried out by attaching the conductor of each of Examples and Comparative Examples to a commercially available low-frequency therapeutic device. In Comparative Examples 1 to 3, discomfort occurs because the intensity of the electrical stimulation varies depending on the position of the treatment contact surface, and Comparative Example 4 in which the conductive elastic body has a one-sided structure is near the terminal portion in a low output state. In the high output state, the electrical stimulus was present at the end, but the electrical stimulus near the terminal was too strong. There was no stimulation, and even in a high output state, there was only electrical stimulation near the terminals, and none of them could withstand use.

【0033】[0033]

【発明の効果】本発明の導子は、導電性弾性体を2面以
上連接した構造とし、端子挿入孔から遠くに位置する面
ほど体積抵抗率を小さくしたことにより、従来の導子よ
りも治療当接面を大きくすることができ、かつ治療当接
面全面にわたって均一な電気刺激が得られ、1枚の導子
で身体の広い面積を治療することができる。
The conductor according to the present invention has a structure in which two or more conductive elastic bodies are connected to each other, and the volume resistivity decreases as the surface is located farther from the terminal insertion hole. The treatment contact surface can be enlarged, uniform electric stimulation can be obtained over the entire treatment contact surface, and a large area of the body can be treated with one conductor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1における導子の導電性弾性
体を示し、(a)は平面図、(b)は側面図、(c)は
(a)のX−Xに沿う断面図である。
FIG. 1 shows a conductive elastic body of a conductor according to a first embodiment of the present invention, wherein (a) is a plan view, (b) is a side view, and (c) is a cross-sectional view taken along line XX of (a). It is.

【図2】 本発明の実施例1の導子を示し、(a)は平
面図、(b)は側面図、(c)は(a)のX−Xに沿う
断面図である。
2 (a) is a plan view, FIG. 2 (b) is a side view, and FIG. 2 (c) is a sectional view taken along line XX of FIG. 2 (a).

【図3】 (a)〜(d)は、導電性弾性体の裏面を保
護部材によって被覆する異なる態様を示す
FIGS. 3A to 3D show different modes in which the back surface of a conductive elastic body is covered with a protective member.

【図4】 本発明の実施例2における導子の導電性弾性
体を示し、(a)は平面図、(b)は側面図、(c)は
(a)のX−Xに沿う断面図である。
4A and 4B show a conductive elastic body of a conductor according to a second embodiment of the present invention, wherein FIG. 4A is a plan view, FIG. 4B is a side view, and FIG. 4C is a cross-sectional view taken along line XX of FIG. It is.

【図5】 本発明の実施例2の導子を示し、(a)は平
面図、(b)は側面図、(c)は(a)のX−Xに沿う
断面図である。
5A and 5B show a conductor according to a second embodiment of the present invention, wherein FIG. 5A is a plan view, FIG. 5B is a side view, and FIG. 5C is a cross-sectional view taken along line XX of FIG.

【図6】 本発明の実施例3における導子の導電性弾性
体を示し、(a)は平面図、(b)は側面図、(c)は
(a)のX−Xに沿う断面図である。
6A and 6B show a conductive elastic body of a conductor according to a third embodiment of the present invention, wherein FIG. 6A is a plan view, FIG. 6B is a side view, and FIG. 6C is a cross-sectional view taken along line XX of FIG. It is.

【図7】 本発明の実施例3の導子を示し、(a)は平
面図、(b)は側面図、(c)は(a)のX−Xに沿う
断面図である。
7A and 7B show a conductor according to a third embodiment of the present invention, wherein FIG. 7A is a plan view, FIG. 7B is a side view, and FIG. 7C is a cross-sectional view taken along line XX of FIG.

【図8】 比較例1における導子の導電性弾性体を示
し、(a)は平面図、(b)は側面図、(c)は(a)
のX−Xに沿う断面図である。
8A and 8B show a conductive elastic body of a conductor in Comparative Example 1, wherein FIG. 8A is a plan view, FIG. 8B is a side view, and FIG.
It is sectional drawing in alignment with XX of FIG.

【図9】 比較例1の導子を示し、(a)は平面図、
(b)は側面図、(c)は(a)のX−Xに沿う断面図
である。
FIG. 9 shows a conductor of Comparative Example 1, wherein (a) is a plan view,
(B) is a side view, and (c) is a cross-sectional view along XX of (a).

【図10】 比較例2における導子の導電性弾性体を示
し、(a)は平面図、(b)は側面図、(c)は(a)
のX−Xに沿う断面図である。
10A and 10B show a conductive elastic body of a conductor in Comparative Example 2, wherein FIG. 10A is a plan view, FIG. 10B is a side view, and FIG.
It is sectional drawing in alignment with XX of FIG.

【図11】 比較例2の導子を示し、(a)は平面図、
(b)は側面図、(c)は(a)のX−Xに沿う断面図
である。
FIGS. 11A and 11B show a conductor of Comparative Example 2, wherein FIG.
(B) is a side view, and (c) is a cross-sectional view along XX of (a).

【図12】 比較例3における導子の導電性弾性体を示
し、(a)は平面図、(b)は側面図、(c)は(a)
のX−Xに沿う断面図である。
12A and 12B show a conductive elastic body of a conductor in Comparative Example 3, wherein FIG. 12A is a plan view, FIG. 12B is a side view, and FIG.
It is sectional drawing in alignment with XX of FIG.

【図13】 比較例3の導子を示し、(a)は平面図、
(b)は側面図、(c)は(a)のX−Xに沿う断面図
である。
FIG. 13 shows a conductor of Comparative Example 3, wherein (a) is a plan view,
(B) is a side view, and (c) is a cross-sectional view along XX of (a).

【図14】 比較例4における導子の導電性弾性体を示
し、(a)は平面図、(b)は側面図、(c)は(a)
のX−Xに沿う断面図である。
14A and 14B show a conductive elastic body of a conductor in Comparative Example 4, wherein FIG. 14A is a plan view, FIG. 14B is a side view, and FIG.
It is sectional drawing in alignment with XX of FIG.

【図15】 比較例4の導子を示し、(a)は平面図、
(b)は側面図、(c)は(a)のX−Xに沿う断面図
である。
FIG. 15 shows a conductor of Comparative Example 4, (a) is a plan view,
(B) is a side view, and (c) is a cross-sectional view along XX of (a).

【図16】 比較例5における導子の導電性弾性体を示
し、(a)は平面図、(b)は側面図、(c)は(a)
のX−Xに沿う断面図である。
16A and 16B show a conductive elastic body of a conductor in Comparative Example 5, wherein FIG. 16A is a plan view, FIG. 16B is a side view, and FIG.
It is sectional drawing in alignment with XX of FIG.

【図17】 比較例5の導子を示し、(a)は平面図、
(b)は側面図、(c)は(a)のX−Xに沿う断面図
である。
FIG. 17 shows a conductor of Comparative Example 5, wherein (a) is a plan view,
(B) is a side view, and (c) is a cross-sectional view along XX of (a).

【図18】 導子の抵抗値測定方法を示す平面図であ
る。
FIG. 18 is a plan view showing a method for measuring a resistance value of a conductor.

【図19】 従来の導子を示し、(a)は平面図、
(b)は側面図、(c)は(a)のX−Xに沿う断面図
である。
FIGS. 19A and 19B show a conventional lead, FIG.
(B) is a side view, and (c) is a cross-sectional view along XX of (a).

【符号の説明】[Explanation of symbols]

1 導電性弾性体 2 端子挿入孔 3 治療当接面 4 保護部材 5 導子 6 デジタルハイテスター 7 電極端子 DESCRIPTION OF SYMBOLS 1 Conductive elastic body 2 Terminal insertion hole 3 Treatment contact surface 4 Protective member 5 Conductor 6 Digital high tester 7 Electrode terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 治療当接面を有する導電性ゴム状弾性体
と、該治療当接面の裏面を覆うように設けられた電気絶
縁性の保護部材とからなる電気治療器用導子であって、
該導電性ゴム状弾性体は、体積抵抗率が30Ω・cm以
下で体積抵抗率の異なる少なくとも2面が連接され、端
子挿入孔から遠い位置にある方が端子挿入孔に近い位置
にあるものより体積抵抗率の小さい材料で形成されてい
ることを特徴とする電気治療器用導子。
An electrotherapy device comprising an electrically conductive rubber-like elastic body having a treatment contact surface and an electrically insulating protective member provided so as to cover a back surface of the treatment contact surface. ,
In the conductive rubber-like elastic body, at least two surfaces having a volume resistivity of 30 Ω · cm or less and different in volume resistivity are connected, and a position far from the terminal insertion hole is closer to the terminal insertion hole than a position closer to the terminal insertion hole. A conductor for an electrotherapy device, which is formed of a material having a small volume resistivity.
JP10226801A 1998-08-11 1998-08-11 Conducting element for electric medical treatment Pending JP2000051368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10226801A JP2000051368A (en) 1998-08-11 1998-08-11 Conducting element for electric medical treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10226801A JP2000051368A (en) 1998-08-11 1998-08-11 Conducting element for electric medical treatment

Publications (1)

Publication Number Publication Date
JP2000051368A true JP2000051368A (en) 2000-02-22

Family

ID=16850833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10226801A Pending JP2000051368A (en) 1998-08-11 1998-08-11 Conducting element for electric medical treatment

Country Status (1)

Country Link
JP (1) JP2000051368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156215A (en) * 2010-02-02 2011-08-18 Denso Corp Electrode for biological signal and biological information measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156215A (en) * 2010-02-02 2011-08-18 Denso Corp Electrode for biological signal and biological information measuring system

Similar Documents

Publication Publication Date Title
WO2018008688A1 (en) Bioelectrode and method for producing same
US4381789A (en) Electrode system
US4125110A (en) Monitoring and stimulation electrode
US10330621B1 (en) Electrolyte sensor and method and producing thereof
US11596338B2 (en) Bioelectrode
WO2018070433A1 (en) Conductive rubber composition for measuring bio-signals, conductive member for measuring bio-signals, and clothing for measuring bio-signals
US10840690B2 (en) Non-ohmic composition and method for manufacturing same, cable interconnect unit and cable end-connect unit
WO2006064783A1 (en) Method of controlling specific inductive capacity, dielectric material, mobile phone and human phantom model
JP2000051368A (en) Conducting element for electric medical treatment
US20200275850A1 (en) Bioelectrode
KR20210146522A (en) Manufacture method for conductive silicon electrodes and electride devive
WO2011064526A1 (en) Thermostimulation system including multilayer pads with integrated temperature regulation
US20230009938A1 (en) Method for manufacturing biological electrode
US11600401B2 (en) Bioelectrode
JPS595297B2 (en) Electrode for conductive elastomer conductor
JP7088204B2 (en) Manufacturing method of elastic laminated sheet
KR20220107556A (en) Tumbler adjustable temperature with low power for a long time
KR102364287B1 (en) Conductive silicon devices and manufaturing methods for measuring biological signals
JP2019009071A (en) Conductive composition and planar heating element
WO2024014154A1 (en) Electrode for electroencephalogram measurement, electroencephalogram measurement device, electroencephalogram measurement method, and method for manufacturing electrode for electroencephalogram measurement
US6418347B1 (en) Transcutaneous medical electrode for connecting to a touch proof connector
GB1587839A (en) Medical electrode
JP3166026B2 (en) Semiconductive silicone rubber composition and silicone rubber roll
CN115670047A (en) Massage mask with muscle electrical stimulation function
KR100977543B1 (en) Novel semi-conductive polymer composition, self-regulating heating cable and hypertermia combination stimulator comprising the same