JP2000046878A - Watthour meter using hall element - Google Patents

Watthour meter using hall element

Info

Publication number
JP2000046878A
JP2000046878A JP10217471A JP21747198A JP2000046878A JP 2000046878 A JP2000046878 A JP 2000046878A JP 10217471 A JP10217471 A JP 10217471A JP 21747198 A JP21747198 A JP 21747198A JP 2000046878 A JP2000046878 A JP 2000046878A
Authority
JP
Japan
Prior art keywords
hall element
resistor
temperature compensation
hour meter
watt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10217471A
Other languages
Japanese (ja)
Inventor
Masaharu Niizawa
正治 新沢
Takeshi Takahashi
高橋  健
Mitsuharu Imaizumi
光治 今泉
Masao Kudo
正夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaki Electric Co Ltd
Hitachi Cable Ltd
Original Assignee
Osaki Electric Co Ltd
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaki Electric Co Ltd, Hitachi Cable Ltd filed Critical Osaki Electric Co Ltd
Priority to JP10217471A priority Critical patent/JP2000046878A/en
Publication of JP2000046878A publication Critical patent/JP2000046878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out an accurate temperature compensation in a wide range of temperature regions simply inexpensively by constituting a Hall element and a resistor for the temperature compensation to the element of a GaAs crystal. SOLUTION: Two elements A, B of the same crossed shape are formed on a GaAs substrate crystal 7. One is used as a Hall element 1 for measurement and the other is used as a resistor 3 for temperature compensation. For example, a control current is applied to a lateral terminal of one crossed element A and an output voltage is extracted from a longitudinal terminal, and moreover a temperature compensation circuit is connected to a lateral or longitudinal terminal of the other crossed element B. In this case, since the Hall element 1 and resistor 3 are proximate and therefore thermally bond well, an accurate temperature compensation is enabled. At the same time, since the Hall element 1 and resistor 3 vary little in characteristic, a highly reliable temperature compensation is achieved. The Hall element 1 and the resistor 3 can be used separately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホール効果による
磁界検出を利用して電力量を計測する電力量計に係り、
特に、広範囲の温度領域で精度の高い温度補償が行え、
簡便で安価に構成できるホール素子を用いた電力量計に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a watt hour meter for measuring an amount of electric power by using a magnetic field detection by the Hall effect.
In particular, highly accurate temperature compensation can be performed in a wide temperature range,
The present invention relates to a watt hour meter using a Hall element that can be simply and inexpensively configured.

【0002】[0002]

【従来の技術】ホール素子を用いた電力量計は、計測対
象の電圧と電流とを制御電流(駆動電流)と磁界とに変
換してホール素子に印加し、このホール素子の出力電圧
により計測対象の電力量を計測するものである。この電
力量計では、温度と共に入出力抵抗や積感度が変化す
る。このため、精度の高い計測や広範囲の温度での計測
を行うためには温度補償を行う必要がある。その方法
は、ホール素子の駆動状況(定電流駆動あるいは定電圧
駆動)や必要精度あるいは温度範囲によって様々提案さ
れている。
2. Description of the Related Art A watt hour meter using a Hall element converts a voltage and a current to be measured into a control current (drive current) and a magnetic field, and applies the control current (drive current) and a magnetic field to the Hall element, and measures the output voltage of the Hall element. It measures the electric energy of the target. In this watt-hour meter, input / output resistance and product sensitivity change with temperature. For this reason, it is necessary to perform temperature compensation in order to perform highly accurate measurement or measurement over a wide range of temperatures. Various methods have been proposed depending on the driving condition of the Hall element (constant current driving or constant voltage driving), required accuracy, or temperature range.

【0003】例えば、図2、図3の温度補償回路におい
て、温度補償用の抵抗体3として温度と共に抵抗が変化
する個別の抵抗体(サーミスタ)を用いて駆動電流や出
力電圧の増幅率を制御して温度補償を行うものがある。
図2の温度補償回路は、ホール素子1の制御入力端子1
a,1b間に計測対象の電圧(電流計の場合は一定電
圧)Vを抵抗器2を介して制御電流(駆動電流)として
印加し、電圧出力端子間1c,1dの電圧を増幅器4に
入力すると共に、計測対象の電流は、図示しないが、そ
の電流が流れる導体をトロイダルコアに巻き付けるか貫
通させ、トロイダルコアに形成したギャップ間にホール
素子1を挿入することにより、磁界に変換してホール素
子1に印加し、抵抗器4と温度補償用の抵抗体3とを並
列にしたものを増幅器5の帰還抵抗回路に直列に挿入し
たものであり、増幅率が温度補償される。また、図3の
温度補償回路は、抵抗器6と温度補償用の抵抗体3とを
並列にしたものをホール素子1の制御入力端子1bに直
列に挿入したものであり、制御電流が温度補償される。
For example, in the temperature compensation circuits shown in FIGS. 2 and 3, an individual resistor (thermistor) whose resistance varies with temperature is used as the temperature compensation resistor 3 to control the drive current and the amplification factor of the output voltage. In some cases, temperature compensation is performed.
The temperature compensation circuit of FIG.
A voltage V to be measured (a constant voltage in the case of an ammeter) V is applied as a control current (drive current) between the resistors a and 1b via the resistor 2, and the voltage between the voltage output terminals 1 c and 1 d is input to the amplifier 4. At the same time, the current to be measured is not shown, but the conductor through which the current flows is wound or penetrated around the toroidal core, and the Hall element 1 is inserted between the gaps formed in the toroidal core, thereby converting the current into a magnetic field to form a hole. It is applied to the element 1, and a resistor 4 and a temperature compensating resistor 3 in parallel are inserted in series in a feedback resistor circuit of an amplifier 5, and the amplification factor is temperature compensated. The temperature compensation circuit shown in FIG. 3 is a circuit in which a resistor 6 and a resistor 3 for temperature compensation are connected in parallel to a control input terminal 1b of the Hall element 1, and the control current is Is done.

【0004】[0004]

【発明が解決しようとする課題】従来、温度補償に用い
る個別の抵抗体(サーミスタ)は、温度と共に抵抗が増
加するもの(PTC)、温度と共に抵抗が減少するもの
(NTC)など様々なものがあり、回路形式によって選
択して利用できる便利さがある。しかし、温度に対する
抵抗の増加率や減少率が広範囲の温度領域で安定してい
る抵抗体が少なく、広範囲の温度での精度の高い温度補
償を行うためには回路構成が複雑になるという困難さが
あった。また、このような抵抗体は、個別部品で価格が
高いという問題があると共に、ホール素子の近くにホー
ル素子と熱的な結合を良くして配置することが困難であ
った。
Conventionally, there are various types of individual resistors (thermistors) used for temperature compensation, such as those whose resistance increases with temperature (PTC) and those whose resistance decreases with temperature (NTC). Yes, there is convenience that can be selected and used depending on the circuit type. However, there are few resistors whose rate of increase or decrease in temperature with respect to temperature is stable over a wide temperature range, and the circuit configuration becomes complicated to perform accurate temperature compensation over a wide range of temperatures. was there. In addition, such a resistor has a problem that it is expensive as an individual component, and it is difficult to arrange the resistor close to the Hall element with good thermal coupling with the Hall element.

【0005】そこで、本発明の目的は、上記課題を解決
し、広範囲の温度領域で精度の高い温度補償が行え、簡
便で安価に構成できるホール素子を用いた電力量計を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a watt-hour meter using a Hall element which can perform high-accuracy temperature compensation over a wide temperature range and can be configured simply and at low cost. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、計測対象の電圧と電流とを一方は制御電
流、他方は磁界に変換してホール素子に印加し、このホ
ール素子の出力電圧により計測対象の電力量を計測する
電力量計において、前記ホール素子をGaAs結晶で構
成すると共に、前記ホール素子の温度補償用の抵抗体を
GaAs結晶で構成したものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention converts a voltage and a current to be measured into a control current on one side and a magnetic field on the other side and applies the same to a Hall element. In a watt hour meter for measuring a power amount to be measured by an output voltage, the Hall element is formed of a GaAs crystal, and a resistor for temperature compensation of the Hall element is formed of a GaAs crystal.

【0007】前記ホール素子と前記抵抗体とを同一のG
aAs基板結晶上に形成してもよい。
The Hall element and the resistor are connected to the same G
It may be formed on an aAs substrate crystal.

【0008】前記ホール素子と前記抵抗体とを同一のパ
ッケージ内に収容してもよい。
[0008] The Hall element and the resistor may be housed in the same package.

【0009】前記ホール素子と前記抵抗体と前記ホール
素子を制御するための回路とを同一のパッケージ内に収
容してもよい。
[0009] The Hall element, the resistor, and a circuit for controlling the Hall element may be housed in the same package.

【0010】前記ホール素子と前記抵抗体とを半絶縁性
GaAs単結晶上に形成した所定の厚さでかつ所定のシ
ート抵抗を有する導電層から構成してもよい。
The Hall element and the resistor may be formed of a conductive layer having a predetermined thickness and a predetermined sheet resistance formed on a semi-insulating GaAs single crystal.

【0011】前記ホール素子と前記抵抗体とを同じ活性
層構造としてもよい。
The Hall element and the resistor may have the same active layer structure.

【0012】前記制御電流を一定とし、計測対象の電流
を磁界に変換し、前記ホール素子の出力電圧により計測
対象の電流を計測してもよい。
The current to be measured may be converted into a magnetic field while the control current is kept constant, and the current to be measured may be measured based on the output voltage of the Hall element.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて詳述する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0014】本発明の要旨は、ホール素子をGaAs結
晶で構成し、温度補償用の抵抗体をGaAs結晶の比抵
抗あるいはGaAs結晶の表面に形成した導電層(活性
層)のシート抵抗で実現し、比抵抗あるいはシート抵抗
の温度変化を利用して温度補償を行うことにある。この
ようにホール素子と温度補償用の抵抗体とを同一の出発
材料から形成し、あるいは同一プロセスで、同一基板上
に形成することによって、ホール素子と抵抗体とに同じ
ような温度特性を持たせることができ、これにより、広
範囲の温度領域で精度の高い温度補償が行え、簡便で安
価に構成した電力量計や電流計が提供できる。ホール素
子及び抵抗体の材料がGaAsであることも本発明の特
徴である。本発明は、ホール素子に極接近して形成した
同質材料からなる抵抗体の抵抗値の温度特性を利用して
温度補償が行えるようにしたもので、温度補償方法や回
路形式等を特に限定するものではない。
The gist of the present invention is that the Hall element is made of GaAs crystal and the resistor for temperature compensation is realized by the specific resistance of GaAs crystal or the sheet resistance of the conductive layer (active layer) formed on the surface of GaAs crystal. Temperature compensation of specific resistance or sheet resistance. By forming the Hall element and the resistor for temperature compensation from the same starting material or by the same process and on the same substrate, the Hall element and the resistor have similar temperature characteristics. Accordingly, highly accurate temperature compensation can be performed in a wide temperature range, and a simple and inexpensive wattmeter or ammeter can be provided. It is also a feature of the present invention that the material of the Hall element and the resistor is GaAs. The present invention makes it possible to perform temperature compensation using the temperature characteristics of the resistance value of a resistor made of the same material formed very close to the Hall element, and particularly limits the temperature compensation method and the circuit type. Not something.

【0015】ホール素子と抵抗体とを半絶縁性GaAs
単結晶上に形成された厚さ5μm以下の導電層から構成
し、この導電層のシート抵抗を200Ω乃至10kΩと
してもよい。
The Hall element and the resistor are made of semi-insulating GaAs.
The conductive layer having a thickness of 5 μm or less formed on the single crystal may have a sheet resistance of 200 Ω to 10 kΩ.

【0016】図1に、本発明の電力量計又は電流計の主
要部分であるホール素子と温度補償用の抵抗体とを同一
のGaAs基板結晶上に形成したモジュールのパターン
を示す。図1(a)のパターンでは、GaAs基板結晶
7上に2つの同じ十字型の素子(いずれも素子自体をホ
ール素子と呼ぶことができる)A,Bを形成し、これら
素子A,Bの片方をホール素子1として計測用に、もう
片方を抵抗体3として温度補償用に使用することにな
る。例えば、一方の十文字型の素子Aの横方向の端子に
制御電流を印加して縦方向の端子より出力電圧を取り出
すと共に、もう一方の十文字型の素子Bの横方向又は縦
方向の端子は温度補償回路を接続する。図1(b)のパ
ターンでは、GaAs基板結晶7上に十文字型の素子A
と一文字型の素子Cとを形成し、十文字型の素子Aをホ
ール素子1として、一文字型の素子Cを抵抗体3として
使用することになる。図1(c)のパターンでは、Ga
As基板結晶7上に十文字型の素子Aと複数の一文字型
の素子(形状や寸法は同じでも同じでなくてもよい)C
とを形成し、十文字型の素子Aをホール素子1として使
用する。一文字型の素子Cは、温度補償方法、回路形式
に応じて必要な個数の抵抗体3として使用することがで
きる。図1(d)のパターンでは、GaAs基板結晶7
上に十文字型の素子Aと任意形状の素子Dとを形成し、
抵抗体3として使用する素子Dの形状により所望の端子
間距離や太さを設定したものであり、これによって好ま
しい抵抗値を得るものである。
FIG. 1 shows a pattern of a module in which a Hall element and a resistor for temperature compensation, which are main parts of a wattmeter or ammeter of the present invention, are formed on the same GaAs substrate crystal. In the pattern of FIG. 1A, two identical cross-shaped elements A and B (both of which can be called Hall elements) are formed on a GaAs substrate crystal 7, and one of these elements A and B is formed. Is used as a Hall element 1 for measurement and the other is used as a resistor 3 for temperature compensation. For example, a control current is applied to a horizontal terminal of one cross-shaped element A to take out an output voltage from a vertical terminal, and a horizontal or vertical terminal of the other cross-shaped element B is set to temperature. Connect the compensation circuit. In the pattern of FIG. 1B, a cross-shaped element A is formed on a GaAs substrate crystal 7.
And a one-letter element C are formed, and the cross-shaped element A is used as the hall element 1 and the one-letter element C is used as the resistor 3. In the pattern of FIG.
A cross-shaped element A and a plurality of single-character elements (shapes and dimensions may or may not be the same) C on an As substrate crystal 7
Are formed, and the cross-shaped element A is used as the Hall element 1. The one-letter element C can be used as the required number of resistors 3 according to the temperature compensation method and the circuit type. In the pattern of FIG. 1D, the GaAs substrate crystal 7
A cross-shaped element A and an arbitrary-shaped element D are formed thereon,
Desired inter-terminal distances and thicknesses are set according to the shape of the element D used as the resistor 3, thereby obtaining a preferable resistance value.

【0017】図1に示した各モジュールにあっては、同
一のGaAs基板結晶5上にホール素子1と抵抗体3と
が近接して形成されているため、ホール素子1と抵抗体
3との相互の熱的な結合が良く、精度の高い温度補償が
可能となる。また、同一プロセスで製作が可能なため、
ホール素子1と抵抗体3との特性のばらつきが少なく、
信頼性の高い温度補償が可能となる。しかし、必ずしも
ホール素子1と抵抗体3とを同一基板上に形成する必要
はなく、また、ホール素子と抵抗体とを切り離して使用
することも可能である。ただし、熱的な結合を良くして
精度の高い温度補償を行うためには、素子を駆動する回
路(IC回路等)を含めて一体的にパッケージ化し、駆
動回路を含めた全体の温度補償を図ることが好ましい。
In each of the modules shown in FIG. 1, the Hall element 1 and the resistor 3 are formed close to each other on the same GaAs substrate crystal 5, so that the Hall element 1 and the resistor 3 The mutual thermal coupling is good, and highly accurate temperature compensation is possible. Also, because it can be manufactured in the same process,
Variations in characteristics between the Hall element 1 and the resistor 3 are small,
Highly reliable temperature compensation becomes possible. However, it is not always necessary to form the Hall element 1 and the resistor 3 on the same substrate, and the Hall element and the resistor can be used separately. However, in order to improve the thermal coupling and perform high-precision temperature compensation, it is necessary to integrally package the circuit including the element driving circuit (such as an IC circuit) and to compensate for the entire temperature including the driving circuit. It is preferable to aim.

【0018】GaAsホール素子は磁束密度に対するホ
ール電圧が高く、またその直線性が良く、広範囲の温度
領域で使用可能なことから、本発明の電力量計や電流計
の素子として最適である。さらに重要な点は、GaAs
結晶が適切な比抵抗やシート抵抗範囲では広範囲の温度
領域でそれらの温度に対する変化率がほぼ一定している
点である。
The GaAs Hall element has a high Hall voltage with respect to the magnetic flux density, has good linearity, and can be used in a wide temperature range. Therefore, the GaAs Hall element is most suitable as the element of the wattmeter or the ammeter of the present invention. More importantly, GaAs
The point is that the rate of change of the crystal with respect to the temperature is almost constant over a wide temperature range in an appropriate specific resistance or sheet resistance range.

【0019】図4、図5に、イオン注入法で半絶縁性G
aAs結晶上に形成した導電層(活性層)を元に作成し
たホール素子の入力抵抗の温度特性と積感度の温度特性
とを示す。イオン注入では、Siイオンを150kVで
加速して注入し、熱処理して導電層を形成した。導電層
の厚さは約0.3μm、シート抵抗値は約800Ωであ
る。各図から分かるように、入力抵抗も温度特性も広範
囲の温度領域で非常に良い直線性を示している。−40
℃〜100℃の温度範囲で入力抵抗は0.18%/℃、
積感度は−0.06%/℃の傾きでほぼ一定している。
FIGS. 4 and 5 show a semi-insulating G by ion implantation.
The temperature characteristics of the input resistance and the temperature characteristics of the product sensitivity of the Hall element formed based on the conductive layer (active layer) formed on the aAs crystal are shown. In the ion implantation, Si ions were accelerated and implanted at 150 kV, and heat treatment was performed to form a conductive layer. The thickness of the conductive layer is about 0.3 μm, and the sheet resistance is about 800Ω. As can be seen from each figure, both the input resistance and the temperature characteristics show very good linearity over a wide temperature range. -40
The input resistance is 0.18% / ° C in the temperature range of 100 ° C to 100 ° C,
The product sensitivity is almost constant with a slope of −0.06% / ° C.

【0020】このホール素子2個を使用し、一方はホー
ル素子1として磁界計測用に、他方を抵抗体3として温
度補償用に使用して電力量計を作成した。温度補償回路
は、図2に示した一般的な回路であり、従来技術では温
度補償用の抵抗体3にサーミスタを使用したが、本発明
ではホール素子(温度補償用)の入力抵抗を抵抗体3と
して使用する。この電力量計は、簡便な温度補償回路を
使用しているにもかかわらず、−40℃〜100℃の広
範囲な温度領域で計測精度が1%以下の非常に高精度な
温度補償が可能であった。
A watt-hour meter was prepared using two Hall elements, one of which was used as a Hall element 1 for magnetic field measurement and the other was used as a resistor 3 for temperature compensation. The temperature compensating circuit is a general circuit shown in FIG. 2. In the prior art, a thermistor was used for the resistor 3 for temperature compensation. However, in the present invention, the input resistance of the Hall element (for temperature compensation) is changed to a resistor. Used as 3. This watt-hour meter can perform extremely high-precision temperature compensation of 1% or less in a wide temperature range of −40 ° C. to 100 ° C. even though a simple temperature compensation circuit is used. there were.

【0021】なお、本発明の電力量計において、制御電
流を一定とし、計測対象の電流を磁界に変換し、ホール
素子1の出力電圧により計測対象の電流を計測するよう
にすれば、電流計が構成できる。
In the watt hour meter of the present invention, if the control current is fixed, the current to be measured is converted into a magnetic field, and the current to be measured is measured by the output voltage of the Hall element 1, the current meter Can be configured.

【0022】[0022]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0023】(1)ホール素子と抵抗体とに同じような
温度特性を持たせることができるので、広範囲の温度領
域で精度の高い温度補償が行え、簡便で安価に構成した
電力量計や電流計が提供できる。
(1) Since the Hall element and the resistor can have similar temperature characteristics, highly accurate temperature compensation can be performed in a wide temperature range, and a simple and inexpensive wattmeter or current meter can be provided. Can provide a total.

【0024】(2)ホール素子と抵抗体とを同一プロセ
スで作成することにより、プロセスによるばらつきが軽
減され、信頼性の高い温度補償が可能となる。
(2) By forming the Hall element and the resistor in the same process, variations due to the process can be reduced, and highly reliable temperature compensation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すGaAs基板結晶上
に形成したモジュールの平面図である。
FIG. 1 is a plan view of a module formed on a GaAs substrate crystal according to an embodiment of the present invention.

【図2】本発明及び従来技術の温度補償回路の回路図で
ある。
FIG. 2 is a circuit diagram of a temperature compensation circuit according to the present invention and the prior art.

【図3】本発明及び従来技術の温度補償回路の回路図で
ある。
FIG. 3 is a circuit diagram of a temperature compensation circuit according to the present invention and the prior art.

【図4】本発明のGaAsホール素子の入力抵抗の温度
特性図である。
FIG. 4 is a temperature characteristic diagram of the input resistance of the GaAs Hall element of the present invention.

【図5】本発明のGaAsホール素子の積感度の温度特
性図である。
FIG. 5 is a temperature characteristic diagram of the product sensitivity of the GaAs Hall element of the present invention.

【符号の説明】[Explanation of symbols]

1 ホール素子 3 抵抗体 7 GaAs基板結晶 Reference Signs List 1 Hall element 3 Resistor 7 GaAs substrate crystal

フロントページの続き (72)発明者 高橋 健 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 (72)発明者 今泉 光治 埼玉県川越市大字砂久保63−24 (72)発明者 工藤 正夫 神奈川県横浜市港北区太尾町1180 大倉山 コート202号室Continued on the front page (72) Inventor Ken Takahashi 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture Inside the Hidaka Plant, Hitachi Cable, Ltd. (72) Inventor Koji Imaizumi 63-24 Sunakubo, Kawagoe-shi, Saitama ( 72) Inventor Masao Kudo 1180 Oocho, Kohoku-ku, Yokohama, Kanagawa Prefecture Room 202, Okurayama Court

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 計測対象の電圧と電流とを一方は制御電
流、他方は磁界に変換してホール素子に印加し、このホ
ール素子の出力電圧により計測対象の電力量を計測する
電力量計において、前記ホール素子をGaAs結晶で構
成すると共に、前記ホール素子の温度補償用の抵抗体を
GaAs結晶で構成したことを特徴とするホール素子を
用いた電力量計。
1. A watt hour meter for converting a voltage and a current to be measured into a control current on one side and a magnetic field on the other side and applying the same to a Hall element, and measuring the amount of power to be measured based on the output voltage of the Hall element. A watt-hour meter using a Hall element, wherein the Hall element is formed of a GaAs crystal, and the resistor for temperature compensation of the Hall element is formed of a GaAs crystal.
【請求項2】 前記ホール素子と前記抵抗体とを同一の
GaAs基板結晶上に形成したことを特徴とする請求項
1記載のホール素子を用いた電力量計。
2. The watt-hour meter using a Hall element according to claim 1, wherein said Hall element and said resistor are formed on the same GaAs substrate crystal.
【請求項3】 前記ホール素子と前記抵抗体とを同一の
パッケージ内に収容したことを特徴とする請求項1又は
2記載のホール素子を用いた電力量計。
3. The watt hour meter using a Hall element according to claim 1, wherein the Hall element and the resistor are housed in the same package.
【請求項4】 前記ホール素子と前記抵抗体と前記ホー
ル素子を制御するための回路とを同一のパッケージ内に
収容したことを特徴とする請求項1〜3いずれか記載の
ホール素子を用いた電力量計。
4. The hall element according to claim 1, wherein the hall element, the resistor, and a circuit for controlling the hall element are housed in the same package. Watt hour meter.
【請求項5】 前記ホール素子と前記抵抗体とを半絶縁
性GaAs単結晶上に形成した所定の厚さでかつ所定の
シート抵抗を有する導電層から構成したことを特徴とす
る請求項1〜4いずれか記載のホール素子を用いた電力
量計。
5. The semiconductor device according to claim 1, wherein said Hall element and said resistor are formed of a conductive layer having a predetermined thickness and a predetermined sheet resistance formed on a semi-insulating GaAs single crystal. 4. An electricity meter using the Hall element according to any one of 4.
【請求項6】 前記ホール素子と前記抵抗体とを同じ活
性層構造としたことを特徴とする請求項1〜5いずれか
記載のホール素子を用いた電力量計。
6. The watt hour meter using a Hall element according to claim 1, wherein said Hall element and said resistor have the same active layer structure.
【請求項7】 前記制御電流を一定とし、計測対象の電
流を磁界に変換し、前記ホール素子の出力電圧により計
測対象の電流を計測することを特徴とする請求項1〜6
いずれか記載のホール素子を用いた電力量計。
7. The method according to claim 1, wherein the control current is fixed, the current to be measured is converted into a magnetic field, and the current to be measured is measured based on an output voltage of the Hall element.
A watt-hour meter using the Hall element according to any one of the above.
JP10217471A 1998-07-31 1998-07-31 Watthour meter using hall element Pending JP2000046878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217471A JP2000046878A (en) 1998-07-31 1998-07-31 Watthour meter using hall element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217471A JP2000046878A (en) 1998-07-31 1998-07-31 Watthour meter using hall element

Publications (1)

Publication Number Publication Date
JP2000046878A true JP2000046878A (en) 2000-02-18

Family

ID=16704763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217471A Pending JP2000046878A (en) 1998-07-31 1998-07-31 Watthour meter using hall element

Country Status (1)

Country Link
JP (1) JP2000046878A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855554B2 (en) 2006-06-02 2010-12-21 Denso Corporation Semiconductor device, magnetic sensor, and physical quantity sensor
KR101020398B1 (en) 2010-03-12 2011-03-09 이명우 Electric power measuring device using the planar hall resistance and the same method thereof
JP2013096728A (en) * 2011-10-28 2013-05-20 Asahi Kasei Electronics Co Ltd Receptacle unit
JP2013099020A (en) * 2011-10-28 2013-05-20 Asahi Kasei Electronics Co Ltd Power distribution panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855554B2 (en) 2006-06-02 2010-12-21 Denso Corporation Semiconductor device, magnetic sensor, and physical quantity sensor
KR101020398B1 (en) 2010-03-12 2011-03-09 이명우 Electric power measuring device using the planar hall resistance and the same method thereof
JP2013096728A (en) * 2011-10-28 2013-05-20 Asahi Kasei Electronics Co Ltd Receptacle unit
JP2013099020A (en) * 2011-10-28 2013-05-20 Asahi Kasei Electronics Co Ltd Power distribution panel

Similar Documents

Publication Publication Date Title
US4320655A (en) Quantity of flow meter
US4823075A (en) Current sensor using hall-effect device with feedback
US8907669B2 (en) Circuits and techniques for adjusting a sensitivity of a closed-loop current sensor
Hermach Thermal converters as ac-dc transfer standards for current and voltage measurements at audio frequencies
US3733887A (en) Method and apparatus for measuring the thermal conductivity and thermo-electric properties of solid materials
CN103229032A (en) Electric element
US4349777A (en) Variable current source
EP0450910A2 (en) Temperature compensation circuit for hall effect element
US20210048453A1 (en) Shunt resistor averaging techniques
KR100724095B1 (en) Wattmeter for voltage, current and power measurement
US7617723B2 (en) Thermal type flow rate measuring apparatus having decrease in coupling capacitance between wiring portions of detection element
Rietveld et al. DC characterization of AC current shunts for wideband power applications
JP2000046878A (en) Watthour meter using hall element
US20070075398A1 (en) Integrated thermal characterization and trim of polysilicon resistive elements
US11163020B2 (en) Sensor circuit with offset compensation
EP0423284B1 (en) Electronic circuit arrangement
Katzmann et al. Thin-film AC-DC converter with thermoresistive sensing
JP2003035730A (en) Current detector
JPH01204383A (en) Composite thermal element
US1695867A (en) Temperature-measuring device
US6861717B2 (en) Device for defecting a magnetic field, magnetic field measure and current meter
US20240053425A1 (en) Integrated thin-film resistive sensor with integrated heater and metal layer thermal equalizer
US11884538B2 (en) Root mean square sensor device
RU2666582C2 (en) Digital current meter
US2414190A (en) Circuit arrangement for ratio meters