JP2000049165A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2000049165A
JP2000049165A JP21372198A JP21372198A JP2000049165A JP 2000049165 A JP2000049165 A JP 2000049165A JP 21372198 A JP21372198 A JP 21372198A JP 21372198 A JP21372198 A JP 21372198A JP 2000049165 A JP2000049165 A JP 2000049165A
Authority
JP
Japan
Prior art keywords
quantum well
energy
semiconductor device
current
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21372198A
Other languages
Japanese (ja)
Other versions
JP3601305B2 (en
Inventor
Tomonori Tagami
知紀 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21372198A priority Critical patent/JP3601305B2/en
Publication of JP2000049165A publication Critical patent/JP2000049165A/en
Application granted granted Critical
Publication of JP3601305B2 publication Critical patent/JP3601305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To thermally stabilize the emitter resistance of a bipolar semiconductor device without increasing the resistance uselessly by positioning the quantization energy level formed in a quantum well in a thermal equilibrium state between the forbidden band end of a semiconductor on the outside of the quantum well and Fermi energy. SOLUTION: Since cap layers 6 and 8 on both sides of a quantum well structure 7 are doped at high concentration, Fermi energy becomes higher than the energy at the forbidden band end of a semiconductor and electrons degenerate and form so-called electron seas 106 and 107. A quantum well layer 103 is composed of InGaAs and the energy at the forbidden band end of the layer 103 is lower than that at the forbidden band end of GaAs constituting the contacting parts of the cap layers 6 and 8 with the quantum well structure 7. In the structure 7, however, the energy at a quantization level 104 becomes an intermediate value between the energy at the forbidden band end of the GaAs constituting the contacting parts of the cap layers 6 and 8 with the structure 7 and Fermi energy due to the effect of confinement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に係り、
特に高速かつ高出力な信号の増幅に適したバイポーラ型
半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
In particular, the present invention relates to a bipolar semiconductor device suitable for high-speed and high-output signal amplification.

【0002】[0002]

【従来の技術】従来のバイポーラ型半導体装置について
は例えば1996年ガリウムヒ素アイシーシンポジウム
・テクニカルダイジェスト91頁〜94頁(GaAs IC Sym
posiumTechnical Digest 1996 pp91−94)、また、その
熱的な安定化については1995年ガリウムヒ素アイシーシ
ンポジウム・テクニカルダイジェスト147頁〜150
頁(GaAs IC Symposium Technical Digest 1995 pp147
−150)に詳しい。
2. Description of the Related Art A conventional bipolar semiconductor device is described in, for example, Gallium Arsenide Icy Symposium, Technical Digest, pp. 91-94 (1996).
posiumTechnical Digest 1996 pp91-94), and its thermal stabilization was described in 1995 Gallium Arsenide Icy Symposium Technical Digest pp.147-150.
Page (GaAs IC Symposium Technical Digest 1995 pp147
-150)

【0003】[0003]

【発明が解決しようとする課題】バイポーラ型トランジ
スタにおいてはその特性上、熱的不安定性が容易に生じ
る。その理由は以下のとおりである。
In a bipolar transistor, thermal instability easily occurs due to its characteristics. The reason is as follows.

【0004】バイポーラ型トランジスタの電流は一般に
ベース・エミッタ間に印加した電圧を絶対温度で除した
ものの指数関数に比例する。したがってバイポーラ型ト
ランジスタのベースを電圧源を用いて駆動すると、まず
(1)電力消費に伴う発熱で温度が上昇する。それに伴
って、上記指数が増大し(2)素子電流が増加する。そ
の結果(3)消費電力が増大し、さらに温度が上昇す
る。この(1)〜(3)の繰り返しにより、放熱が発熱
と釣り合うまで温度は上昇する。放熱が十分でなければ
素子の破壊に至る。これが熱的不安定性であり、特に消
費電力の大きい高出力トランジスタにおいてその抑制は
不可欠である。
The current of a bipolar transistor is generally proportional to the exponential function of the voltage applied between the base and the emitter divided by the absolute temperature. Therefore, when the base of a bipolar transistor is driven using a voltage source, first, (1) the temperature rises due to heat generation accompanying power consumption. Accordingly, the index increases (2), and the element current increases. As a result, (3) the power consumption increases and the temperature further increases. By repeating (1) to (3), the temperature rises until the heat radiation balances the heat generation. Insufficient heat radiation will lead to destruction of the device. This is thermal instability, and its suppression is indispensable especially for high-power transistors that consume large power.

【0005】上記従来例においては、この熱的不安定性
を解消するために、ベースもしくはエミッタ端子に直列
にバラスト抵抗と呼ばれる抵抗を挿入している。このバ
ラスト抵抗の熱的不安定性に対する効果は以下のとおり
である。
In the above conventional example, in order to eliminate this thermal instability, a resistor called a ballast resistor is inserted in series with the base or the emitter terminal. The effect of this ballast resistor on thermal instability is as follows.

【0006】電力消費に伴う発熱で電流増大が生じると
バラスト抵抗における電圧降下が増大する。その結果、
ベース・エミッタ間の電圧は減少し、電流増大は抑制さ
れる。したがって消費電力が増大し、さらに温度が上昇
することが避けられる。
When the current increases due to heat generated by power consumption, the voltage drop at the ballast resistor increases. as a result,
The voltage between the base and the emitter decreases, and the increase in current is suppressed. Therefore, an increase in power consumption and an increase in temperature can be avoided.

【0007】ところが、このバラスト抵抗は素子の寄生
抵抗として振る舞うため、高周波利得の減少等の性能劣
化を引き起こすという問題があった。さらに、バラスト
抵抗をトランジスタ領域外に金属等の抵抗体を用いて形
成すると、抵抗値の精度は高いが面積増大を招くという
問題があった。また上記第2の従来例のように、エミッ
タ領域中に低ドープ半導体領域を設け、半導体抵抗を用
いてバラスト抵抗を形成すると、エミッタ領域が厚くな
り、素子形成上の困難が生じると共に、抵抗値の精度を
高くすることが困難であるという問題があった。
However, since the ballast resistor acts as a parasitic resistance of the element, there is a problem that performance degradation such as reduction of high-frequency gain is caused. Further, when the ballast resistor is formed using a resistor such as a metal outside the transistor region, there is a problem that the accuracy of the resistance value is high but the area is increased. Further, when a low-doped semiconductor region is provided in the emitter region and a ballast resistor is formed by using a semiconductor resistor as in the second conventional example, the emitter region becomes thicker, which makes it difficult to form an element, and also increases the resistance value. However, there is a problem that it is difficult to increase the precision of the method.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
に、本発明ではエミッタ領域中に量子井戸構造を有する
電流飽和型の非線形素子を形成した。
In order to solve the above-mentioned problems, in the present invention, a current-saturated nonlinear element having a quantum well structure in an emitter region is formed.

【0009】すなわち本発明の半導体装置は、(1)エ
ミッタ領域,ベース領域,コレクタ領域からなるバイポ
ーラ型半導体装置において、エミッタ領域中に電子のデ
バイ長と同程度以下の寸法を有するポテンシャル障壁層
とポテンシャル井戸層からなる量子井戸領域を有し、か
つ、熱平衡状態において、その量子井戸中に形成される
量子化エネルギ準位が量子井戸外の半導体の禁制帯端と
フェルミエネルギとの間に位置することを特徴とする。
That is, the semiconductor device according to the present invention is: (1) In a bipolar semiconductor device comprising an emitter region, a base region, and a collector region, a potential barrier layer having dimensions equal to or less than the Debye length of electrons in the emitter region is provided. It has a quantum well region composed of a potential well layer, and in a thermal equilibrium state, a quantization energy level formed in the quantum well is located between a band gap edge of a semiconductor outside the quantum well and Fermi energy. It is characterized by the following.

【0010】また、(2)上記(1)において、量子井
戸領域がエミッタ・ベース接合の空乏層の外側に位置す
ることを特徴とする。また(3)上記(1)において、
エミッタ・ベース間の微分抵抗が全ての電流領域におい
て正もしくは零であることを特徴とする。また(4)上
記(2)において、ポテンシャル井戸層を形成する材料
の禁制帯端での坦体のエネルギが量子井戸領域外の半導
体における坦体のエネルギよりも低いことを特徴とす
る。また(5)上記(1)〜(4)に示す半導体装置を同
一基板上で複数並列に接続したことを特徴とする。
(2) In the above (1), the quantum well region is located outside the depletion layer of the emitter-base junction. (3) In the above (1),
The differential resistance between the emitter and the base is positive or zero in all current regions. (4) In the above (2), the energy of the carrier at the forbidden band edge of the material forming the potential well layer is lower than the energy of the carrier in the semiconductor outside the quantum well region. (5) A plurality of semiconductor devices described in (1) to (4) are connected in parallel on the same substrate.

【0011】量子井戸構造は、その中に形成される量子
化エネルギ準位が量子井戸構造外部の半導体の禁制帯端
とフェルミエネルギとの間に位置する場合(共鳴状
態)、共鳴トンネル効果により大きな電流が流れる、即
ち、低抵抗である。電界が印加されて、上記共鳴条件か
ら外れると、共鳴トンネル電流が流れないために、電流
が減少して高抵抗化し、更には負性抵抗を生じる場合が
ある。実際にはポテンシャル障壁を越えて流れる電流成
分などの非共鳴的に流れる電流成分があるために、障壁
層厚さを調整することにより、電流飽和型の電流電圧特
性が容易に生じる。
In the quantum well structure, when the quantization energy level formed therein is located between the forbidden band edge of the semiconductor outside the quantum well structure and the Fermi energy (resonance state), the quantum well structure is larger due to the resonance tunnel effect. Current flows, that is, low resistance. When an electric field is applied to deviate from the above resonance conditions, the resonance tunnel current does not flow, so that the current decreases and the resistance increases, and further, a negative resistance may occur. Actually, since there is a current component flowing non-resonantly, such as a current component flowing over the potential barrier, by adjusting the thickness of the barrier layer, a current saturation type current-voltage characteristic easily occurs.

【0012】本発明において、通常動作電流時には量子
井戸構造が共鳴状態にあるように量子井戸構造を設計す
ることにより、通常動作時には寄生抵抗の増大はごくわ
ずかにでき、一方、電流が増大すると電流飽和型の電流
電圧特性を有する量子井戸構造における電圧降下が増大
し、電流の増大を抑制できる。また、トランジスタ領域
外に抵抗体を形成する必要がなく、面積増大も避けるこ
とが可能である。
In the present invention, by designing the quantum well structure such that the quantum well structure is in a resonance state at the time of normal operation current, the parasitic resistance can be increased very little at the time of normal operation. The voltage drop in the quantum well structure having a saturated current-voltage characteristic increases, and the increase in current can be suppressed. Further, it is not necessary to form a resistor outside the transistor region, and it is possible to avoid an increase in area.

【0013】[0013]

【発明の実施の形態】〈実施例1〉図1は本発明のバイ
ポーラ型半導体装置の断面構造模式図である。図1にお
いて1はn型GaAs基板、2はn型GaAsサブコレ
クタ(n=2×1018/cm3,厚さ0.5マイクロメート
ル)、3はn型GaAsコレクタ(n=2×1016/c
m3,厚さ0.3マイクロメートル)、4はp型GaAs
ベース(厚さ0.1 マイクロメートル,p=4×1019
/cm3 )、5はn型InGaPエミッタ(n=5×10
17/cm3 ,厚さ0.05マイクロメートル,In組成比
0.5)、6はn型GaAsキャップ(n=5×1018
/cm3,厚さ0.05マイクロメートル)、7はアンドー
プ量子井戸構造、8はn型組成グレーデッドInGaA
sキャップ(n=0.5〜2×1019/cm3 ,厚さ0.0
5マイクロメートル,In組成比0〜0.5)、9はA
u/Mo積層エミッタ電極(厚さAu:0.2マイクロ
メートル/Mo:0.05マイクロメートル)、10はベ
ース引き出し電極(AuZn:Zn0.1モル%)、1
1はコレクタ引き出し電極(AuGe:Ge6モル%)
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a schematic sectional view of a bipolar semiconductor device according to the present invention. In FIG. 1, 1 is an n-type GaAs substrate, 2 is an n-type GaAs subcollector (n = 2 × 10 18 / cm 3 , 0.5 μm in thickness), and 3 is an n-type GaAs collector (n = 2 × 10 16 / C
m 3 , thickness 0.3 μm), 4 is p-type GaAs
Base (0.1 micrometer thick, p = 4 × 10 19
/ Cm 3 ), 5 is an n-type InGaP emitter (n = 5 × 10
17 / cm 3 , thickness 0.05 μm, In composition ratio 0.5), and 6 is an n-type GaAs cap (n = 5 × 10 18).
/ Cm 3 , thickness 0.05 μm), 7 is an undoped quantum well structure, 8 is n-type composition graded InGaAs.
s cap (n = 0.5 to 2 × 10 19 / cm 3 , thickness: 0.0
5 micrometers, In composition ratio 0-0.5), 9 is A
u / Mo laminated emitter electrode (thickness Au: 0.2 micrometer / Mo: 0.05 micrometer), 10: base extraction electrode (AuZn: Zn 0.1 mol%), 1
1 is a collector extraction electrode (AuGe: Ge 6 mol%)
It is.

【0014】また、量子井戸構造7は図3にそのエネル
ギバンド構造図を示したように、AlGaAsポテンシャル障
壁層101および102(厚さ10ナノメートル,Al
組成比0.2 )、および歪InGaAs量子井戸層103(厚
さ5ナノメートル,In組成比0.2 )の3層構造であ
る。
As shown in FIG. 3, the quantum well structure 7 has AlGaAs potential barrier layers 101 and 102 (thickness 10 nm, Al
It has a three-layer structure of a composition ratio of 0.2) and a strained InGaAs quantum well layer 103 (5 nm thick, In composition ratio of 0.2).

【0015】作成工程は以下のとおりである。まず、n
型GaAs基板1上に前記図1の3から8までの半導体
層を結晶成長する。この成長には通常のMBE法かMOMB
E 法を用い、n型ドーパントにはSi、あるいはSn
を、p型ドーパントにはBeもしくはCを用いればよ
い。p型ドーパントとしてZnを用いれば、MOCVD
法により堆積を行うことが可能である。成長後、基板を
成長装置から取り出し、通常のホトリソグラフィーと化
学エッチングを用いてエミッタ領域以外の領域のエミッ
タから表面側の層5〜8をエッチングし除去する。続い
て同様に通常のホトリソグラフィーと化学エッチングを
用いてベース領域以外の領域のコレクタから表面側の層
2〜4をエッチングし除去する。しかる後に、エミッタ
電極9およびベース電極10を通常のホトリソグラフィ
ーとリフトオフ法により形成し、さらに基板裏面にコレ
クタ電極11を形成してトランジスタを構成する。
The preparation process is as follows. First, n
The semiconductor layers 3 to 8 in FIG. 1 are crystal-grown on the type GaAs substrate 1. This growth can be achieved by the usual MBE method or MOMB
E method and Si or Sn as n-type dopant
And Be or C may be used as the p-type dopant. If Zn is used as a p-type dopant, MOCVD
It is possible to perform the deposition by a method. After the growth, the substrate is taken out of the growth apparatus, and the layers 5 to 8 on the surface side are removed from the emitters in the regions other than the emitter region by using ordinary photolithography and chemical etching. Subsequently, the layers 2 to 4 on the front surface side are similarly etched and removed from the collector in the region other than the base region by using ordinary photolithography and chemical etching. Thereafter, the emitter electrode 9 and the base electrode 10 are formed by ordinary photolithography and a lift-off method, and further, a collector electrode 11 is formed on the back surface of the substrate to form a transistor.

【0016】この後電極上にさらに絶縁層を設け配線と
のコンタクト穴加工をした後に配線金属を被着・加工し
てトランジスタが完成する。
Thereafter, an insulating layer is further provided on the electrode to form a contact hole with the wiring, and then a wiring metal is applied and processed to complete the transistor.

【0017】このようにして形成したトランジスタの動
作について以下に説明する。図2は本発明のトランジス
タのエネルギバンド構造図であるが、これは量子井戸構
造7を除いて通常のヘテロ接合バイポーラトランジスタ
と同様である。
The operation of the transistor thus formed will be described below. FIG. 2 is an energy band diagram of the transistor of the present invention, which is the same as a normal heterojunction bipolar transistor except for the quantum well structure 7.

【0018】量子井戸構造7の動作は以下のとおりであ
る。まず、図3に示す量子井戸構造では障壁層101お
よび102による電子の閉じ込め効果のために量子井戸
層103中の電子の運動は層に垂直な方向に量子化さ
れ、図3中に104および105で示す量子化準位を形
成する。今、量子井戸構造7を挟む両側の層6および8
はn=5×1018/cm3 と高濃度にドーピングされてい
るため、フェルミエネルギは禁制帯端よりも高いエネル
ギとなり、電子は縮退していわゆる電子の海106およ
び107が形成されている。量子井戸層103はInGaAs
からなり、図3に示すとおりその禁制帯端のエネルギは
キャップ層6および8の量子井戸構造に接する部分を構
成するGaAsの禁制帯端のエネルギよりも低い。とこ
ろが、先に述べた閉じ込めの効果により、この構造では
量子化準位104のエネルギはキャップ層6および8の
量子井戸構造に接する部分を構成するGaAsの禁制帯
端のエネルギとフェルミエネルギの中間の値となる。
The operation of the quantum well structure 7 is as follows. First, in the quantum well structure shown in FIG. 3, the motion of electrons in the quantum well layer 103 is quantized in a direction perpendicular to the layers due to the electron confinement effect by the barrier layers 101 and 102. The quantization level indicated by. Now, the layers 6 and 8 on both sides of the quantum well structure 7
Is doped at a high concentration of n = 5 × 10 18 / cm 3 , the Fermi energy becomes higher than the forbidden band edge, and the electrons are degenerated to form so-called electron seas 106 and 107. The quantum well layer 103 is InGaAs
As shown in FIG. 3, the energy at the forbidden band edge is lower than the energy at the forbidden band edge of GaAs constituting the portions of the cap layers 6 and 8 in contact with the quantum well structure. However, due to the confinement effect described above, in this structure, the energy of the quantization level 104 is intermediate between the energy of the GaAs forbidden band edge and the Fermi energy constituting the portion of the cap layers 6 and 8 that are in contact with the quantum well structure. Value.

【0019】この構造に電流を流すと、電流が小さいう
ちは図4に示すとおり電子は107から104へと流れ
る。これが共鳴トンネル電流である。徐々に電流を増加
させると量子井戸構造7の内部に電界が生じ、終には図
5に示すように量子化準位104のエネルギがキャップ
層8の禁制帯端エネルギよりも低くなり、上記共鳴トン
ネル電流は流れなくなる。したがって、流れる電流は図
5に示した量子化準位105を介して流れる電流、量子
井戸構造7を非共鳴的にトンネルして流れる電流、障壁
を越える高いエネルギを有する電子による電流の和とな
る。
When a current is applied to this structure, electrons flow from 107 to 104 as shown in FIG. 4 while the current is small. This is the resonance tunnel current. When the current is gradually increased, an electric field is generated inside the quantum well structure 7, and finally, the energy of the quantization level 104 becomes lower than the energy of the forbidden band edge of the cap layer 8 as shown in FIG. The tunnel current stops flowing. Therefore, the flowing current is the sum of the current flowing through the quantization level 105 shown in FIG. 5, the current flowing through the quantum well structure 7 in a non-resonant tunnel, and the current generated by electrons having high energy exceeding the barrier. .

【0020】本実施例の場合には障壁層101および1
02にAl組成比0.2のAlGaAs という比較的エネルギ
障壁の低い材料を用いたため、上記共鳴トンネル電流以
外の電流が比較的多い。そのため、量子井戸構造部分の
みの電流電圧特性は、共鳴トンネル電流が流れなくなっ
た場合にしばしば観測される負性微分抵抗特性ではな
く、図6に示すような電圧の上昇に対して電流が飽和す
る特性となる。本実施例の構造ではこの電流飽和の起き
る電流密度が40kA/cm2 程度、その時の量子井戸構
造にかかる電圧は20mV程度である。また、量子井戸
構造にかかる電圧が100mV程度まで電流飽和が生じ
ている。
In the case of this embodiment, the barrier layers 101 and 1
Since a material having a relatively low energy barrier, such as AlGaAs having an Al composition ratio of 0.2, was used for 02, a relatively large amount of current other than the above-described resonance tunnel current was obtained. Therefore, the current-voltage characteristic of only the quantum well structure portion is not the negative differential resistance characteristic often observed when the resonance tunnel current stops flowing, but the current saturates with a rise in voltage as shown in FIG. Characteristics. In the structure of this embodiment, the current density at which the current saturation occurs is about 40 kA / cm 2 , and the voltage applied to the quantum well structure at that time is about 20 mV. Further, current saturation occurs up to a voltage applied to the quantum well structure of about 100 mV.

【0021】さて、このような量子井戸構造を有する半
導体装置の動作は以下に述べるようになる。本実施例の
半導体装置は基本的にバイポーラ型トランジスタである
ので、その電流は一般にベース・エミッタ間に印加した
電圧を絶対温度で除したものの指数関数に比例する。し
たがって、本発明の課題の項でも述べたように、ベース
を電圧源を用いて駆動すると熱的不安定性が生じる可能
性が存在する。しかし本実施例では量子井戸構造の導入
により以下に述べるようにこの熱的不安定性は取り除か
れている。
The operation of the semiconductor device having such a quantum well structure will be described below. Since the semiconductor device of this embodiment is basically a bipolar transistor, its current is generally proportional to the exponential function of the voltage applied between the base and the emitter divided by the absolute temperature. Therefore, as described in the section of the subject of the present invention, when the base is driven by using the voltage source, there is a possibility that thermal instability may occur. However, in the present embodiment, the introduction of the quantum well structure has eliminated this thermal instability as described below.

【0022】電力消費に伴う発熱で電流増大が生じると
図6に示したように、量子井戸構造での電流飽和が生じ
る電流密度で電圧降下が増大する。その結果、ベース・
エミッタ接合の電圧は減少し、電流増大は抑制される。
したがって、消費電力が増大しさらに温度が上昇するこ
とが避けられる。
As shown in FIG. 6, when the current increases due to the heat generated by the power consumption, the voltage drop increases at the current density at which the current saturation occurs in the quantum well structure. As a result, the base
The voltage at the emitter junction is reduced and the increase in current is suppressed.
Therefore, an increase in power consumption and an increase in temperature can be avoided.

【0023】この効果を本発明の課題の項で述べたバラ
スト抵抗による熱的安定化と比較すると、(1)40k
A/cm2 程度で100mV程度の電圧上昇を生じるバラ
スト抵抗と比べて直列抵抗分が1/5程度と小さく、高
周波利得の減少等の性能劣化が最小限に抑えられてい
る。実際、本実施例のトランジスタはエミッタ寸法3マ
イクロメートル×10マイクロメートルの素子におい
て、電流10mAで遮断周波数40GHzを示した。
Comparing this effect with the thermal stabilization by the ballast resistor described in the section of the subject of the present invention, (1) 40 k
Compared with a ballast resistor that generates a voltage rise of about 100 mV at about A / cm 2 , the series resistance is as small as about 5, and performance deterioration such as a decrease in high-frequency gain is minimized. In fact, the transistor of the present example showed a cutoff frequency of 40 GHz at a current of 10 mA in a device having an emitter size of 3 μm × 10 μm.

【0024】一方、同一のエミッタ寸法でバラスト抵抗
にて電流12mA(電流密度が40kA/cm2 )におい
て100mVの電圧降下を発生させるように8オームの
バラスト抵抗を作り込んだトランジスタでは、バラスト
抵抗による高周波特性の劣化のために電流10mAで遮
断周波数32GHzを示した。
On the other hand, in a transistor having the same emitter dimensions and a ballast resistor, an 8 ohm ballast resistor is formed to generate a voltage drop of 100 mV at a current of 12 mA (current density of 40 kA / cm 2 ). The cutoff frequency was 32 GHz at a current of 10 mA due to the deterioration of the high frequency characteristics.

【0025】また、(2)トランジスタ領域外に金属等
の抵抗体を用いてバラスト抵抗を形成する必要がなく、
面積増大を招くことがない。実際、上記8オームのバラ
スト抵抗を抵抗率100オーム/角の抵抗体を用いて形
成した場合、その面積は10マイクロメートル×25マ
イクロメートルとなりトランジスタ面積と同程度となっ
た。
(2) There is no need to form a ballast resistor using a resistor such as a metal outside the transistor region.
There is no increase in area. Actually, when the above-mentioned ballast resistor of 8 ohms is formed using a resistor having a resistivity of 100 ohms / square, the area is 10 micrometers × 25 micrometers, which is almost the same as the transistor area.

【0026】さらに、(3)エミッタ領域中に低ドープ
半導体領域を設け、半導体抵抗を用いてバラスト抵抗を
形成する場合と比較して、本実施例では25ナノメート
ルの厚さの量子井戸構造を用いており、通常、0.1〜
0.2マイクロメートルの厚さをバラスト抵抗に用いる
低濃度半導体層のみに必要とする場合と比較して、エミ
ッタおよびキャップ層の合計厚さが薄い。本実施例のエ
ミッタから上層5〜8の厚さは合計0.175 マイクロ
メートルである。この値とエミッタ電極金属の厚さと合
計しても、通常の配線金属層の厚さ0.5 〜1マイクロ
メートル程度と比較して小さいので素子形成上の困難が
生じるということがない。
Further, in this embodiment, a quantum well structure having a thickness of 25 nanometers is provided in comparison with the case where (3) a lightly doped semiconductor region is provided in the emitter region and a ballast resistor is formed using a semiconductor resistor. Used, usually between 0.1 and
The total thickness of the emitter and the cap layer is smaller than when only a thickness of 0.2 μm is required for the low concentration semiconductor layer used for the ballast resistor. The thickness of the upper layers 5 to 8 from the emitter of this embodiment is 0.175 micrometers in total. Even if this value is summed with the thickness of the emitter electrode metal, since it is smaller than the thickness of the ordinary wiring metal layer of about 0.5 to 1 micrometer, there is no difficulty in forming the element.

【0027】本実施例ではn型GaAs基板を用いたト
ランジスタについて述べたが、半絶縁性GaAs基板を
用いた場合にはサブコレクタ層を基板表面側から露出さ
せる工程を設け、そこから電極取出しを行うことによっ
て同様の効果が得られることはもちろんである。
In this embodiment, a transistor using an n-type GaAs substrate has been described. However, when a semi-insulating GaAs substrate is used, a step of exposing the subcollector layer from the substrate surface side is provided, and an electrode is taken out therefrom. Of course, the same effect can be obtained by performing.

【0028】また、トランジスタを構成する各層の材
料,厚さ,ドーピング濃度は本実施例に述べたものに限
定されるわけではなく、通常のヘテロ接合バイポーラト
ランジスタに用いられる材料,厚さ,ドーピング濃度で
あればよい。たとえば、InP基板上のIn0.53Ga
0.47As/InPの組み合わせ、GaAs基板上のGaAs
/AlGaAsの組み合わせ等においても、同様の量子井戸構
造、すなわち、量子井戸中に形成される量子化エネルギ
準位が量子井戸外の半導体の禁制帯端とフェルミエネル
ギとの間に位置するような量子井戸構造を用いれば同様
の効果が得られる。その際、量子井戸中に形成される量
子化エネルギ準位と量子井戸外の半導体の禁制帯端との
エネルギ差に依存して電流飽和が起きる電流値は変化す
るため、そのエネルギ差を調節することにより、飽和電
流値を調節することが可能である。
Further, the material, thickness and doping concentration of each layer constituting the transistor are not limited to those described in the present embodiment, but the materials, thickness and doping concentration used for ordinary heterojunction bipolar transistors. Should be fine. For example, In 0.53 Ga on an InP substrate
0.47 As / InP combination, GaAs on GaAs substrate
In the combination of / AlGaAs and the like, a similar quantum well structure, that is, a quantum well in which the quantization energy level formed in the quantum well is located between the forbidden band edge of the semiconductor outside the quantum well and the Fermi energy. The same effect can be obtained by using a well structure. At this time, the current value at which current saturation occurs depends on the energy difference between the quantization energy level formed in the quantum well and the forbidden band edge of the semiconductor outside the quantum well, so that the energy difference is adjusted. This makes it possible to adjust the saturation current value.

【0029】〈実施例2〉実施例1においてn型GaA
s基板のかわりに半絶縁性GaAs基板を用い、サブコ
レクタ層を基板表面側から露出させる工程を設け、そこ
から電極取出しを行った。さらに、単位トランジスタを
エミッタ寸法3マイクロメートル×10マイクロメート
ルとし、同一基板上に形成した単位トランジスタ120
個を金属配線を用いて並列に接続した。
<Embodiment 2> In Embodiment 1, n-type GaAs was used.
Using a semi-insulating GaAs substrate instead of the s substrate, a step of exposing the subcollector layer from the substrate surface side was provided, and electrodes were taken out therefrom. Further, the unit transistor has an emitter size of 3 μm × 10 μm and the unit transistor 120 formed on the same substrate.
The pieces were connected in parallel using metal wiring.

【0030】このように並列に接続したトランジスタの
動作においては、各トランジスタの端子電圧が共通とな
るため、たとえ各端子を駆動する電源が電圧源ではな
く、内部抵抗を有する場合でも、熱的不安定が生じる場
合がある。これは複数のトランジスタのうちどれか一個
のトランジスタが熱的に不安定になった場合に、そのト
ランジスタのベース・エミッタ電圧は減少していても、
エミッタ電流は増大する可能性があり、その一個のトラ
ンジスタに電流が集中し、他のトランジスタの電流は減
少する。このため、このような並列接続トランジスタで
は熱不安定への対策が不可欠である。
In the operation of the transistors connected in parallel in this way, since the terminal voltage of each transistor is common, even if the power supply for driving each terminal is not a voltage source but has an internal resistance, it is not thermally ineffective. Stability may occur. This means that if any one of the transistors becomes thermally unstable, even if the base-emitter voltage of that transistor decreases,
The emitter current can increase, with the current concentrated in one transistor and the current in the other transistor decreasing. Therefore, in such a parallel-connected transistor, a measure against thermal instability is indispensable.

【0031】本実施例においては量子井戸構造が効果的
に熱的不安定を抑制するため、特に単体動作の場合と同
様の構造において素子電流の合計1.2A まで全く問題
なく動作した。一方、同様の並列接続トランジスタにお
いて各素子にバラスト抵抗を設けた場合、本実施例の量
子井戸構造のゼロバイアス時の微分抵抗と同様のバラス
ト抵抗、すなわち各素子2オーム程度のバラスト抵抗で
は熱的不安定性のために素子電流の合計1.2A を流す
ことは不可能であり、各素子6〜8オーム程度のバラス
ト抵抗が必要となった。
In this embodiment, since the quantum well structure effectively suppresses thermal instability, the device operates without any problem up to a total device current of 1.2 A, particularly in the same structure as in the case of single operation. On the other hand, when a ballast resistor is provided for each element in a similar parallel-connected transistor, a ballast resistance similar to the differential resistance at zero bias of the quantum well structure of the present embodiment, that is, a ballast resistance of about 2 ohms for each element is not thermally effective. Due to the instability, it was impossible to flow a total of 1.2 A of the element current, and a ballast resistor of about 6 to 8 ohms was required for each element.

【0032】また、本実施例では低い直列抵抗に起因す
る高い高周波性能のため、電源電圧3Vで1.9GHz
において最大出力2.4W、線形利得15dBを達成し
た。これに対してバラスト抵抗を設けた並列素子では同
様の条件で、最大出力2.0W、線形利得12.7dB
であった。
In this embodiment, the power supply voltage is 1.9 GHz at a power supply voltage of 3 V because of the high frequency performance caused by the low series resistance.
Achieved a maximum output of 2.4 W and a linear gain of 15 dB. On the other hand, in a parallel element provided with a ballast resistor, under the same conditions, the maximum output is 2.0 W and the linear gain is 12.7 dB.
Met.

【0033】[0033]

【発明の効果】本発明によりバイポーラ型半導体装置の
エミッタ抵抗を徒に増加させることなく熱的安定化を図
ることができる。また、トランジスタ領域外に抵抗体を
形成する必要がなく、面積増大も避けることが可能であ
る。
According to the present invention, thermal stability can be achieved without increasing the emitter resistance of the bipolar semiconductor device. Further, it is not necessary to form a resistor outside the transistor region, and it is possible to avoid an increase in area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の半導体装置の断面構造模式
図。
FIG. 1 is a schematic sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の実施例1の半導体装置のエネルギバン
ド構造図。
FIG. 2 is an energy band structure diagram of the semiconductor device according to the first embodiment of the present invention.

【図3】本発明の実施例1の半導体装置の量子井戸構造
部分のエネルギバンド構造図。
FIG. 3 is an energy band structure diagram of a quantum well structure portion of the semiconductor device according to the first embodiment of the present invention.

【図4】本発明の実施例1の半導体装置の動作時におけ
る量子井戸構造部分のエネルギバンド構造図。
FIG. 4 is an energy band structure diagram of a quantum well structure during operation of the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の実施例1の半導体装置の電流制限動作
時における量子井戸構造部分のエネルギバンド構造図。
FIG. 5 is an energy band structure diagram of a quantum well structure during a current limiting operation of the semiconductor device according to the first embodiment of the present invention.

【図6】本発明の半導体装置の量子井戸構造部分の電圧
電流密度特性図。
FIG. 6 is a voltage-current density characteristic diagram of a quantum well structure portion of a semiconductor device according to the present invention.

【符号の説明】[Explanation of symbols]

1…n型GaAs基板、2…n型GaAsサブコレク
タ、3…n型GaAsコレクタ、4…p型GaAsベー
ス、5…n型InGaPエミッタ、6…n型GaAsキャッ
プ、7…アンドープ量子井戸構造、8…n型組成グレー
デッドInGaAsキャップ、9…Au/Mo積層エミッタ電
極、10…ベース引き出し電極、11…コレクタ引き出
し電極、101,102…AlGaAsポテンシャル障壁層、
103…歪InGaAs量子井戸層。
DESCRIPTION OF SYMBOLS 1 ... n-type GaAs substrate, 2 ... n-type GaAs subcollector, 3 ... n-type GaAs collector, 4 ... p-type GaAs base, 5 ... n-type InGaP emitter, 6 ... n-type GaAs cap, 7 ... undoped quantum well structure, 8 ... n-type composition graded InGaAs cap, 9 ... Au / Mo laminated emitter electrode, 10 ... base extraction electrode, 11 ... collector extraction electrode, 101, 102 ... AlGaAs potential barrier layer,
103: strained InGaAs quantum well layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】エミッタ領域,ベース領域,コレクタ領域
からなるバイポーラ型半導体装置において、エミッタ領
域中に電子のデバイ長と同程度以下の寸法を有するポテ
ンシャル障壁層とポテンシャル井戸層からなる量子井戸
領域を有し、かつ、熱平衡状態において、その量子井戸
中に形成される量子化エネルギ準位が量子井戸外の半導
体の禁制帯端とフェルミエネルギとの間に位置すること
を特徴とする半導体装置。
1. A bipolar semiconductor device comprising an emitter region, a base region, and a collector region, wherein a quantum well region comprising a potential barrier layer and a potential well layer having dimensions equal to or smaller than the Debye length of electrons is provided in the emitter region. A semiconductor device having a thermal energy equilibrium and wherein a quantization energy level formed in the quantum well is located between a band gap edge of a semiconductor outside the quantum well and Fermi energy.
【請求項2】請求項1において、量子井戸領域がエミッ
タ・ベース接合の空乏層の外側に位置することを特徴と
する半導体装置。
2. The semiconductor device according to claim 1, wherein the quantum well region is located outside a depletion layer of the emitter-base junction.
【請求項3】請求項1において、エミッタ・ベース間の
微分抵抗が全ての電流領域において正もしくは零である
ことを特徴とする半導体装置。
3. The semiconductor device according to claim 1, wherein the differential resistance between the emitter and the base is positive or zero in all current regions.
【請求項4】請求項2において、ポテンシャル井戸層を
形成する材料の禁制帯端での坦体のエネルギが量子井戸
領域外の半導体における坦体のエネルギよりも低いこと
を特徴とする半導体装置。
4. The semiconductor device according to claim 2, wherein the energy of the carrier at the forbidden band edge of the material forming the potential well layer is lower than the energy of the carrier in the semiconductor outside the quantum well region.
【請求項5】上記請求項1ないし4のいずれかに記載の
半導体装置を同一基板上で複数並列に接続したことを特
徴とする半導体装置。
5. A semiconductor device wherein a plurality of the semiconductor devices according to claim 1 are connected in parallel on the same substrate.
JP21372198A 1998-07-29 1998-07-29 Semiconductor device Expired - Fee Related JP3601305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21372198A JP3601305B2 (en) 1998-07-29 1998-07-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21372198A JP3601305B2 (en) 1998-07-29 1998-07-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2000049165A true JP2000049165A (en) 2000-02-18
JP3601305B2 JP3601305B2 (en) 2004-12-15

Family

ID=16643904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21372198A Expired - Fee Related JP3601305B2 (en) 1998-07-29 1998-07-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3601305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525875A (en) * 1998-09-22 2002-08-13 イギリス国 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525875A (en) * 1998-09-22 2002-08-13 イギリス国 Semiconductor device

Also Published As

Publication number Publication date
JP3601305B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
EP0159273A2 (en) Semiconductor device
TWI695504B (en) Heterojunction bipolar transistor
US5345097A (en) Heterojunction bipolar transistor including collector region of InP and method of fabricating the same
JPH11288946A (en) Heterojunction bipolar transistor
US6936871B2 (en) Heterojunction bipolar transistor with a base layer that contains bismuth
JPH0669222A (en) Hetero-junction bipolar transistor and its production
TW463390B (en) Semiconductor device
US7301181B2 (en) Heterojunction bipolar transistor having an emitter layer made of a semiconductor material including aluminum
US6147371A (en) Bipolar transistor and manufacturing method for same
US5214662A (en) Semiconductor optical devices with pn current blocking layers of wide-band gap materials
Mochizuki et al. GaInP/GaAs collector-up tunneling-collector heterojunction bipolar transistors (C-up TC-HBTs): Optimization of fabrication process and epitaxial layer structure for high-efficiency high-power amplifiers
JP2576417B2 (en) Resonant tunnel bipolar transistor
JP2006294700A (en) Hetero-junction bipolar transistor
JP3601305B2 (en) Semiconductor device
EP0510557A2 (en) Resonant tunneling transistor
CN112242438A (en) Compound semiconductor heterojunction bipolar transistor
JPH118378A (en) Field effect transistor
JPH04221834A (en) Double hetero bipolar transistor
JP2010287603A (en) Compound semiconductor element, and method of manufacturing the same
WO2004055903A1 (en) Semiconductor material having bipolar transistor structure and semiconductor device using same
JPH05190970A (en) Manufacturing method of semiconductor laser
KR100337942B1 (en) Double heterojunction bipolar transistor
JP3156279B2 (en) Method for manufacturing semiconductor device
JP2001176881A (en) Heterojunction bipolar transistor
JP2000306920A (en) Heterojunction bipolar transistor and manufacture of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081001

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees