JP2000051182A - Fingerprint image input device - Google Patents

Fingerprint image input device

Info

Publication number
JP2000051182A
JP2000051182A JP10227869A JP22786998A JP2000051182A JP 2000051182 A JP2000051182 A JP 2000051182A JP 10227869 A JP10227869 A JP 10227869A JP 22786998 A JP22786998 A JP 22786998A JP 2000051182 A JP2000051182 A JP 2000051182A
Authority
JP
Japan
Prior art keywords
light
transparent
fingerprint image
input device
image input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10227869A
Other languages
Japanese (ja)
Inventor
Akira Morita
晃 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10227869A priority Critical patent/JP2000051182A/en
Publication of JP2000051182A publication Critical patent/JP2000051182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cost-effective and flat-shaped fingerprint image input device that features high resolution and high contrast to input various types of irregular patterns such as fingerprint, or the like. SOLUTION: This device is provided with a flat-shaped light-source 1 and a transparent parallel plate 3 in which one plane 30 of a transparent plate 31 of n1 of refractive index receives light from the light-source 1, at the other plane 40 side of this mother material (plate 31), multiple triangle prisms 4 of n2 of refractive index are embedded therein in parallel so that two faces of the triangle prisms are embedded, and boundary faces 41b, 42b... are incident and refractive planes while, boundary faces 41a, 42a... are refractive and outgoing planes, and boundary faces 41c, 42c... are flat-formed at the outside to make a detection plane. This device is also provided with a filtering plate 23 which selectively filters light from the outgoing planes 41a, 41a... and a light-receiving element 5 which receives the filtered light. The device reads fingerprint information from a finger touched on the detection planes 41c, 42c... on the transparent parallel plate 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は指紋画像入力装置
に関わり、特に、薄型で鮮明な指紋画像を得ることがで
きる指紋画像入力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fingerprint image input device, and more particularly to a fingerprint image input device capable of obtaining a thin and clear fingerprint image.

【0002】[0002]

【従来の技術】出入り管理やキャッシュサービスなどに
利用する個人識別技術として、セキュリティが最も高い
生体情報を用いたものが注目されている。これまで指紋
などの凹凸表面の情報の入力方法としては、インクを塗
布して用紙に一度押印した後、イメージセンサを用いて
入力する方法、および、プリズムなどの光学素子を用い
てガラスと空気との界面に臨界角以上の角度で光線を入
射することにより、凹凸パターンを即時に得る方法があ
った。本発明は、後者の光学素子を用いて凹凸表面の情
報を即時に検出する装置に関する。
2. Description of the Related Art Attention has been focused on biometric information having the highest security as a personal identification technique used for access control and cash services. Until now, information on fingerprints and other uneven surfaces has been input by applying ink and stamping it once on paper, and then inputting it using an image sensor, or using glass and air using an optical element such as a prism. There is a method of immediately obtaining a concavo-convex pattern by irradiating a light beam at an angle equal to or greater than the critical angle to the interface. The present invention relates to an apparatus for immediately detecting information on an uneven surface using the latter optical element.

【0003】図6は、従来技術によるプリズムを用いた
入力手段の一例であり、全反射法と呼ばれている方式の
原理図である。図6において、プリズム81の斜辺部に指
9の表面の指紋(凹凸パターン)を接触し、この斜辺部
に光源1からの照射光を臨界角以上で入射すると、指紋
の凸部92では入射光が散乱され、凹部91では空気との界
面で全反射して撮像素子などの検出器55に入射すること
で、指紋などの凹凸パターンを検出することができる。
FIG. 6 shows an example of input means using a prism according to the prior art, and is a principle diagram of a system called a total reflection method. In FIG. 6, a fingerprint (irregularity pattern) on the surface of the finger 9 is brought into contact with the hypotenuse of the prism 81, and when the irradiation light from the light source 1 is incident on the hypotenuse at a critical angle or more, the incident light at the projection 92 of the fingerprint Are scattered, and are totally reflected at the interface with the air at the concave portion 91 and are incident on the detector 55 such as an image sensor, so that an uneven pattern such as a fingerprint can be detected.

【0004】この様な全反射法の原理を応用した従来技
術として、特開平9-116128「指紋画像入力装置及びその
製造方法」が開示されている。図7に指紋画像入力装置
の分解斜視図を、図8に回折格子の動作説明図を、図9
に回折格子の特性図を示す。図7において、指紋画像入
力装置は、透明基板71上に形成した回折格子72、光電変
換素子(受光素子)5、図示省略されたスイッチ素子、
スイッチ用配線、光電変換素子5の下部に配置される不
透明な電極で構成される遮光板73、を備えた2次元イメ
ージセンサ7と、平面状光源1と、透明保護膜8と、か
ら構成されている。
Japanese Patent Application Laid-Open No. 9-116128 entitled "Fingerprint Image Input Apparatus and Manufacturing Method Thereof" is disclosed as a conventional technique utilizing the principle of such a total reflection method. FIG. 7 is an exploded perspective view of the fingerprint image input device, FIG.
Fig. 3 shows a characteristic diagram of the diffraction grating. 7, a fingerprint image input device includes a diffraction grating 72 formed on a transparent substrate 71, a photoelectric conversion element (light receiving element) 5, a switch element not shown,
The two-dimensional image sensor 7 includes a switch wiring, a light shielding plate 73 formed of an opaque electrode disposed below the photoelectric conversion element 5, the planar light source 1, and the transparent protective film 8. ing.

【0005】かかる構成において、平面状光源1からの
平行光線で2次元イメージセンサ7を背面から照光し、
回折格子72を通過した光は次数m(m=1,2,3,・・) で回折
され、透明保護膜8に斜めから入射する。開示例では、
臨界角θc が約34°以上でないと全反射しないので、次
数m=4 以上の回折光が利用される。即ち、透明保護膜8
に指9の指紋(凹凸パターン)を接触し、この透明保護
膜8に上記回折光を臨界角以上で照射することにより、
指紋の凸部92では入射光が散乱され、凹部91では空気と
の界面で全反射して受光素子5に入射することで、指紋
などの凹凸パターンを検出することができる。
In this configuration, the two-dimensional image sensor 7 is illuminated from the back with parallel rays from the planar light source 1,
The light that has passed through the diffraction grating 72 is diffracted by the order m (m = 1, 2, 3,...) And enters the transparent protective film 8 obliquely. In the disclosure example,
Since the critical angle theta c is not totally reflected and not about 34 ° or more, the order m = 4 or higher order diffracted light is utilized. That is, the transparent protective film 8
Is brought into contact with a fingerprint (irregular pattern) of a finger 9 and the transparent protective film 8 is irradiated with the diffracted light at a critical angle or more.
The incident light is scattered at the convex part 92 of the fingerprint, and the light is totally reflected at the interface with the air at the concave part 91 and is incident on the light receiving element 5, so that a concavo-convex pattern such as a fingerprint can be detected.

【0006】図8において、2次元イメージセンサ7
は、透明基板71上に不透明な電極で構成される遮光板73
の上部に配置される光電変換素子5と、層間絶縁膜76を
挟んで2つの不透明材料(下部電極および配線材料を構
成する)によりスリット75を構成する回折格子72と、が
一体に構成されている。この2次元イメージセンサ7の
下部より照射される平行光線の一部は、回折格子72を通
過して回折格子の次数mに応じた角度θm で偏向され
る。この偏向された光のうち、透明保護膜8の臨界角θ
c 以上の光が指紋などの凹凸パターンの検出に利用され
る。図9は横軸に回折格子で偏向される角度θm を、縦
軸に光度を示す。回折格子の次数mの増加と共にこの回
折格子72で偏向される光線の光度は小さくなる。
In FIG. 8, a two-dimensional image sensor 7
Is a light shielding plate 73 composed of opaque electrodes on a transparent substrate 71.
The photoelectric conversion element 5 disposed on the upper surface of the substrate and a diffraction grating 72 forming a slit 75 by two opaque materials (constituting a lower electrode and a wiring material) with an interlayer insulating film 76 interposed therebetween are integrally formed. I have. A part of the parallel light beam emitted from the lower part of the two-dimensional image sensor 7 passes through the diffraction grating 72 and is deflected at an angle θ m corresponding to the order m of the diffraction grating. Of the deflected light, the critical angle θ of the transparent protective film 8
Light of c or more is used for detecting a concavo-convex pattern such as a fingerprint. Figure 9 is the angle theta m being deflected by the diffraction grating in the horizontal axis shows the light intensity on the vertical axis. As the order m of the diffraction grating increases, the luminous intensity of the light beam deflected by the diffraction grating 72 decreases.

【0007】[0007]

【発明が解決しようとする課題】この様に、2次元イメ
ージセンサとして回折格子と光電変換素子とを一体に構
成し、2次元イメージセンサの背面より平行光線で照射
し、回折格子でこの平行光線を回折し、指紋などの凹凸
面が押し付けられる透明保護膜を照射する。この偏向さ
れた光は、当該凹凸面の凸部では散乱され、凹部で臨界
角θc 以上に回折された偏向光は全反射して光電変換素
子で受光され、凹凸パターン情報として信号処理が行わ
れる。光偏向手段としての回折格子と指紋などの凹凸パ
ターン情報を有する光を受光する光電変換素子とが一体
に構成されるので、薄型の指紋画像入力装置を構成する
ことができる。
As described above, a diffraction grating and a photoelectric conversion element are integrally formed as a two-dimensional image sensor, and the parallel light is irradiated from the back of the two-dimensional image sensor by the diffraction grating. Is diffracted to irradiate a transparent protective film against which an uneven surface such as a fingerprint is pressed. The deflected light is scattered in the convex portion of the uneven surface, deflecting light diffracted above the critical angle theta c in the recess is received by a photoelectric conversion element is totally reflected, the signal processing line as uneven pattern information Will be Since the diffraction grating serving as the light deflecting unit and the photoelectric conversion element that receives light having uneven pattern information such as a fingerprint are integrally formed, a thin fingerprint image input device can be configured.

【0008】しかし、凸部で散乱されて光電変換素子で
受光される光成分は、凹部で臨界角θc 以上で全反射し
て光電変換素子で受光される光成分に対して解像度を劣
化させるノイズ成分となる。特に、回折の次数の低い偏
向光は、臨界角θc で全反射する光成分に対して光度が
高いので信号ノイズ比(S/N比) を劣化させる。また、臨
界角θc 以上の偏向光のうち、高次の次数の偏向光が他
の凹部で全反射して光電変換素子で受光されるときも解
像度を劣化させる一因となる。即ち、比較的広い範囲の
指紋などの凹凸パターンを検出するとき、離れた他の位
置からの凹部情報が混入して凹凸パターンのコントラス
トを劣化させる。
However, light components are scattered by the convex portion is received by the photoelectric conversion element, degrade the resolution with respect to the optical component to be received by the total reflection at the critical angle theta c or more recesses in the photoelectric conversion element It becomes a noise component. In particular, a low degree deflected light diffraction deteriorates the signal-noise ratio since the light intensity is higher with respect to light components totally reflected by the critical angle θ c (S / N ratio). Also, among the critical angle theta c above deflected light, also contribute to deteriorating the resolution when the higher order deflection light is received by the total reflection to the photoelectric conversion elements in other recesses. That is, when detecting a concavo-convex pattern such as a fingerprint in a comparatively wide range, the concave portion information from another position apart from the mixture is mixed, thereby deteriorating the contrast of the concavo-convex pattern.

【0009】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、光の偏
向手段として回折格子を用いることなく、光源からの平
行光線を効果的に偏向することにより、比較的広い範囲
の指紋などの凹凸パターンの画像を高い分解能と高いコ
ントラストを有し、かつ、経済的な薄型の指紋画像入力
装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to solve the above-mentioned problems and to effectively convert a parallel light beam from a light source without using a diffraction grating as light deflecting means. It is an object of the present invention to provide an economical thin fingerprint image input device having high resolution and high contrast for an image of a concavo-convex pattern such as a fingerprint in a relatively wide range by deflecting the image.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、平面状または線状の光源と、こ
の光源から出射される光を屈折率n1の透明板の一方の面
に受け, この母材の他方の面側に複数本平行して屈折率
n2(<n1)の三角柱の2面がこの母材に埋め込まれて界
面をなし,この2つの界面の内,一方の界面を入射・屈
折面,他方の界面を屈折・出射面とし,残りの一面が外
側に向き平滑に平面状に形成されて検査面となる屈折率
配分型の透明平行板と、この透明平行板の出射面から出
射する光を選択的に通過させる遮光板と、この遮光板を
通過した光を受光する受光素子と、を備えるものとす
る。
In order to achieve the above object, in the present invention, a flat or linear light source and light emitted from the light source are applied to one surface of a transparent plate having a refractive index of n1. , A plurality of parallel to the other surface side of this base material
Two surfaces of a triangular prism of n2 (<n1) are buried in this base material to form an interface, and one of the two interfaces is an entrance / refraction surface, the other interface is a refraction / emission surface, and the remaining interface is a refraction / emission surface. A transparent parallel plate of a refractive index distribution type, one surface of which is formed outwardly and smoothly in a planar shape to be an inspection surface; a light shielding plate for selectively passing light emitted from an emission surface of the transparent parallel plate; A light-receiving element that receives light passing through the plate.

【0011】また、透明板の母材と三角柱とがなす2つ
の界面(入射・屈折面と屈折・出射面)および三角柱の
他の界面と空気(屈折率n3)との界面(以下、検査面と
呼ぶ)において透明平行板に入射した光は、最初の界面
(入射面)で全反射し、この入射面と隣接する次の界面
(屈折面)で屈折して三角柱内に入射し、平滑に研磨さ
れた透明平行板の検査面に到達した点が空気層と界面を
構成するとき全反射するものとする。
Further, two interfaces (incident / refracting surface and refracting / emission surface) formed by the base material of the transparent plate and the triangular prism and an interface between the other interface of the triangular prism and air (refractive index n3) (hereinafter referred to as an inspection surface) ), The light incident on the transparent parallel plate is totally reflected at the first interface (incident surface), refracted at the next interface (refractive surface) adjacent to this incident surface, enters the triangular prism, and becomes smooth. It is assumed that a point that reaches the inspection surface of the polished transparent parallel plate totally reflects when forming an interface with the air layer.

【0012】かかる構成により、平滑に研磨された透明
平行板の検査面に接触した指からの指紋画像情報は、以
下の様に読み取ることができる。即ち、透明平行板に入
射した光は、最初の界面(入射面)で全反射し、この界
面と隣接する次の界面(屈折面)で三角柱内に入射し、
この三角柱内の平滑に研磨された透明平行板の検査面に
到達した所が、指紋などの凹凸パターンの凹部のとき全
反射して、この三角柱内を進行して次の界面(屈折面)
で屈折し、その次の隣接する三角柱の界面(出射面)で
再び全反射して、受光素子5の各素子で信号成分として
検出される。
[0012] With this configuration, fingerprint image information from a finger in contact with the inspection surface of the transparent parallel plate polished smoothly can be read as follows. That is, the light incident on the transparent parallel plate is totally reflected at the first interface (incident surface), and enters the triangular prism at the next interface (refractive surface) adjacent to this interface,
When reaching the inspection surface of the transparent parallel plate polished smoothly in the triangular prism, it is totally reflected when it is a concave portion of a concavo-convex pattern such as a fingerprint, and travels through the triangular prism to the next interface (refractive surface).
, And is totally reflected again at the interface (exit surface) of the next adjacent triangular prism, and is detected as a signal component by each element of the light receiving element 5.

【0013】一方、三角柱内の透明平行板の検査面に到
達した所が、凹凸パターンの凸部のときこの光は散乱さ
れる。この散乱光の内、上記凹部で全反射して信号成分
として検出される同一角度・方向で散乱される光成分
は、対応する受光素子で検出されてノイズとなるが、散
乱光全体に較べるとその占める割合は小さい。その他の
角度で散乱された光成分は、遮光板23あるいは指の表面
などで遮光・吸収される。即ち、凸部では散乱された弱
い光信号のみが検出されるので、指紋などの凹凸パター
ンをコントラスト良く識別することができる。
On the other hand, when the portion reaching the inspection surface of the transparent parallel plate in the triangular prism is a projection of the uneven pattern, this light is scattered. Of the scattered light, the light component scattered at the same angle and direction that is totally reflected by the concave portion and detected as a signal component is detected by the corresponding light receiving element and becomes noise, but compared with the entire scattered light. Its share is small. Light components scattered at other angles are shielded and absorbed by the light shielding plate 23 or the surface of the finger. That is, since only the weak optical signal scattered is detected at the convex portion, the concave / convex pattern such as the fingerprint can be identified with good contrast.

【0014】また、透明平行板は、屈折率n1の透明板の
母材の他方の面側に複数本平行に並ぶ三角形状のV溝を
構成し、このV溝に屈折率n1より小さい屈折率n2を有す
る透明樹脂を充填し、この充填した透明樹脂側を平滑に
研磨して透明平行板を構成することができる。また、屈
折率n2の三角柱は、透明平行板の検査面を底辺とする二
等辺三角形(底辺となす角をα)とすることができる。
The transparent parallel plate has a plurality of triangular V-shaped grooves arranged in parallel on the other surface of the base material of the transparent plate having a refractive index of n1, and the V-groove has a refractive index smaller than the refractive index n1. A transparent parallel plate can be formed by filling a transparent resin having n2 and polishing the filled transparent resin side smoothly. Further, the triangular prism having the refractive index n2 can be an isosceles triangle having an inspection surface of the transparent parallel plate as a base (an angle formed with the base is α).

【0015】また、二等辺三角形は正三角形とすること
ができる。かかる構成により、光源より透明平行板に入
射した平行光線は、三角柱の最初の界面(入射面)に入
射し全反射して、隣接する次の三角柱の界面(屈折面)
に入射し、この三角柱の平滑に研磨された検査面に到達
し、この面における指紋の凹凸パターン情報によって光
強度変調を受け、さらに三角柱の界面(屈折面)で屈折
し、隣接する三角柱の界面(出射面)で全反射して、受
光素子で受光することができる。
The isosceles triangle can be an equilateral triangle. With this configuration, a parallel light beam incident on the transparent parallel plate from the light source is incident on the first interface (incident surface) of the triangular prism, is totally reflected, and is interfaced with the next adjacent triangular prism (refractive surface).
, Reaches the inspection surface of the triangular prism that has been polished smoothly, undergoes light intensity modulation based on the information on the uneven pattern of the fingerprint on this surface, and is further refracted at the interface (refractive surface) of the triangular prism. The light is totally reflected by the (emission surface) and can be received by the light receiving element.

【0016】また、光源は、レンズを備え平行光線を透
明平行板に出射する、あるいは、面発光レーザとするこ
とができる。かかる構成により、光源として平行光線を
利用することができるので、透明平行板の三角柱の入射
面界面での全反射と、透明平行板の検査面に接触した指
紋の凹部での全反射と、受光素子で受光する出射面での
全反射により、受光素子の受光面での光の拡散を防ぐこ
とができる。
The light source may include a lens and emit parallel light to a transparent parallel plate, or may be a surface emitting laser. With this configuration, a parallel light beam can be used as a light source, so that total reflection at the interface of the triangular prism of the transparent parallel plate at the entrance surface, total reflection at the concave portion of the fingerprint in contact with the inspection surface of the transparent parallel plate, and light reception are performed. Due to the total reflection at the light-emitting surface that receives light at the element, diffusion of light at the light-receiving surface of the light-receiving element can be prevented.

【0017】また、透明平行板は、透明板に埋め込まれ
た三角柱に代わって、屈折率n1の透明板の他方の面側に
複数個の屈折率n2(<n1)の四角錐の4面(左右および
奥行き方向の各一方の界面を入射・屈折面、残りの界面
を屈折・出射面と呼ぶ)が規則的に母材に埋め込まれ、
残りの四角形の面が外側に出て平滑に平面状に形成され
て検査面となる屈折率配分型の透明平行板とすることが
できる。
In addition, the transparent parallel plate is replaced with a triangular prism embedded in the transparent plate, and instead of four surfaces of a plurality of quadrangular pyramids having a refractive index n2 (<n1) on the other surface side of the transparent plate having a refractive index n1. One interface in each of the left, right, and depth directions is called an incidence / refraction surface, and the remaining interface is called a refraction / exit surface).
The remaining quadrangular surface is outwardly formed to be smooth and flat, so that a refractive index distribution type transparent parallel plate serving as an inspection surface can be obtained.

【0018】かかる構成により、横方向のみならず、奥
行き方向に対しても分解能を高く保持することができ
る。即ち、透明平行板を三角柱で構成したとき、三角柱
の奥行き方向に光源の光の発散性があるとき、検出され
る凹部情報に奥行き方向の他の位置の情報が混入して解
像度を下げる恐れがある。この様な課題は、奥行き方向
に対しても横方向と同様に三角形を構成することにより
解決することができる。即ち、横方向と奥行き方向に三
角形を構成することは、四角錐を複数規則的に配置する
ことによって実行することができる。
With this configuration, it is possible to maintain high resolution not only in the horizontal direction but also in the depth direction. That is, when the transparent parallel plate is formed of a triangular prism, when there is a divergence of light from the light source in the depth direction of the triangular prism, there is a possibility that information on other positions in the depth direction is mixed into the detected concave portion information to lower the resolution. is there. Such a problem can be solved by forming a triangle in the depth direction in the same manner as in the horizontal direction. That is, forming a triangle in the horizontal direction and the depth direction can be performed by arranging a plurality of quadrangular pyramids regularly.

【0019】[0019]

【発明の実施の形態】図1は本発明の一実施例としての
指紋画像入力装置の要部構成図、図2は他の実施例とし
ての指紋画像入力装置の要部構成図、図3は本発明の動
作原理を説明する説明図、図4は発散性の光源を用いた
ときの光の拡散を説明する説明図、図5は本発明の他の
実施例としての指紋画像入力装置の要部構成図であり、
図6〜図9に対応する同一部材には同じ符号が付してあ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a main part of a fingerprint image input device as one embodiment of the present invention, FIG. 2 is a block diagram of a main portion of a fingerprint image input device as another embodiment, and FIG. FIG. 4 is an explanatory diagram illustrating the operation principle of the present invention, FIG. 4 is an explanatory diagram illustrating light diffusion when a divergent light source is used, and FIG. 5 is a diagram illustrating a fingerprint image input device as another embodiment of the present invention. FIG.
The same members corresponding to FIGS. 6 to 9 are denoted by the same reference numerals.

【0020】図1において、指紋画像入力装置は、平面
状または線状の光源1(11,12・・1n) と、この光源(11,
12・・1n) から出射される光(11a,12b・・1na)を屈折率
n1の透明板31の一方の面30に受け, この母材の検査面40
側に複数本平行して屈折率n2(<n1)の三角柱(41,42・
・4n+2) の2面((41a,42a ・・4n+2a),(41b,42b ・・4n
+2b)) がこの母材に埋め込まれて界面をなし,この2つ
の界面の内,一方の界面(41b,42b・・4n+2b)を入射・屈
折面,他方の界面(41a,42a・・4n+2a)を屈折・出射面と
し,残りの一面(41c,42c・・4n+2c)が外側に向き平滑に
平面状に形成されて検査面40となる屈折率配分型の透明
平行板3と、この透明平行板3の出射面(41a,42a・・4n
+2a)から出射する光(11g,12g・・1ng)を選択的に通過す
る遮光板23と、この遮光板23を通過した光を受光する受
光素子5(51,52・・5n) と、を備えて構成される。
In FIG. 1, a fingerprint image input device includes a planar or linear light source 1 (11, 12,... 1n) and a light source (11, 12,... 1n).
12n), the light (11a, 12b
Received on one side 30 of n1 transparent plate 31, inspection surface 40 of this base material
A triangular prism with a refractive index n2 (<n1) (41,42
・ 4n + 2) ((41a, 42a ・ ・ 4n + 2a), (41b, 42b ・ ・ 4n
+ 2b)) is embedded in this base material to form an interface. One of the two interfaces (41b, 42b... 4n + 2b) is the incident / refracting surface, and the other interface (41a, 42a.・ 4n + 2a) is the refraction / outgoing surface, and the other surface (41c, 42c ・ ・ 4n + 2c) is outwardly formed in a flat and smooth plane and becomes the inspection surface 40. 3 and the exit surface of this transparent parallel plate 3 (41a, 42a... 4n
+ 2a), a light-shielding plate 23 for selectively passing light (11 g, 12 g,... 1 ng) emitted therefrom, and a light-receiving element 5 (51, 52,... 5n) for receiving light passing through the light-shielding plate 23. It is comprised including.

【0021】かかる構成により、透明平行板3の検査面
40に接触した指9からの指紋画像情報は、次の様に読み
取ることができる。尚、説明の簡便化のため光線の追跡
は光源11の出射光11a を中心に、他の光は括弧で示す。
尚、図1の光線追跡の図示は出射光11a を中心として、
他の光は省略した。透明板31の母材と三角柱4(41,42・
・4n+2) との2つの界面((41a,42a,・・4n+2a),(41b,42
b,・・4n+2b)) および三角柱4(41,42・・4n+2) と空気
(屈折率n3)との界面(41c,42c, ・・4n+2c)において透
明平行板3に入射した光 11a(12a・・1na)は、最初の界
面(入射面)41b(42b,・・4nb)では全反射し光 11b(12b
・・1nb)となり、この入射面41b(42b,・・4nb)と隣接す
る次の界面(屈折面) 42a(43a・・4n+1a)で屈折して三
角柱 42(43・・4n+1) 内に入射し光 11c(12c・・1nc)と
なる。そして、平滑に研磨された透明平行板3の検査面
40に到達した点(三角柱 42(43・・4n+1) の検査面42c
(43c ・・4n+1c)が空気層と界面を構成するとき全反射
して、光 11d(12d・・1nd)となる。
With this configuration, the inspection surface of the transparent parallel plate 3
The fingerprint image information from the finger 9 that has come into contact with 40 can be read as follows. For the sake of simplicity of description, the tracing of the light beam is indicated by the light beam 11a emitted from the light source 11, and the other light beams are indicated by parentheses.
Note that the ray tracing in FIG. 1 is illustrated with the outgoing light 11a as the center.
Other lights have been omitted. The base material of the transparent plate 31 and the triangular prism 4 (41,42
・ Two interfaces with (4n + 2) ((41a, 42a, ... 4n + 2a), (41b, 42
b, .. 4n + 2b)) and incident on the transparent parallel plate 3 at the interface (41c, 42c, .. 4n + 2c) between the triangular prism 4 (41,42..4n + 2) and air (refractive index n3). The reflected light 11a (12a... 1na) is totally reflected at the first interface (incident surface) 41b (42b,.
..1nb), and is refracted at the next interface (refractive surface) 42a (43a..4n + 1a) adjacent to the incident surface 41b (42b,... 4nb) and triangular prism 42 (43..4n + 1) And enters into light 11c (12c... 1nc). And the inspection surface of the transparent parallel plate 3 polished smoothly
Inspection surface 42c of the point that reached 40 (triangular prism 42 (43 ... 4n + 1)
When (43c... 4n + 1c) forms an interface with the air layer, it is totally reflected and becomes light 11d (12d... 1nd).

【0022】ここで、平滑に研磨された透明平行板3の
検査面40に接触した指9からの指紋などの凹凸パターン
情報によって、以下の様に検出される。即ち、三角柱 4
2(43・・4n+1) 内の平滑に研磨された透明平行板3の検
査面40に到達した点(検査面42c(43c・・4n+1c))が指
紋などの凹凸パターンの凹部のとき、上述の様に、全反
射して光 11d(12d・・1nd)となり、この三角柱 42(43・
・4n+1) 内を進行し、界面(屈折面) 42b(43b・・4n+1
b)で屈折して光 11f(12f・・1nf)となり、次の隣接する
三角柱 43(44・・4n+2) の出射面 43a(44a・・4n+2a)で
再び全反射して光 11g(12g・・1ng)となり、受光素子5
の対応する各素子51(52,・・5n) で凹部信号成分として
検出される。
Here, the following is detected by the uneven pattern information such as the fingerprint from the finger 9 contacting the inspection surface 40 of the transparent parallel plate 3 polished smoothly. That is, triangular prism 4
The point (inspection surface 42c (43c... 4n + 1c)) of 2 (43... 4n + 1) which reaches the inspection surface 40 of the transparent and polished transparent parallel plate 3 is the concave portion of the uneven pattern such as a fingerprint. At this time, as described above, the light is totally reflected and becomes light 11d (12d... 1nd), and this triangular prism 42 (43.
・ 4n + 1) and the interface (refractive surface) 42b (43b 4n + 1)
b) is refracted into light 11f (12f ... 1nf), and is totally reflected again by the emission surface 43a (44a ... 4n + 2a) of the next adjacent triangular prism 43 (44. (12g ... 1ng)
Are detected as concave signal components by the corresponding elements 51 (52,... 5n).

【0023】一方、三角柱 42(43・・4n+1) 内の透明平
行板3の検査面40に到達した点(検査面 42c(43c・・4n
+1c))が、凹凸パターンの凸部のときこの光11c(12c,・
・1nc)は散乱され、光11e(12e,・・1ne)となる。この散
乱光11e(12e,・・1ne)の内、上記凹部で全反射して信号
成分として検出される同一角度・方向で散乱される光成
分11d'(12d',・・1nd') は、対応する受光素子51(52,・
・5n) で検出されてノイズとなるが、散乱光全体に較べ
るとその占める割合は小さい。その他の角度で散乱され
た光成分は、遮光板23あるいは指の表面などで遮光・吸
収される。即ち、凸部では散乱された弱い光信号のみが
検出されるので、指紋などの凹凸パターンをコントラス
ト良く識別することができる。
On the other hand, a point (inspection surface 42c (43c... 4n) of the transparent parallel plate 3 in the triangular prism 42 (43.
+ 1c)) is the light 11c (12c,.
・ 1nc) is scattered and becomes light 11e (12e,... 1ne). Of the scattered light 11e (12e, 1ne), a light component 11d '(12d', 1nd ') scattered at the same angle and direction that is totally reflected by the concave portion and detected as a signal component is: The corresponding light receiving element 51 (52,
・ Noise is detected by 5n), but its proportion is small compared to the total scattered light. Light components scattered at other angles are shielded and absorbed by the light shielding plate 23 or the surface of the finger. That is, since only the weak optical signal scattered is detected at the convex portion, the concave / convex pattern such as the fingerprint can be identified with good contrast.

【0024】[0024]

【実施例1】図2は本発明の他の実施例を示し、図1で
図示する実施例との差異は発光素子(光源1) (11,12,
・・1n) と受光素子5(51,52・・5n) とが一体の構成さ
れ、遮光板22が削除されている点である。発光素子 (1
1,12,・・1n) から出射する光線の軌跡は上述の図1の
実施例で説明したのと同じであるので省略する。
Embodiment 1 FIG. 2 shows another embodiment of the present invention. The difference from the embodiment shown in FIG. 1 is that the light emitting element (light source 1) (11, 12,
.. 1n) and the light receiving element 5 (51, 52... 5n) are integrally formed, and the light shielding plate 22 is omitted. Light emitting element (1
The trajectories of the light beams emitted from (1, 12,... 1n) are the same as those described in the embodiment of FIG.

【0025】本発明では、三角柱4の奥行き方向(以
下、この方向を奥行きと呼ぶ)に発光素子 (11,12,・・
1n) は線状に構成される、あるいは点状の発光素子が複
数個配列される。また、受光素子5(51,52・・5n) は奥
行き方向にも受光素子が複数個規則的に配列されて構成
される。この様に、線状に配列された発光素子 (11,12,
・・1n) および受光素子5(51,52・・5n) が交互に横方
向に配列されて、2次元の発光・受光素子が構成され
る。
In the present invention, the light emitting elements (11, 12,...) Extend in the depth direction of the triangular prism 4 (hereinafter, this direction is referred to as the depth).
1n) is composed of a plurality of linear or dotted light emitting elements. The light receiving elements 5 (51, 52,..., 5n) are configured by regularly arranging a plurality of light receiving elements also in the depth direction. Thus, the light-emitting elements (11, 12,
.. 1n) and the light receiving elements 5 (51, 52... 5n) are alternately arranged in the horizontal direction to form a two-dimensional light emitting / receiving element.

【0026】一実施例では、横方向では、発光・受光素
子が1組分で50μm 、また三角柱3の横方向の幅を50μ
m 、奥行き方向では、受光素子あるいは点状の発光素子
のときは50μm 間隔で受光素子あるいは点状の発光素子
を構成するので、指などの指紋は50μm の分解能あるい
は解像度 500DPI (500ドット/インチ)で読み取ること
ができ、精密に個人情報を識別することができる。
In one embodiment, in the horizontal direction, the light-emitting and light-receiving elements are 50 μm for one set, and the width of the triangular prism 3 in the horizontal direction is 50 μm.
m, in the depth direction, a light-receiving element or a point-shaped light-emitting element constitutes a light-receiving element or a point-shaped light-emitting element at intervals of 50 μm, so that a fingerprint such as a finger has a resolution of 50 μm or a resolution of 500 DPI (500 dots / inch). , And can accurately identify personal information.

【0027】また、上述の様に三角柱3の横方向の幅を
50μm とするのでなく、三角柱3をもう少し大きくし
て、1つの三角柱3に対して複数個の受光素子あるいは
CCD などの2次元撮像素子を用いて、複数画素を取り込
むこともできる。この場合、1つの三角柱3に対して取
り込まれた複数画素の配列は反転するので、複数の三角
柱3から得られたデータを基にして元の画像(指紋のパ
ターン)を再現するときは、個々の三角柱3から取り込
まれたデータの方向を反転して、全体を結合して、元の
画像を合成することができる。
As described above, the width of the triangular prism 3 in the lateral direction is
Instead of making it 50 μm, the triangular prism 3 is made a little larger and a plurality of light receiving elements or
A plurality of pixels can be captured using a two-dimensional image sensor such as a CCD. In this case, the arrangement of the plurality of pixels captured for one triangular prism 3 is inverted. Therefore, when reproducing the original image (fingerprint pattern) based on the data obtained from the plurality of triangular prisms 3, , The direction of the data taken in from the triangular prism 3 can be inverted, the whole can be combined, and the original image can be synthesized.

【0028】[0028]

【実施例2】本発明による指紋画像入力装置の光学系手
段を構成する透明平行板3を説明する。図1または図2
において、透明平行板3は、屈折率n1の透明板31の母材
の検査面40側に複数本平行に並ぶ三角形状のV溝(界面
(41a,41b),(42a,42b),・・(4n+2a,4n+2b))を構成し、こ
のV溝に屈折率n1より小さい屈折率n2を有する透明樹脂
を充填し、この充填した透明樹脂側を平滑に研磨して検
査面(41c,42c,・・4n+2c)とし、母材と密着配置した三
角柱41,42 ・・4n+2を有する屈折率配分型の透明平行板
3および指9を接触し指紋の凹凸パターン情報を検査す
る光学面表面40を構成することができる。
[Embodiment 2] The transparent parallel plate 3 constituting the optical system means of the fingerprint image input apparatus according to the present invention will be described. FIG. 1 or FIG.
The transparent parallel plate 3 has a plurality of triangular V-grooves (interfaces) arranged in parallel on the inspection surface 40 side of the base material of the transparent plate 31 having the refractive index n1.
(41a, 41b), (42a, 42b), ... (4n + 2a, 4n + 2b)), and this V-groove is filled with a transparent resin having a refractive index n2 smaller than the refractive index n1, and this filling is performed. 4n + 2c, the inspection surface (41c, 42c,... 4n + 2c), and a refractive index distribution type transparent parallel plate having triangular prisms 41, 42,. An optical surface 40 for inspecting the concave and convex pattern information of the fingerprint by contacting the finger 3 and the finger 9 can be formed.

【0029】また、屈折率n2の三角柱41,42 ・・4n+2
は、平滑に研磨された透明平行板3の検査面(41c,42c・
・4n+2c)を底辺とする二等辺三角形に構成する。この様
に構成することにより、透明平行板3の一方の面30に垂
直に入射した光(11a,12a・・1na)は、透明平行板3の光
学系手段を経由して、透明平行板3の一方の面30から垂
直に出射し受光素子5(51,52・・5n) に入射する。即
ち、光学系の設計が簡明になる。
Also, a triangular prism 41, 42... 4n + 2 having a refractive index n2
Are the inspection surfaces (41c, 42c,
・ Construct an isosceles triangle with 4n + 2c) as the base. With this configuration, the light (11a, 12a... 1na) perpendicularly incident on one surface 30 of the transparent parallel plate 3 passes through the transparent parallel plate 3 through the optical system means. The light exits vertically from one surface 30 and enters the light receiving element 5 (51, 52... 5n). That is, the design of the optical system is simplified.

【0030】次に、屈折率n2の三角柱4が透明平行板3
の検査面(41c,42c・・4n+2c)を底辺とし、底辺となす角
をαの二等辺三角形の場合について検討する。図3にお
いて、屈折率n2の三角柱4はΔABC,ΔCDE,ΔEFG,で図示
され、指紋などの凹凸面が接触されて検査される透明平
行板3の検査面40は点A,C,E,G を連ねた直線上に存在す
る。
Next, the triangular prism 4 having the refractive index n2 is
The inspection plane (41c, 42c... 4n + 2c) is the base, and the angle between the base and the base is an isosceles triangle of α. In FIG. 3, a triangular prism 4 having a refractive index n2 is shown by ΔABC, ΔCDE, ΔEFG, and an inspection surface 40 of the transparent parallel plate 3 to be inspected by contacting an uneven surface such as a fingerprint is point A, C, E, G. Exist on a straight line.

【0031】光源11から透明平行板3に垂直に出射する
光11a は、ΔABC の辺BCの交点Pで全反射する。即ち、
入射面11b で全反射する条件は交点Pでの入射角(90-β
=α)が臨界角以上である。透明平行板3の母材の屈折
率をn1とすると、
Light 11a emitted perpendicularly to the transparent parallel plate 3 from the light source 11 is totally reflected at the intersection P of the side BC of ΔABC. That is,
The condition for total reflection at the entrance surface 11b is that the incident angle (90-β
= Α) is greater than or equal to the critical angle. Assuming that the refractive index of the base material of the transparent parallel plate 3 is n1,

【0032】[0032]

【数1】 α≧ sin-1(n2/n1) ・・・・・(1) 角αの値は (1)式を満足する値が必要条件となる。次
に、交点Pで全反射した光11b はΔCDE の辺CDの交点Q
に入射する。この入射角θは角∠CQP が (2)式で示され
るので、
Α ≧ sin −1 (n2 / n1) (1) The value of the angle α is a necessary condition that satisfies the expression (1). Next, the light 11b totally reflected at the intersection P is the intersection Q of the side CD of ΔCDE.
Incident on. Since the angle of incidence θ CQP is given by equation (2),

【0033】[0033]

【数2】 ∠CQP =180-β-(180-2α)=3α−90 ・・(2)数 CQP = 180−β− (180−2α) = 3α−90 (2)

【0034】[0034]

【数3】 θ=90−(3α−90) = 180-3α ・・・・(3) この角θ= 180-3αが臨界角以内であるとき、屈折の法
則に従ってΔCDE 内に入射し、屈折角xで検査面40との
交点Rに到達する。
Θ = 90− (3α−90) = 180−3α (3) When this angle θ = 180−3α is within the critical angle, the light enters the ΔCDE according to the law of refraction and is refracted. It reaches the intersection R with the inspection surface 40 at the angle x.

【0035】[0035]

【数4】 θ=180-3α< sin-1(n2/n1) ・・・・(4) 屈折角xの関係は (5)式で示される。## EQU4 ## θ = 180−3α <sin −1 (n2 / n1) (4) The relationship between the refraction angles x is expressed by the following equation (5).

【0036】[0036]

【数5】 n2 sinx=n1 sin(180-3α) ・・・(5) 即ち、屈折角xは (6)式で示される。## EQU00005 ## n2 sinx = n1 sin (180-3.alpha.) (5) That is, the refraction angle x is expressed by equation (6).

【0037】[0037]

【数6】 x= sin-1{(n1/n2) sin(180-3α) }・・・(6) 検査面40との交点Rで検査面40上の指紋の凹凸情報が凹
部であるとき、この凹部(空気)の屈折率n3とすると、
この交点Rでの入射角は、
X = sin -1 {(n1 / n2) sin (180-3α)} (6) When the unevenness information of the fingerprint on the inspection surface 40 at the intersection R with the inspection surface 40 is a concave portion , The refractive index n3 of this recess (air)
The angle of incidence at this intersection R is

【0038】[0038]

【数7】 90−∠CRQ =90−(180−α−90−x) =α+x ・・・(7) 従って、この交点Rで全反射するためには、90−∠CRQ = 90− (180−α−90−x) = α + x (7) Therefore, for total reflection at the intersection R,

【0039】[0039]

【数8】 α+x≧ sin-1(n3/n2) ・・・・・(8) 即ち、角xは (9)式で示される条件を満たす必要があ
る。
Α + x ≧ sin −1 (n3 / n2) (8) That is, the angle x needs to satisfy the condition expressed by the equation (9).

【0040】[0040]

【数9】 x≧ sin-1(n3/n2) −α ・・・・・(9) 透明平行板3の母材の屈折率n1と、三角柱4の屈折率n2
と、空気の屈折率n3との値と、底辺となす角αを適切に
選択することにより、上記(1),(4),(6),(9) 式を満たす
ことができる。即ち、指紋画像入力装置の光学系手段を
構成する透明平行板の基本条件を満たすことができる。
X ≧ sin −1 (n3 / n2) −α (9) The refractive index n1 of the base material of the transparent parallel plate 3 and the refractive index n2 of the triangular prism 4
By appropriately selecting the value of the refractive index n3 of the air and the angle α with the base, the above expressions (1), (4), (6), and (9) can be satisfied. That is, the basic conditions of the transparent parallel plate constituting the optical system means of the fingerprint image input device can be satisfied.

【0041】交点R以降の光線の軌跡は、三角柱4が二
等辺三角形となっているので、交点Sの入射角・反射角
は交点Qにおける光の進行を逆にしたのと同じ角度であ
り、また、交点Tの入射角・反射角も同様に交点Pの光
の進行を逆にしたのと同じ角度で進行する。即ち、交点
Rで全反射した光11d はΔCDE 内を進行し、(6) 式で求
まる屈折角xと同じ角度(入射角x)で辺DEの交点Sで
交差し、屈折角θで光11f として透明平行板3の母材に
入射する。この光11f はΔEFG の界面(辺EF)の交点T
で入射角αで全反射して、透明平行板3を垂直に抜けて
受光素子5に到達する。
In the trajectory of the light beam after the intersection R, since the triangular prism 4 is an isosceles triangle, the incident angle and the reflection angle of the intersection S are the same angles as the light traveling at the intersection Q is reversed. Similarly, the angle of incidence and the angle of reflection at the intersection T also travel at the same angle as when the light at the intersection P is reversed. That is, the light 11d totally reflected at the intersection R travels within ΔCDE, intersects at the intersection S of the side DE at the same angle (incident angle x) as the refraction angle x obtained by the equation (6), and the light 11f at the refraction angle θ. And enters the base material of the transparent parallel plate 3. This light 11f is the intersection T of the interface (side EF) of ΔEFG.
, The light is totally reflected at the incident angle α, passes through the transparent parallel plate 3 vertically, and reaches the light receiving element 5.

【0042】以上、三角柱4が二等辺三角形で説明した
が、例えば、角∠CAB,∠ECD,∠GEF・・が角αと異なる
値をとるときも、 (2)式以降の式を多少変形して用いる
ことができる。
Although the triangular prism 4 has been described as an isosceles triangle, for example, when the angles ∠CAB, ∠ECD, ∠GEF,... Take a value different from the angle α, the expressions after the expression (2) are slightly modified. Can be used.

【0043】[0043]

【実施例3】次に、上記三角柱4が二等辺三角形で特に
角α=60°、即ち正三角形の場合を説明する。図3にお
いて、例えば、一実施例として、母材の屈折率n1=1.5,
三角柱4の屈折率n2=1.2,空気の屈折率n3=1.0 とし
て、角α=60°のとき、光源11から透明平行板3に垂直
に出射する光11a の中心部分(光軸)が、ΔABC の辺BC
の中点Pで交差するとする。このとき、中点Pで全反射
した光11b は交点Qで屈折し、透明平行板3の検査面40
の交点Rで交差する。このときの交点Rの位置は辺CEの
中点となる。即ち、光源11から出射し中点Pで全反射し
た光11b は、辺CEの中点Rで全反射し、さらに交点Sで
屈折し、辺EFの中点Tで全反射し、受光素子51の中央部
で受光することができる。光源11から出射する光11a の
平行光線の幅を考えると、辺BCに入射した光11a は全て
辺CEに入射し、この辺CEに入射した光11c は、この辺CE
部分が凹凸パターンの凹部であるとき、全ての辺CEで全
反射して光11f として全ての光が辺EFに入射する。そし
てこの光11f は辺EFで全て全反射して受光素子51で受光
することができる。即ち、光源11から出射する光11aは
最も効率よく受光素子51で受光することができる。
Embodiment 3 Next, a case where the triangular prism 4 is an isosceles triangle and particularly an angle α = 60 °, that is, an equilateral triangle will be described. In FIG. 3, for example, as one embodiment, the refractive index of the base material n1 = 1.5,
Assuming that the refractive index of the triangular prism 4 is n2 = 1.2 and the refractive index of air n3 = 1.0, and the angle α is 60 °, the central portion (optical axis) of the light 11a emitted perpendicularly to the transparent parallel plate 3 from the light source 11 is ΔABC Side BC
At the middle point P. At this time, the light 11b totally reflected at the middle point P is refracted at the intersection Q, and
At the intersection R of The position of the intersection R at this time is the middle point of the side CE. That is, the light 11b emitted from the light source 11 and totally reflected at the midpoint P is totally reflected at the midpoint R of the side CE, further refracted at the intersection S, totally reflected at the midpoint T of the side EF, and Can be received at the central part of Considering the width of the parallel ray of the light 11a emitted from the light source 11, all the light 11a incident on the side BC is incident on the side CE, and the light 11c incident on the side CE is
When the portion is the concave portion of the concavo-convex pattern, the light is totally reflected on all sides CE and all the light is incident on the side EF as light 11f. The light 11f is totally reflected by the side EF and can be received by the light receiving element 51. That is, the light 11a emitted from the light source 11 can be most efficiently received by the light receiving element 51.

【0044】次に、図4で光源1が発散性の光の場合を
考察する。光源1から出射する光が辺BCの交点P,P',P"
で全反射するものとする。各点P,P',P" で全反射した光
は辺CDの交点Q,Q',Q" で屈折し、辺CEの交点R,R',R" で
指紋の凹凸パターンが凹部のとき全反射し、辺DEの交点
S,S',S" で屈折し、さらに辺EFの交点T,T',T" で全反射
して受光素子5に進行する。光源1が発散性の光の場
合、反射および屈折が進むほど、即ち、交点P,P',P" か
ら交点T,T',T" さらには受光素子5での受光点での光の
間隔は、光の光路長と共に広がり、最悪の場合は受光素
子5で受光できないことがありうる。
Next, the case where the light source 1 is divergent light will be considered with reference to FIG. Light emitted from the light source 1 is an intersection P, P ', P "of the side BC.
It is assumed that the light is totally reflected. The light totally reflected at each point P, P ', P "is refracted at the intersection point Q, Q', Q" of the side CD, and the concave and convex pattern of the fingerprint is at the intersection R, R ', R "of the side CE. Total reflection, intersection of side DE
The light is refracted at S, S ', S "and further totally reflected at the intersection T, T', T" of the side EF and proceeds to the light receiving element 5. When the light source 1 is a divergent light, as the reflection and refraction progress, that is, from the intersection P, P ', P "to the intersection T, T', T", and further, the distance between the light at the light receiving point of the light receiving element 5 Spreads with the optical path length of light, and in the worst case, the light receiving element 5 may not be able to receive light.

【0045】従って、例えば、発光ダイオードなど、光
源1の出射光の発散性が予め予測されるときは、光源1
に集光レンズ21を備え、このレンズ21で出射光を平行光
線化して透明平行板に出射することが望ましい。また、
光源1が、面発光レーザなどの光発散性の小さいもので
は、上記集光レンズ21は不要である。
Therefore, for example, when the divergence of light emitted from the light source 1 such as a light emitting diode is predicted in advance, the light source 1
It is preferable that a condensing lens 21 is provided, and that the outgoing light be converted into a parallel beam by the lens 21 and output to a transparent parallel plate. Also,
If the light source 1 has a small light divergence such as a surface emitting laser, the condenser lens 21 is unnecessary.

【0046】以上説明した様に、指紋画像入力装置の光
学系手段を構成する透明平行板3および光線(11a〜11
g),(12a 〜12g)・・(1na〜1ng)の軌跡は、指紋などの凹
凸パターン情報の凹部のとき、光源1を出射する光が極
力受光素子5で効率よく受光するため、透明平行板3に
入射する平行光線は、透明平行板3の検査面40と直角方
向とし、透明平行板3に入射する光が三角柱41(42,・・
4n) の最初の界面 11b(12b・・1nb)の中央部分(P) で全
反射した光線は、隣接する次の三角柱42(43,・・4n+1)
の界面 12a(13a・・1n+1a)で入射し、この三角柱42(43,
・・4n+1) の平滑に研磨された検査面40の中央部分(R)
に到達することが望ましい。
As described above, the transparent parallel plate 3 and the light beams (11a to 11a) constituting the optical system means of the fingerprint image input device.
g), (12a to 12g)... (1na to 1ng) indicate that the light emitted from the light source 1 is efficiently received by the light receiving element 5 as much as possible when the concave portion of the uneven pattern information such as a fingerprint is a transparent parallel. The parallel rays incident on the plate 3 are perpendicular to the inspection surface 40 of the transparent parallel plate 3, and the light incident on the transparent parallel plate 3 is a triangular prism 41 (42,...).
4n), the ray totally reflected at the central part (P) of the first interface 11b (12b1nb) becomes the next adjacent triangular prism 42 (43, 4n + 1)
At the interface 12a (13a ... 1n + 1a), and this triangular prism 42 (43,
..4n + 1) central part (R) of inspection surface 40 polished smoothly
It is desirable to reach.

【0047】[0047]

【実施例4】図5において、透明平行板3Aは、図1、図
2に図示される様な透明板31に埋め込まれた三角柱4で
構成する代わりに、屈折率n1の透明板30の他方の面40側
に複数個の屈折率n2(<n1)の四角錐4A(4ijA,i=1,2,・
n,j=1,2,・m)) の4面(左右方向および奥行き方向の各
一方の界面を入射・屈折面、残りの界面を屈折・出射面
と呼ぶ)が規則的に母材に埋め込まれ、残りの四角形の
面が外側に出て平滑に平面状に形成されて検査面40とな
る屈折率配分型の透明平行板として構成することができ
る。
Fourth Embodiment In FIG. 5, a transparent parallel plate 3A is formed of a triangular prism 4 embedded in a transparent plate 31 as shown in FIGS. A plurality of square pyramids 4A (4ijA, i = 1, 2,...) Having a refractive index n2 (<n1)
n, j = 1,2, .m)) (one interface in each of the left and right direction and the depth direction is called an entrance / refraction surface, and the other interface is called a refraction / exit surface). It can be configured as a refractive index distribution type transparent parallel plate that is buried and the remaining quadrangular surface is outwardly formed to be smooth and flat and becomes the inspection surface 40.

【0048】かかる構成により、横方向のみならず、奥
行き方向に対しても分解能を高く保持することができ
る。即ち、透明平行板を三角柱で構成したとき、三角柱
の奥行き方向に光源の光の発散性があるとき、検出され
る凹部情報に奥行き方向の他の位置の情報が混入して解
像度を下げる恐れがある。この様な課題は、奥行き方向
に対しても横方向と同様に三角形を構成することにより
解決することができる。例えば、実施例1で述べた様
に、横方向のみならず、奥行き方向も四角錐を構成する
三角形の幅を50μm とし、対応する受光素子あるいは点
状の発光素子の間隔が50μm で構成されたとき、指など
の指紋は50μm の分解能あるいは解像度 500DPI (500ド
ット/インチ)で読み取ることができ、精密に個人情報
を識別することができる。
With this configuration, high resolution can be maintained not only in the horizontal direction but also in the depth direction. That is, when the transparent parallel plate is formed of a triangular prism, when there is a divergence of light from the light source in the depth direction of the triangular prism, there is a possibility that information on other positions in the depth direction is mixed into the detected concave portion information to lower the resolution. is there. Such a problem can be solved by forming a triangle in the depth direction in the same manner as in the horizontal direction. For example, as described in the first embodiment, not only in the horizontal direction but also in the depth direction, the width of the triangle forming the quadrangular pyramid is 50 μm, and the interval between the corresponding light receiving elements or point-like light emitting elements is 50 μm. Sometimes, a fingerprint such as a finger can be read at a resolution of 50 μm or a resolution of 500 DPI (500 dots / inch), and personal information can be accurately identified.

【0049】[0049]

【発明の効果】以上述べたように本発明によれば、平面
状の光源から出射する光線を偏向して、指紋の凹凸を検
査する検査面に臨界角以上で入射する光学系手段を、屈
折率n1の透明板の母材の検査面(検査面)側に複数本平
行するV溝を構成し、このV溝に複数本の屈折率n2(<
n1)の三角柱の2面を密着し、残りの一辺の面(検査面
側)を平滑に平面状にして構成される屈折率配分型の透
明平行板を構成し、この三角柱の2面で光の全反射を利
用することによって光線を偏向することにより、比較的
広い範囲の指紋などの凹凸パターンの画像も高い分解能
500DPIと高いコントラストを有し、かつ、経済的な薄型
の指紋画像入力装置を提供することができる。
As described above, according to the present invention, the optical system means which deflects a light beam emitted from a planar light source and enters the inspection surface for inspecting the unevenness of a fingerprint at a critical angle or more is refracted. A plurality of parallel V-grooves are formed on the inspection surface (inspection surface) side of the base material of the transparent plate having a refractive index n1, and a plurality of refractive indices n2 (<
n1) The two surfaces of the triangular prism are adhered to each other, and the other side (the inspection surface side) is made smooth and flat to form a refractive index distribution type transparent parallel plate. By using the total reflection of light to deflect light rays, images of uneven patterns such as fingerprints in a relatively wide area can be resolved at high resolution.
An economical thin fingerprint image input device having a high contrast of 500 DPI and being economical can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての指紋画像入力装置の
要部構成図
FIG. 1 is a configuration diagram of a main part of a fingerprint image input device as one embodiment of the present invention.

【図2】他の実施例としての指紋画像入力装置の要部構
成図
FIG. 2 is a main part configuration diagram of a fingerprint image input device as another embodiment.

【図3】本発明の動作原理を説明する説明図FIG. 3 is an explanatory diagram illustrating the operation principle of the present invention.

【図4】発散性の光源を用いたときの光の拡散を説明す
る説明図
FIG. 4 is an explanatory diagram illustrating light diffusion when a divergent light source is used.

【図5】本発明の他の実施例としての指紋画像入力装置
の要部構成図
FIG. 5 is a main part configuration diagram of a fingerprint image input device as another embodiment of the present invention.

【図6】従来技術による全反射法の原理図FIG. 6 is a diagram illustrating the principle of the total reflection method according to the related art.

【図7】従来技術による指紋画像入力装置の分解斜視図FIG. 7 is an exploded perspective view of a conventional fingerprint image input device.

【図8】回折格子の動作説明図FIG. 8 is a diagram illustrating the operation of a diffraction grating.

【図9】回折格子の特性図FIG. 9 is a characteristic diagram of a diffraction grating.

【符号の説明】[Explanation of symbols]

1,11,12・・1n 光源 11a,11b,11c,・・11g, 光 21 レンズ 22,23 遮光板 3,3A 透明平行板 30 表面 31,31A 透明板 4,41,42・・4n 三角柱 4A,411A,・・4ijA・・4nmA 四角錐 41a,42a,43a,・・4na,4n+1a,4n+2a 屈折・出射面 41b,42b,43b,・・4nb,4n+1b,4n+2b 入射・屈折面 41c,42c,43c,・・4nc,4n+1c,4n+2c,40 検査面 5,51,52・・5n 受光素子 ΔABC,ΔCDE,・・ 三角形 α、β、θ、x 角 P,P',P",Q,Q',Q",・・T,T',T" 交点 7 2次元イメージセンサ 71 透明基板 72 回折格子 73 遮光板 75 不透明材料 76 層間絶縁膜 θc 臨界角 θm 回折格子偏向角 8 透明保護膜 81 プリズム 9 指 91 凹部 92 凸部 n,n1,n2,n3 屈折率1,11,12 ... 1n Light source 11a, 11b, 11c, ... 11g, Light 21 Lens 22,23 Light shielding plate 3,3A Transparent parallel plate 30 Surface 31,31A Transparent plate 4,41,42 ... 4n Triangular prism 4A , 411A, ... 4ijA ... 4nmA Square pyramids 41a, 42a, 43a, ... 4na, 4n + 1a, 4n + 2a Refraction / outgoing surfaces 41b, 42b, 43b,・ Refractive surface 41c, 42c, 43c, ... 4nc, 4n + 1c, 4n + 2c, 40 Inspection surface 5,51,52 ・ 5n Light receiving element ΔABC, ΔCDE, ... Triangle α, β, θ, x angle P , P ', P ", Q, Q', Q", T, T ', T "Intersection 7 Two-dimensional image sensor 71 Transparent substrate 72 Diffraction grating 73 Light shielding plate 75 Opaque material 76 Interlayer insulating film θ c Critical angle θ m Diffraction grating deflection angle 8 Transparent protective film 81 Prism 9 Finger 91 Concave part 92 Convex part n, n1, n2, n3 Refractive index

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】平面状または線状の光源と、この光源から
出射される光を屈折率n1の透明板の一方の面に受け, こ
の母材の他方の面側に複数本平行して屈折率n2(<n1)
の三角柱の2面がこの母材に埋め込まれて界面をなし,
この2つの界面の内,一方の界面を入射・屈折面,他方
の界面を屈折・出射面とし,残りの一面が外側に向き平
滑に平面状に形成されて検査面となる屈折率配分型の透
明平行板と、この透明平行板の出射面から出射する光を
選択的に通過させる遮光板と、この遮光板を通過した光
を受光する受光素子と、を備え、 透明平行板の検査面に接触して、指紋画像情報を読み取
る、 ことを特徴とする指紋画像入力装置。
1. A flat or linear light source, and light emitted from the light source is received on one surface of a transparent plate having a refractive index of n1, and a plurality of light beams are refracted in parallel to the other surface of the base material. Rate n2 (<n1)
The two surfaces of the triangular prism are embedded in this matrix to form an interface,
Of these two interfaces, one is an entrance / refraction surface, the other is a refraction / exit surface, and the other surface is outwardly directed outward and is formed in a smooth and flat shape to be an inspection surface. A transparent parallel plate, a light-shielding plate for selectively passing light emitted from an emission surface of the transparent parallel plate, and a light-receiving element for receiving light passing through the light-shielding plate; and an inspection surface of the transparent parallel plate. A fingerprint image input device, which reads fingerprint image information upon contact.
【請求項2】請求項1に記載の指紋画像入力装置におい
て、透明平行板は、屈折率n1の透明板の母材の他方の面
側に複数本平行に並ぶ三角形状のV溝を構成し、このV
溝に屈折率n1より小さい屈折率n2を有する透明樹脂を充
填し、この充填した透明樹脂側を平滑に研磨して透明平
行板を構成する、 ことを特徴とする指紋画像入力装置。
2. The fingerprint image input device according to claim 1, wherein the transparent parallel plate comprises a plurality of triangular V-shaped grooves arranged in parallel on the other surface side of the base material of the transparent plate having a refractive index of n1. This V
A fingerprint image input device comprising: filling a groove with a transparent resin having a refractive index n2 smaller than the refractive index n1; and smoothing the filled transparent resin side to form a transparent parallel plate.
【請求項3】請求項1または請求項2に記載の指紋画像
入力装置において、透明板の母材と三角柱とがなす2つ
の界面(入射・屈折面と屈折・出射面)および三角柱の
他の界面と空気(屈折率n3)との界面(以下、検査面と
呼ぶ)において透明平行板に入射した光は、最初の界面
(入射面)で全反射し、この入射面と隣接する次の界面
(屈折面)で屈折して三角柱内に入射し、平滑に研磨さ
れた透明平行板の検査面に到達した点が空気層と界面を
構成するとき全反射する、 ことを特徴とする指紋画像入力装置。
3. The fingerprint image input device according to claim 1, wherein two interfaces (incidence / refraction surface and refraction / emission surface) formed by the base material of the transparent plate and the triangular prism and another of the triangular prism. Light incident on the transparent parallel plate at the interface between the interface and air (refractive index n3) (hereinafter referred to as the inspection surface) is totally reflected at the first interface (incident surface), and the next interface adjacent to this incident surface A fingerprint image input characterized by being refracted by the (refractive surface) and incident on the triangular prism and reaching the inspection surface of the smooth polished transparent parallel plate and totally reflecting when forming the interface with the air layer. apparatus.
【請求項4】請求項1ないし請求項3のいずれかの項に
記載の指紋画像入力装置において、屈折率n2の三角柱
は、透明平行板の検査面を底辺とする二等辺三角形(底
辺となす角をα)とする、 ことを特徴とする指紋画像入力装置。
4. The fingerprint image input device according to claim 1, wherein the triangular prism having a refractive index of n2 is an isosceles triangle having a base of an inspection surface of the transparent parallel plate. A fingerprint image input device, wherein the angle is α).
【請求項5】請求項1ないし請求項4のいずれかの項に
記載の指紋画像入力装置において、二等辺三角形は正三
角形とする、 ことを特徴とする指紋画像入力装置。
5. The fingerprint image input device according to claim 1, wherein the isosceles triangle is an equilateral triangle.
【請求項6】請求項1ないし請求項5のいずれかの項に
記載の指紋画像入力装置において、光源は、レンズを備
え、平行光線を透明平行板に出射する、ことを特徴とす
る指紋画像入力装置。
6. The fingerprint image input device according to claim 1, wherein the light source includes a lens and emits a parallel light beam to a transparent parallel plate. Input device.
【請求項7】請求項1ないし請求項6のいずれかの項に
記載の指紋画像入力装置において、光源は、面発光レー
ザとする、 ことを特徴とする指紋画像入力装置。
7. The fingerprint image input device according to claim 1, wherein the light source is a surface emitting laser.
【請求項8】請求項1ないし請求項7のいずれかの項に
記載の指紋画像入力装置において、透明平行板は、透明
板に埋め込まれた三角柱に代わって、屈折率n1の透明板
の他方の面側に複数個の屈折率n2(<n1)の四角錐の4
面(左右および奥行き方向の各一方の界面を入射・屈折
面、残りの界面を屈折・出射面と呼ぶ)が規則的に母材
に埋め込まれ、残りの四角形の面が外側に出て平滑に平
面状に形成されて検査面となる屈折率配分型の透明平行
板とする、 ことを特徴とする指紋画像入力装置。
8. The fingerprint image input device according to claim 1, wherein the transparent parallel plate is the other of the transparent plates having the refractive index n1 instead of the triangular prism embedded in the transparent plate. On the surface side of a square pyramid 4 of refractive index n2 (<n1)
The surface (one interface in the left and right and depth directions is called the entrance / refraction surface, and the remaining interface is called the refraction / exit surface) is regularly embedded in the base material, and the remaining square surface comes out outward and is smooth. A fingerprint image input device, comprising a transparent parallel plate of a refractive index distribution type formed in a planar shape and serving as an inspection surface.
JP10227869A 1998-08-12 1998-08-12 Fingerprint image input device Pending JP2000051182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227869A JP2000051182A (en) 1998-08-12 1998-08-12 Fingerprint image input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227869A JP2000051182A (en) 1998-08-12 1998-08-12 Fingerprint image input device

Publications (1)

Publication Number Publication Date
JP2000051182A true JP2000051182A (en) 2000-02-22

Family

ID=16867635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227869A Pending JP2000051182A (en) 1998-08-12 1998-08-12 Fingerprint image input device

Country Status (1)

Country Link
JP (1) JP2000051182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173827A (en) * 2002-11-26 2004-06-24 Seiko Epson Corp Personal identification device, card type information recording medium, and information processing system using the same
JP2007075305A (en) * 2005-09-14 2007-03-29 Hitachi Ltd Personal authentication device, and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173827A (en) * 2002-11-26 2004-06-24 Seiko Epson Corp Personal identification device, card type information recording medium, and information processing system using the same
JP2007075305A (en) * 2005-09-14 2007-03-29 Hitachi Ltd Personal authentication device, and method
JP4692174B2 (en) * 2005-09-14 2011-06-01 株式会社日立製作所 Personal authentication device and door opening / closing system

Similar Documents

Publication Publication Date Title
US10599939B2 (en) Touch panel and display apparatus
US7538313B2 (en) Optical encoder having a no track portion of an optical scale being placed at a position symmetrical to a light non-transparent portion within an irradiation region of incident light
US6421451B2 (en) Step difference detection apparatus and processing apparatus using the same
JPH11506381A (en) Fingerprint sensor device
KR900008270B1 (en) Laser beam scanner
JP2006505942A (en) Structured light projector
JP2579375B2 (en) Fingerprint input device
JP2000194829A (en) Irregular pattern reader
JP2592192B2 (en) Irradiation device for document scanning device
US5675357A (en) Image display/input apparatus
JP2000051182A (en) Fingerprint image input device
JP2013250815A (en) Coordinate input device and coordinate input system
JP2002117393A (en) Fingerprint recognition sensor
JP2000113170A (en) Fingerprint image input device
JP3007008B2 (en) Image display / input device
US11244140B2 (en) Electronic apparatus and texture recognition device
JP2000030034A (en) Fingerprint picture inputting device
JPH0798753A (en) Fingerprint input device
JP2000113171A (en) Fingerprint image input device
JPH0721348A (en) Palm lines input device
JP2008309853A (en) Optical beam scanning device, image reading device, and image recording device
JPH09257697A (en) Surface plasmon resonance sensor apparatus
JPS61184504A (en) Planar light source device
JPH045556A (en) Method and device for flaw inspection of surface of sphere
KR970005586B1 (en) Infrared array sensor