JP2000048799A - Battery - Google Patents

Battery

Info

Publication number
JP2000048799A
JP2000048799A JP21321998A JP21321998A JP2000048799A JP 2000048799 A JP2000048799 A JP 2000048799A JP 21321998 A JP21321998 A JP 21321998A JP 21321998 A JP21321998 A JP 21321998A JP 2000048799 A JP2000048799 A JP 2000048799A
Authority
JP
Japan
Prior art keywords
nickel
battery
alloy layer
negative electrode
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21321998A
Other languages
Japanese (ja)
Inventor
Arimichi Kojima
有理 小島
Yoko Noda
陽子 野田
Takashi Shimizu
隆士 清水
Kazutoshi Okubo
一利 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21321998A priority Critical patent/JP2000048799A/en
Publication of JP2000048799A publication Critical patent/JP2000048799A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To low and stably keep contact resistance between an electrode surface of a terminal part and an electrode terminal of battery using equipment by forming a nickel - tin alloy layer on the surface of at least the outer side of a terminal part of a negative electrode and/or a positive electrode. SOLUTION: A negative terminal plate 13 has a iron - nickel alloy layer 19 formed by heat treatment on the interface between the whole surface of a steel plate 17 acting as a base plate and a nickel plating layer 18. A tin plating layer formed on the outer surface of the nickel plating layer 18, acting as an electrode surface of the negative terminal plate 13 is converted into a nickel - tin alloy layer 14 in a heat treatment process. Tin having contact resistance lower than nickel is used in the nickel - tin alloy layer 14 on the electrode surface (outer surface) electrically connected by contact with an electrode terminal on the negative side of battery using equipment. The nickel - tin alloy layer 14 has high hardness, falling down of abrasion powder produced by rubbing of the negative terminal plate 13 with a battery using equipment terminal is decreased, and increase in contact resistance caused by oxidation of the abrasion powder can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばアルカリ乾
電池などの電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery such as an alkaline battery.

【0002】[0002]

【従来の技術】アルカリ乾電池は、一般に以下のような
構造になっている。すなわち、上端面に正極端子が一体
に突設されるとともに外周面に外装ラベルが貼着された
有頭円筒状の電池ケース内に、円筒状に成型した正極合
剤が挿入され、この正極合剤の内側に、セパレータを介
在してゲル状亜鉛負極が注入されている。電池ケースの
底部である開口部を封止する封口ユニット体は、負極集
電子が樹脂製ガスケットの挿通孔に圧入して突出状態に
取り付けられ、このガスケットに金属製の絶縁ワッシャ
を嵌め込んでのちに、負極集電子の頭部の電極部に、負
極端子板の中央部がスポット溶接により電気的接続状態
に取り付けられて、組み立てられている。
2. Description of the Related Art Generally, an alkaline battery has the following structure. That is, a positive electrode mixture formed into a cylindrical shape is inserted into a headed cylindrical battery case having a positive electrode terminal integrally protruded from the upper end surface and an outer label attached to the outer peripheral surface. A gel zinc negative electrode is injected inside the agent with a separator interposed. In the sealing unit body for sealing the opening at the bottom of the battery case, the negative electrode current collector is pressed into the insertion hole of the resin gasket and attached in a protruding state, and a metal insulating washer is fitted into the gasket. Then, the central part of the negative electrode terminal plate is attached to the electrode part at the head of the negative electrode current collector in an electrically connected state by spot welding and assembled.

【0003】そして、封口ユニット体が電池ケースの底
部開口部に挿入されたのちに、電池ケースの底部開口端
が内方へ折り曲げてかしめ加工されることにより、封口
ガスケットに形成される折り返し部が負極端子板に強く
押圧されて、電池ケースの開口部が密閉状態に封口され
ている。
[0003] After the sealing unit is inserted into the bottom opening of the battery case, the bottom opening end of the battery case is bent inward and caulked to form a folded portion formed in the sealing gasket. The opening of the battery case is hermetically sealed by being strongly pressed by the negative electrode terminal plate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、電池に
おける負極端子板は、一般にニッケルめっきを施した圧
延鋼板を所要形状に成形加工して形成されているため、
この電池を電池使用機器に装填した場合、負極端子板の
外方側の電極面と電池使用機器における主にコイルばね
からなる負側電極端子との接触抵抗が比較的高く、これ
が電池使用機器の使用可能時間を短縮させる要因になっ
ている。
However, since the negative electrode terminal plate of the battery is generally formed by rolling a nickel-plated rolled steel plate into a required shape,
When this battery is loaded in a battery-powered device, the contact resistance between the outer electrode surface of the negative electrode terminal plate and the negative electrode terminal mainly composed of a coil spring in the battery-powered device is relatively high, and this is the This is a factor that shortens the usable time.

【0005】そこで、ニッケルよりも接触抵抗が小さい
錫を鉄素材の表面にめっきした圧延鋼板を用いて負極端
子板を形成することが考えられる。ところが、錫は、ア
ルカリ電池の電解液として用いられるアルカリ液に対し
可溶であるため、アルカリ電池に使用すると腐食するお
それがあり、さらに、塩水の付着により錆が発生して腐
食するという欠点がある。しかも、錫めっきは表面硬度
が比較的低いため、電池を電池使用機器に装填した状態
で振動を受けると、負極端子板の錫めっき層が電池使用
機器の負側電極端子にこすれて脱落し、この脱落した微
粉が酸化して接触抵抗が大きくなる。
Therefore, it is conceivable to form a negative electrode terminal plate using a rolled steel plate in which tin having a smaller contact resistance than nickel is plated on the surface of an iron material. However, since tin is soluble in an alkaline solution used as an electrolytic solution of an alkaline battery, it may corrode when used in an alkaline battery. is there. In addition, since tin plating has a relatively low surface hardness, when the battery is subjected to vibration in a state where the battery is loaded in a battery-powered device, the tin plating layer of the negative electrode terminal plate is rubbed against the negative electrode terminal of the battery-powered device and falls off. The dropped fine powder is oxidized to increase the contact resistance.

【0006】そこで本発明は、端子部の電極面と電池使
用機器の電極端子との接触抵抗を低い値に安定に維持で
きる電池を提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a battery capable of stably maintaining a contact resistance between an electrode surface of a terminal portion and an electrode terminal of a battery-using device at a low value.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電池は、負極および/または正極の端子部
における少なくとも外方側の表面に、ニッケル−錫合金
層を形成した。
In order to achieve the above object, in the battery of the present invention, a nickel-tin alloy layer is formed on at least the outer surface of the negative electrode and / or the positive electrode terminal.

【0008】この電池では、端子部における電池使用機
器の電極端子に接触して電気的接続される外方側の表面
に、ニッケルよりも接触抵抗が小さい錫を用いたニッケ
ル−錫合金層が形成されているから、このニッケル−錫
合金層と電池使用機器の電極端子との接触抵抗が従来電
池に比較して小さくなり、それに伴って電池使用機器の
使用可能時間が長くなる。また、ニッケル−錫合金層
は、ニッケルと錫との金属間化合物特有の高硬質の特性
を有して表面硬度が高いので、電池使用機器に装填され
た状態で振動を受けても、電池使用機器の電極端子がこ
すれることによって脱落することがない。しかも、端子
部の外方側の表面は、ニッケル−錫合金層による金属間
化合物の存在によって耐アルカリ性および塩水に対する
耐蝕性が共に向上するので、アルカリ電解液を注入する
アルカリ電池にも支障なく適用できる。
In this battery, a nickel-tin alloy layer using tin having a smaller contact resistance than nickel is formed on an outer surface of a terminal portion, which is in contact with an electrode terminal of a battery-using device and is electrically connected thereto. Therefore, the contact resistance between the nickel-tin alloy layer and the electrode terminals of the battery-powered device becomes smaller than that of the conventional battery, and the usable time of the battery-powered device becomes longer accordingly. In addition, the nickel-tin alloy layer has a high hardness characteristic characteristic of an intermetallic compound of nickel and tin, and has a high surface hardness. The electrode terminals of the device do not fall off due to rubbing. Moreover, the outer surface of the terminal portion is improved in both alkali resistance and corrosion resistance to salt water due to the presence of the intermetallic compound of the nickel-tin alloy layer, so that it can be applied to an alkaline battery injected with an alkaline electrolyte without any problem. it can.

【0009】[0009]

【発明の実施の形態】以下、本発明の好ましい実施の形
態について図面を参照しながら説明する。図1は本発明
の一実施の形態に係るアルカリ電池を示す縦断面図であ
る。同図において、有頭円筒状の電池ケース1は、その
上端面に正極端子2が一体に突設され、外周面に熱収縮
性の外装ラベル3が貼着および熱収縮の手段により被覆
されている。この電池ケース1内には、二酸化マンガン
と導電材として添加された黒鉛とにより円筒状に成形し
た正極合剤4が挿入されている。この正極合剤4の内側
には、水酸化カリウムを溶解させたアルカリ性電解液に
ゲル化剤と共に亜鉛合金粉末を均一分散させたゲル状亜
鉛負極7が、セパレータ8を介在して注入されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an alkaline battery according to one embodiment of the present invention. In the figure, a headed cylindrical battery case 1 has a positive electrode terminal 2 integrally projecting from the upper end surface thereof, and a heat-shrinkable outer label 3 covered on the outer peripheral surface by means of sticking and heat-shrinking. I have. A positive electrode mixture 4 formed into a cylindrical shape with manganese dioxide and graphite added as a conductive material is inserted into the battery case 1. Inside the positive electrode mixture 4, a gelled zinc negative electrode 7 in which a zinc alloy powder is uniformly dispersed together with a gelling agent in an alkaline electrolyte in which potassium hydroxide is dissolved is injected via a separator 8. .

【0010】電池ケース1の底部である開口部は封口ユ
ニット体9により密閉に封止されている。封口ユニット
体9は、樹脂製ガスケット10にワッシャ12が嵌め込
まれたのちに、真鍮からなる棒状の負極集電子11が樹
脂製ガスケット10の挿通孔10aに挿通してガスケッ
ト10に突出状態に保持され、さらに、負極集電子11
の頭部の電極部11aに、負極端子板(端子部)13が
これの中央部をスポット溶接により電気的接続状態に固
着された構成になっている。そして、電池ケース1の開
口部は、上記のように組み立てられた封口ユニット体9
が負極集電子11を内方に向けた配置で挿入されたのち
に、電池ケース1の底部開口周端が内方へ折り曲げてか
しめ加工されることにより、その開口部による折曲かし
め部1aによってガスケット10に形成された折り返し
部10bが負極端子板13に強く押圧されて、密封状態
に封止されている。
An opening at the bottom of the battery case 1 is hermetically sealed by a sealing unit 9. After the washer 12 is fitted into the resin gasket 10, the sealing unit body 9 is held in a state where the rod-shaped negative electrode current collector 11 made of brass is inserted into the insertion hole 10 a of the resin gasket 10 so as to protrude from the gasket 10. And a negative electrode current collector 11
A negative electrode terminal plate (terminal portion) 13 is fixed to a central portion of the electrode portion 11a of the head portion in an electrically connected state by spot welding. The opening of the battery case 1 is connected to the sealing unit 9 assembled as described above.
After the negative electrode current collector 11 is inserted with the negative electrode collector 11 facing inward, the peripheral edge of the bottom opening of the battery case 1 is bent inward and caulked, so that the crimping portion 1a formed by the opening forms The folded portion 10b formed on the gasket 10 is strongly pressed by the negative electrode terminal plate 13 and is sealed in a sealed state.

【0011】上記負極端子板13は、これの外方側の電
極面にニッケル−錫合金層14が形成されたことを特徴
としている。つぎに、この負極端子板13の製造工程
を、図2のフローチャートを参照しながら説明する。先
ず、鋼板などの鉄素材を圧延加工して所定厚みの鋼板を
形成し(ステップS1)、この鋼板の全表面にニッケル
めっきを施してニッケルめっき層を形成する(ステップ
S2)。このとき、ニッケルめっき層は、電極面となる
外側面の厚さが25μmで、且つ電池内部に対向する内
側面の厚さが35μmにそれぞれ堆積形成させる。
The negative electrode terminal plate 13 is characterized in that a nickel-tin alloy layer 14 is formed on the outer electrode surface. Next, a manufacturing process of the negative electrode terminal plate 13 will be described with reference to a flowchart of FIG. First, a steel plate such as a steel plate is rolled to form a steel plate having a predetermined thickness (step S1), and the entire surface of the steel plate is nickel-plated to form a nickel plating layer (step S2). At this time, the nickel plating layer is deposited and formed so that the thickness of the outer surface serving as the electrode surface is 25 μm and the thickness of the inner surface facing the inside of the battery is 35 μm.

【0012】つぎに、上述のニッケルめっき鋼板におけ
る負極端子板としたときの外側面にのみ錫めっきを施し
て、厚さが0.2μmのめっき層を形成する(ステップ
S3)。続いて、500〜700℃の温度環境下に5〜
10時間放置する熱処理を行う(ステップS4)。この
実施の形態では、600℃の温度環境下に8時間放置す
る熱処理を行った。その後に、再び圧延加工を行い(ス
テップS5)、これによって所定厚みとした鋼板をプレ
ス加工などで成形加工する(ステップS6)ことによ
り、上記負極端子板13が製作される。
Next, tin plating is applied only to the outer surface of the above-mentioned nickel-plated steel sheet when it is used as the negative electrode terminal plate to form a plating layer having a thickness of 0.2 μm (step S3). Then, in a temperature environment of 500 to 700 ° C,
A heat treatment is performed for 10 hours (step S4). In this embodiment, the heat treatment was performed in a temperature environment of 600 ° C. for 8 hours. Thereafter, rolling is performed again (step S5), and a steel plate having a predetermined thickness is formed by pressing or the like (step S6), whereby the negative electrode terminal plate 13 is manufactured.

【0013】図3は、上記製造工程を経て製造された負
極端子板13の厚み方向に切断した断面図を示す。同図
において、この負極端子板13は、芯材となる鋼板17
の全表面とニッケルめっき層18との境界部に、上記の
熱処理工程によって鉄−ニッケル合金層19が生成さ
れ、さらに、負極端子板13の電極面となる外側のニッ
ケルめっき層18の表面に施された錫メッキ層が、熱処
理工程によって上述のニッケル−錫合金層14となる。
FIG. 3 is a cross-sectional view of the negative electrode terminal plate 13 manufactured through the above manufacturing steps, cut in the thickness direction. In the figure, the negative electrode terminal plate 13 is provided with a steel plate 17 serving as a core material.
An iron-nickel alloy layer 19 is formed at the boundary between the entire surface of the nickel plating layer 18 and the nickel plating layer 18 by the above-described heat treatment step. The tin-plated layer becomes the above-described nickel-tin alloy layer 14 by the heat treatment step.

【0014】このような負極端子板13を備えた実施の
形態のアルカリ電池は、負極端子板13における電池使
用機器の負側電極端子に接触して電気的接続される電極
面(外方側の表面)に、ニッケルよりも接触抵抗が小さ
い錫を用いたニッケル−錫合金層14が形成されている
から、このニッケル−錫合金層14と負側電極端子との
接触抵抗は、従来電池における負極端子板の電極面に形
成されたニッケルめっき層に比較して小さくなり、その
接触抵抗が低下した分だけ電池使用機器の使用可能時間
が長くなる。
The alkaline battery of the embodiment provided with such a negative electrode terminal plate 13 has an electrode surface (an outer surface) which is electrically connected to the negative electrode terminal of the battery-using equipment in the negative terminal plate 13. Since the nickel-tin alloy layer 14 using tin having a smaller contact resistance than nickel is formed on the surface (the surface), the contact resistance between the nickel-tin alloy layer 14 and the negative electrode terminal is determined by the negative electrode of the conventional battery. It becomes smaller than the nickel plating layer formed on the electrode surface of the terminal plate, and the usable time of the battery-powered device becomes longer by the reduced contact resistance.

【0015】上記負極端子板13の接触抵抗が低下する
ことを、図2の工程を経て製作した負極端子板13の接
触抵抗を実測して確認するようにした。図4の実線で示
す特性曲線は、上述の負極端子板13の接触抵抗の実測
値を示し、破線の特性曲線は比較のために示した従来電
池における電極面にニッケルめっき層を形成した負極端
子板の接触抵抗値である。この接触抵抗の測定に際して
は、サンプルとして、電極面にニッケル−錫合金層14
を有する本発明の電池に係る負極端子板13および電極
面にニッケルメッキ層を有する従来電池の負極端子板を
それぞれ10個ずつ製作した。これら各10個のサンプ
ルにはそれぞれ0.5kgf、1.0kgf、1.5k
gfの荷重を順に加えて、それら荷重を加えたときの接
触抵抗を4端子交流法で測定した。図4は、各荷重毎に
それぞれ測定して得た各10個ずつの接触抵抗値の平均
値を算出して図示したものである。なお、このときの測
定端子としては金めっきしたものを用いた。同図から明
らかなように、本発明に係る電池の負極端子板13は接
触抵抗が相当に低下するさらに、前記負極端子板13を
用いて図1に示す構成のアルカリ電池を組み立て、この
アルカリ電池を電池使用機器に装填して機器の使用可能
時間の計測を行った。その結果、従来のアルカリ電池に
よる電池使用機器の駆動持続時間を「100」とした場
合、本発明の電池では、電流が500mAの場合に「1
03」で、電流が750〜1000mAの場合に「11
0」であった。このように、本発明の電池を用いれば、
負極端子板13の接触抵抗が低減した分だけ電池使用機
器の使用可能時間が長くなることが判明した。
The decrease in the contact resistance of the negative electrode terminal plate 13 was confirmed by actually measuring the contact resistance of the negative electrode terminal plate 13 manufactured through the process of FIG. The characteristic curve indicated by the solid line in FIG. 4 indicates the measured value of the contact resistance of the negative electrode terminal plate 13 described above, and the characteristic curve indicated by the broken line indicates the negative electrode terminal having a nickel plating layer formed on the electrode surface of the conventional battery shown for comparison. This is the contact resistance of the plate. When measuring this contact resistance, a nickel-tin alloy layer 14
The negative electrode terminal plate 13 according to the battery of the present invention having 10 and the negative electrode terminal plate of the conventional battery having a nickel plating layer on the electrode surface were each manufactured by 10 pieces. Each of these 10 samples has 0.5kgf, 1.0kgf, 1.5kf
A load of gf was sequentially applied, and the contact resistance when the load was applied was measured by a four-terminal AC method. FIG. 4 shows the calculated and averaged contact resistance values of ten contact resistance values obtained by measuring each load. In this case, a gold-plated terminal was used as a measuring terminal. As can be seen from the drawing, the contact resistance of the negative electrode terminal plate 13 of the battery according to the present invention is considerably reduced. Further, an alkaline battery having the structure shown in FIG. Was loaded into a battery-powered device, and the usable time of the device was measured. As a result, when the driving duration of the battery-powered device using the conventional alkaline battery is “100”, the battery of the present invention has “1” when the current is 500 mA.
03 ", and when the current is 750 to 1000 mA," 11
0 ". Thus, by using the battery of the present invention,
It has been found that the usable time of the battery-powered device is prolonged by the reduction in the contact resistance of the negative electrode terminal plate 13.

【0016】また、上記のニッケル−錫合金層14は、
ニッケルと錫との金属間化合物特有の高硬質の特性を有
するため、ニッケルや錫の単一金属のめっき層に比較し
て表面硬度が高くなる。ピッカーズ硬度法(Hv10
g)で測定したところ、ニッケルめっき層の表面硬度が
「189」であるのに対し、ニッケル−錫合金層14の
表面硬度は「261」もの高い値を示した。したがっ
て、この負極端子板13を備えた電池は、電池使用機器
に装填状態で振動を受けても、負極端子板13のニッケ
ル−錫合金層14が電池使用機器の負側電極端子がこす
れることによって脱落することがなく、その脱落した微
粉の酸化による接触抵抗の増大といった事態が生じるこ
とがない。
The nickel-tin alloy layer 14 is
Since it has the high-hardness characteristic peculiar to the intermetallic compound of nickel and tin, the surface hardness is higher than that of a single metal plating layer of nickel or tin. Pickers hardness method (Hv10
As measured in g), the surface hardness of the nickel-plated layer was "189", whereas the surface hardness of the nickel-tin alloy layer 14 was as high as "261". Therefore, even when the battery provided with the negative electrode terminal plate 13 is subjected to vibration in a state where the battery is used, the nickel-tin alloy layer 14 of the negative electrode terminal plate 13 is rubbed by the negative electrode terminal of the battery device. It does not fall off, and a situation such as an increase in contact resistance due to oxidation of the dropped fine powder does not occur.

【0017】また、電極面にニッケル−錫合金層14を
有する負極端子板13は、金属間化合物が形成されてい
ることから、アルカリ液に可溶である錫を有しながらも
耐アルカリ性が向上し、且つ塩水に対する耐蝕性も向上
する。これを確認するために、表面にニッケル−錫合金
層を形成した鋼板と、表面に錫めっき層を形成した比較
のための鋼板とを、12mlの10moi水酸化カリウ
ム水溶液中に浸漬させて、50℃の環境下で14日間放
置して、錫の溶解量を測定した。その結果、錫めっき層
を形成した鋼板では錫の溶解量が800ppmであった
のに対し、ニッケル−錫合金層を形成した鋼板では僅か
に70ppmである。したがって、ニッケル−錫合金層
14を有する負極端子板13は、アルカリ電解液を注入
するアルカリ電池用の構成部材としても支障なく用いる
ことができる。
Further, since the negative electrode terminal plate 13 having the nickel-tin alloy layer 14 on the electrode surface has an intermetallic compound formed thereon, it has improved alkali resistance while having tin soluble in an alkaline solution. In addition, the corrosion resistance to salt water is improved. To confirm this, a steel sheet having a nickel-tin alloy layer formed on the surface and a steel sheet for comparison having a tin plated layer formed on the surface were immersed in 12 ml of a 10 moi aqueous potassium hydroxide solution to obtain a solution. The solution was allowed to stand for 14 days in an environment of ° C., and the dissolved amount of tin was measured. As a result, the dissolved amount of tin was 800 ppm in the steel sheet having the tin plating layer formed thereon, whereas it was only 70 ppm in the steel sheet having the nickel-tin alloy layer formed therein. Therefore, the negative electrode terminal plate 13 having the nickel-tin alloy layer 14 can be used without any trouble as a component for an alkaline battery into which an alkaline electrolyte is injected.

【0018】また、塩水による腐食の発生を確認するた
めに、上述の2種の鋼板に対し塩水噴霧試験を行って錆
の発生状況を確認したところ、錫めっき層を形成した鋼
板では少量ながら錆の発生が認められたのに対し、ニッ
ケル−錫合金層を形成した鋼板では錆および変色が全く
発生しなかった。
In order to confirm the occurrence of corrosion due to salt water, the above two types of steel sheets were subjected to a salt spray test to confirm the state of rust generation. In contrast, no rust and discoloration occurred in the steel sheet on which the nickel-tin alloy layer was formed.

【0019】なお、上記実施の形態では、ニッケル−錫
合金層14を形成する端子部として、正極端子2を一体
に備えた電池ケース1を有するアルカリ電池における負
極端子板13を例示して説明したが、正極側の端子部に
ニッケル−錫合金層を形成する構成とすることもでき
る。例えば、正極キャップが電池ケースとは別体に設け
られた電池における正極キャップの外側の電極面にニッ
ケル−錫合金層を形成してもよい。また、上記実施の形
態では、負極端子板13の外側の電極面にのみニッケル
−錫合金層14を形成するようにしたが、めっき工程の
都合によっては負極端子板13の両面にニッケル−錫合
金層14を形成するようにしてもよい。さらに、実施の
形態では、ニッケルめっきを施したのちに錫めっきを施
すことによってニッケル−錫合金層14を形成するよう
にしたが、ニッケル−錫の合金を鋼板にめっきしてニッ
ケル−錫合金層14を形成するようにしてもよい。
In the above embodiment, the negative electrode terminal plate 13 in the alkaline battery having the battery case 1 integrally provided with the positive electrode terminal 2 has been described as an example of the terminal portion on which the nickel-tin alloy layer 14 is formed. However, it is also possible to adopt a configuration in which a nickel-tin alloy layer is formed on the terminal portion on the positive electrode side. For example, a nickel-tin alloy layer may be formed on the electrode surface outside the positive electrode cap in a battery in which the positive electrode cap is provided separately from the battery case. In the above-described embodiment, the nickel-tin alloy layer 14 is formed only on the outer electrode surface of the negative electrode terminal plate 13. However, depending on the plating process, the nickel-tin alloy layer 14 may be formed on both surfaces of the negative electrode terminal plate 13. The layer 14 may be formed. Furthermore, in the embodiment, the nickel-tin alloy layer 14 is formed by applying tin plating and then tin plating. However, the nickel-tin alloy layer is formed by plating a nickel-tin alloy on a steel plate. 14 may be formed.

【0020】[0020]

【発明の効果】以上のように、本発明の電池によれば、
負極および/または正極の端子部における少なくとも外
方側の表面に、ニッケル−錫合金層を形成した構成とし
たので、端子部と電子使用機器の電極端子との接触抵抗
が、従来電池における表面にニッケルめっき層が形成さ
れた端子部に比較して小さくなり、それに伴って電池使
用機器の使用可能時間を長くできる。また、ニッケル−
錫合金層は、ニッケルと錫との金属間化合物が形成され
て、その化合物特有の高硬質の特性を有して表面硬度が
高いので、振動を受けたときに電池使用機器の電極端子
がこすれて脱落することがなく、しかも、金属間化合物
によって耐アルカリ性および塩水に対する耐蝕性が共に
向上するので、アルカリ電解液を注入するアルカリ電池
にも支障なく適用できる。
As described above, according to the battery of the present invention,
Since the nickel-tin alloy layer is formed on at least the outer surface of the negative electrode and / or the positive electrode terminal portion, the contact resistance between the terminal portion and the electrode terminal of the electronic device becomes lower than that of the conventional battery. It becomes smaller as compared with the terminal portion on which the nickel plating layer is formed, so that the usable time of the battery-powered device can be prolonged. In addition, nickel
The tin alloy layer is formed of an intermetallic compound of nickel and tin, and has a high hardness characteristic unique to the compound and a high surface hardness. In addition, the intermetallic compound improves both alkali resistance and corrosion resistance to salt water, so that it can be applied to an alkaline battery into which an alkaline electrolyte is injected without any problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る電池を示す縦断面
図。
FIG. 1 is a longitudinal sectional view showing a battery according to an embodiment of the present invention.

【図2】同上電池における負極端子板の製造工程を示す
フローチャート。
FIG. 2 is a flowchart showing a manufacturing process of a negative electrode terminal plate in the battery.

【図3】同上負極端子板の縦断面図。FIG. 3 is a vertical sectional view of the negative electrode terminal plate.

【図4】同上負極端子板における荷重に対する接触抵抗
値の実測値を示す特性図。
FIG. 4 is a characteristic diagram showing actually measured contact resistance values with respect to load in the negative electrode terminal plate.

【符号の説明】[Explanation of symbols]

13 負極端子板(端子部) 14 ニッケル−錫合金層 13 Negative electrode terminal plate (terminal part) 14 Nickel-tin alloy layer

フロントページの続き (72)発明者 清水 隆士 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大久保 一利 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H011 AA04 CC06 DD18 EE04 5H022 AA04 AA07 BB22 CC01 EE01 EE03 5H024 DD02 DD11 EE01 Continued on the front page (72) Inventor Takashi Shimizu 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Reference) 5H011 AA04 CC06 DD18 EE04 5H022 AA04 AA07 BB22 CC01 EE01 EE03 5H024 DD02 DD11 EE01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極および/または正極の端子部におけ
る少なくとも外方側の表面に、ニッケル−錫合金層が形
成されていることを特徴とする電池。
1. A battery characterized in that a nickel-tin alloy layer is formed on at least an outer surface of a terminal portion of a negative electrode and / or a positive electrode.
JP21321998A 1998-07-28 1998-07-28 Battery Pending JP2000048799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21321998A JP2000048799A (en) 1998-07-28 1998-07-28 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21321998A JP2000048799A (en) 1998-07-28 1998-07-28 Battery

Publications (1)

Publication Number Publication Date
JP2000048799A true JP2000048799A (en) 2000-02-18

Family

ID=16635515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21321998A Pending JP2000048799A (en) 1998-07-28 1998-07-28 Battery

Country Status (1)

Country Link
JP (1) JP2000048799A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172876A (en) * 2004-12-15 2006-06-29 Sii Micro Parts Ltd Alkaline battery and its manufacturing method
WO2007086154A1 (en) 2006-01-25 2007-08-02 Fdk Energy Co., Ltd. Cell terminal inspecting device, inspecting method, and cylindrical dry cell
KR100778439B1 (en) 2005-12-29 2007-11-21 삼성에스디아이 주식회사 Secondary battery module
WO2023033118A1 (en) * 2021-09-01 2023-03-09 東洋鋼鈑株式会社 Surface-treated metal sheet for battery
WO2024080136A1 (en) * 2022-10-12 2024-04-18 東洋鋼鈑株式会社 Surface-treated metal sheet for battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172876A (en) * 2004-12-15 2006-06-29 Sii Micro Parts Ltd Alkaline battery and its manufacturing method
KR100778439B1 (en) 2005-12-29 2007-11-21 삼성에스디아이 주식회사 Secondary battery module
WO2007086154A1 (en) 2006-01-25 2007-08-02 Fdk Energy Co., Ltd. Cell terminal inspecting device, inspecting method, and cylindrical dry cell
JP2007200666A (en) * 2006-01-25 2007-08-09 Fdk Energy Co Ltd Battery terminal inspection device, inspection method, and cylindrical dry battery
US8040109B2 (en) 2006-01-25 2011-10-18 Fdk Energy Co., Ltd. Battery terminal inspection apparatus, inspection method, and cylindrical dry battery
WO2023033118A1 (en) * 2021-09-01 2023-03-09 東洋鋼鈑株式会社 Surface-treated metal sheet for battery
WO2024080136A1 (en) * 2022-10-12 2024-04-18 東洋鋼鈑株式会社 Surface-treated metal sheet for battery

Similar Documents

Publication Publication Date Title
JP4294323B2 (en) Zinc / air battery
US7988745B2 (en) Method for manufacturing battery, battery manufactured by the method, and method for inspecting battery
EP0663104B1 (en) A current collector assembly for an electrochemical cell
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
US20020034680A1 (en) Battery
JP2008522366A (en) Zinc / air battery
JP4851707B2 (en) Method for producing alkaline battery
US4791036A (en) Anode conductor for alkaline cells
JP2000048799A (en) Battery
JP2576014B2 (en) Battery
JP4133701B2 (en) Ni-plated steel sheet for non-aqueous electrolyte battery case and battery case using this steel sheet
JP2009211840A (en) Method for manufacturing alkaline battery and alkaline battery
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP2006236967A (en) Sealed battery, its manufacturing method, battery pack composed of multiple sealed batteries, and its manufacturing method
JP3812380B2 (en) Sealed battery
JPH0119739B2 (en)
JP3902427B2 (en) Method for producing electrode for storage battery
JP2946894B2 (en) Zinc alkaline battery
JPH0773860A (en) Manufacture of square alkaline battery
JPH01311569A (en) Spiral type nonaqueous electrolyte cell
CA1295667C (en) Anode conductor for alkaline cells
JP4268851B2 (en) Alkaline battery
JPH10261420A (en) Organic electrolyte battery
JP2001126710A (en) Alkaline storage battery and method of manufacturing the same
JP3635949B2 (en) Flat organic electrolyte battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607