JP2000042756A - Wear resistant liner - Google Patents

Wear resistant liner

Info

Publication number
JP2000042756A
JP2000042756A JP10209873A JP20987398A JP2000042756A JP 2000042756 A JP2000042756 A JP 2000042756A JP 10209873 A JP10209873 A JP 10209873A JP 20987398 A JP20987398 A JP 20987398A JP 2000042756 A JP2000042756 A JP 2000042756A
Authority
JP
Japan
Prior art keywords
plate
cemented carbide
steel
copper
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10209873A
Other languages
Japanese (ja)
Inventor
Yoji Wada
洋二 和田
Hiroo Takeda
碵生 武田
Tsuguo Honda
嗣男 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyu Inc
Original Assignee
Sankyu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyu Inc filed Critical Sankyu Inc
Priority to JP10209873A priority Critical patent/JP2000042756A/en
Publication of JP2000042756A publication Critical patent/JP2000042756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve joinability between a sintered hard alloy and a steel base stock in using a sintered carbide excellent in wear resistance as a wear resistant liner. SOLUTION: In this wear resistant liner obtained by laminating a sintered carbided plate 1 of 1-25 mm thickness with a steel plate 2 by solid phase diffusion welding, at the boundary between the sintered carbite 1 and the steel plate 2, a copper 3 is arranged on a sintered carbide side and Ni is arranged on a steel plate side, and an oxygen-free copper is used for the copper plate 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原料、土砂、鉱石
などの粉粒体および塊の搬送やこれらの粉砕、衝突など
の作用によって摩耗を受ける箇所に使用する耐摩耗ライ
ナーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasion-resistant liner used in a place where a material such as raw materials, earth and sand, ore, and the like, which are conveyed, crushed, and crushed, are subjected to wear.

【0002】[0002]

【従来の技術】優れた耐摩耗性が要求される上記の分野
では、鋼製部材の代わりに、代表的な耐摩耗材料として
高Cr鋳鉄が使用されている。
2. Description of the Related Art In the above-mentioned fields where excellent wear resistance is required, high Cr cast iron is used as a typical wear-resistant material instead of steel members.

【0003】ところが、構造用としては、耐摩耗性のみ
ならず、強度や靭性も必要である。しかし、材料の耐摩
耗性と強度および靭性は、一般に二律背反の傾向にあ
り、高Cr鋳鉄の耐摩耗性を向上させるための炭素およ
びその他合金元素の添加は、著しく強度と靭性を低下さ
せる。
However, for structural use, not only wear resistance but also strength and toughness are required. However, the wear resistance, strength, and toughness of materials generally tend to trade off, and the addition of carbon and other alloying elements to improve the wear resistance of high Cr cast iron significantly reduces strength and toughness.

【0004】耐摩耗材料としては、その他に高Cr鋳鉄
系の材料を鋼に溶接肉盛した溶接プレートや、超硬合金
やセラミックスといった硬質材を機械的な方法や接着ま
たはろう付けによって鋼板表面に貼り付けた複合材プレ
ートがある。これらの複合材プレー卜は、強度、靭性を
基材である鋼が受け持ち、耐摩耗性はもっぱら表面硬質
材が受け持っている。
[0004] Other wear-resistant materials include a welding plate in which a high Cr cast iron-based material is welded on steel, and a hard material such as cemented carbide or ceramics on the surface of a steel sheet by a mechanical method, bonding or brazing. There is a composite plate attached. In these composite plates, strength and toughness are provided by steel as a base material, and wear resistance is provided solely by a hard surface material.

【0005】しかし、このような複合材プレートの使用
においては問題が残っている。すなわち、耐摩耗性は高
Cr鋳鉄系溶接金属中の炭化物量とともに向上するが、
一方で強度と靭性を低下させ、溶接残留応力によって多
数の亀裂が発生し、これが原因で使用中の衝撃に対して
硬化層が短期間で容易に脱落してしまう危険性が大き
い。
However, problems remain with the use of such composite plates. In other words, the wear resistance improves with the amount of carbide in the high Cr cast iron-based weld metal,
On the other hand, the strength and toughness are reduced, and a large number of cracks are generated by welding residual stress, which causes a great risk that the hardened layer easily falls off in a short period of time in response to an impact during use.

【0006】また、超硬合金やセラミツクスを機械的な
方法、接着またはろう付けによって鋼板表面に貼り付け
た場合は、硬質材と鋼板界面の接合強度が弱いため、使
用中に衝撃等によって、硬質材が短期間に容易に脱落す
るおそれがある。
When a cemented carbide or ceramics is applied to the surface of a steel sheet by a mechanical method, bonding or brazing, the bonding strength between the hard material and the steel sheet is weak. The material may fall off easily in a short time.

【0007】第1表は各種の構造材の砂摩耗試験の結果
を示し、また、第2表は、その耐摩耗比を示す。
Table 1 shows the results of sand wear tests of various structural materials, and Table 2 shows the wear resistance ratios.

【0008】[0008]

【表1】 [Table 1]

【表2】 同表において、それぞれの組成は、重量%で以下の通り
である。
[Table 2] In the same table, each composition is as follows in weight%.

【0009】 溶接ライナー C:4.89,Si:1.15,Mn:0.35, Cr:21.22,Nb:3.16 鋼(S45C)C:0.44,Si:0.23,Mn:0.62 超硬合金 C:6.71,Co:6.71,W:82.9, Fe:3.59,Si:1.10,Cr:0.91 銅 Cu:99.9以上 高Cr鋳鉄 C:3.48,Si:0.67,Mn:0.62, P:0.029,S:0.014,Cr:16.07 Ni:1.20,Mo:2.99 これらの表から明らかなように、耐摩耗性の点からは、
超硬合金自体は極めて優れた特性を有する。
Weld liner C: 4.89, Si: 1.15, Mn: 0.35, Cr: 21.22, Nb: 3.16 Steel (S45C) C: 0.44, Si: 0.23 Mn: 0.62 cemented carbide C: 6.71, Co: 6.71, W: 82.9, Fe: 3.59, Si: 1.10, Cr: 0.91 Copper Cu: 99.9 or more High Cr cast iron C: 3.48, Si: 0.67, Mn: 0.62, P: 0.029, S: 0.014, Cr: 16.07 Ni: 1.20, Mo: 2.99 As is clear from the table, from the point of abrasion resistance,
The cemented carbide itself has very good properties.

【0010】ところが、超硬合金は鋼との接合が不安定
なので、ろう付けによる大きな面積での完全な接着は不
可能である。そのため、接合の安定性を増すためのイン
サートを用いても使用条件によっては超硬部分が脱落す
ることがあり、この場合は残部の鋼が短期間で摩耗して
しまい、点検の結果、この摩耗を発見した場合には緊急
の取替が必要となり、保全作業に大きなロスを生じてし
まう。
[0010] However, since cemented carbide is unstable in bonding with steel, it is impossible to completely bond it over a large area by brazing. Therefore, even if an insert is used to increase the stability of the joint, the carbide part may fall off depending on the operating conditions, in which case the remaining steel will wear out in a short period of time. If they are found, urgent replacement is required, causing a large loss in maintenance work.

【0011】[0011]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、耐摩耗性に優れた超硬合金を耐摩耗ライナ
ーとして使用するにあたって、超硬合金と鋼基材との接
合性を改善することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the bondability between a cemented carbide and a steel base material when using a cemented carbide having excellent wear resistance as a wear-resistant liner. Is to do.

【0012】[0012]

【課題を解決するための手段】本発明は、超硬合金板と
鋼板を固相拡散接合によって積層することによってその
課題を解決した。超硬合金板の厚さは、1〜25mmが
適当であるが、これは次の理由による。この種のライナ
ーの厚さは12〜100mmと広範囲にわたるが、通
常、その交換は、初期厚さの半分が摩耗した時点で行わ
れるのが通常で、全体の厚さTの半分のT/2を超硬合
金に置き換えることで寿命延長が確実に達成できる。と
ころが、超硬合金は比重が大きいため、ライナーの他の
部分と同じ重量にするにはT/4以下の厚さにする必要
がある。一方、超硬合金の耐摩耗性は優れているので、
T/2の1/6以上の厚さ(T/12以上)があれば十
分である。このため、超硬合金の厚さは1〜25mmと
する。
The present invention has solved the problem by laminating a cemented carbide plate and a steel plate by solid phase diffusion bonding. The thickness of the cemented carbide plate is suitably from 1 to 25 mm for the following reason. The thickness of this type of liner can vary widely, from 12 to 100 mm, but is usually replaced when half of the initial thickness has worn out, T / 2 of half the total thickness T. The life can be prolonged reliably by replacing with a cemented carbide. However, since the cemented carbide has a large specific gravity, it is necessary to have a thickness of T / 4 or less to make the same weight as other parts of the liner. On the other hand, the wear resistance of cemented carbide is excellent,
It is sufficient if the thickness is 1/6 or more of T / 2 (T / 12 or more). For this reason, the thickness of the cemented carbide is set to 1 to 25 mm.

【0013】超硬合金板と鋼板の接合面には、超硬合金
側に銅の薄板を、鋼板側にNiの箔を介して接合するこ
とができる。鋼板側にNi箔を挿入する目的は、銅板と
鋼板を直接接合した場合に起こるCuとFeの相互拡散
に起因する界面の接合強度低下を防ぐことにある。ま
た、銅板は、脱酸銅やタフピッチ銅に比べて高い継手引
張強度が得られる無酸素銅を使用することが好ましい。
[0013] At the joint surface between the cemented carbide plate and the steel plate, a copper thin plate can be joined to the cemented carbide side and a Ni foil can be joined to the steel plate side. The purpose of inserting the Ni foil on the steel plate side is to prevent a decrease in bonding strength at the interface due to mutual diffusion of Cu and Fe that occurs when the copper plate and the steel plate are directly bonded. Further, as the copper plate, it is preferable to use oxygen-free copper capable of obtaining a higher joint tensile strength than deoxidized copper or tough pitch copper.

【0014】固相拡散接合条件については、雰囲気は真
空あるいは不活性ガスの下で行うのが、接合品質の観点
から好都合である。その処理温度は、超硬合金と鋼を、
銅をインサート金属に用いて接合した場合の継手引張強
度データ表3に示すように、900〜1000℃の範囲
で十分な強度が得られることが分かっている。また、銅
と鋼の間にNi箔を挿入することによって継手強度はさ
らに改善される。したがって、処理温度は、900〜1
000℃が適当である。
Regarding the conditions for the solid phase diffusion bonding, it is advantageous from the viewpoint of the bonding quality that the atmosphere is performed under a vacuum or an inert gas. The processing temperature is set for cemented carbide and steel,
As shown in Table 3 of the joint tensile strength data when copper is used as the insert metal for joining, it is known that sufficient strength can be obtained in the range of 900 to 1000 ° C. Also, joint strength can be further improved by inserting a Ni foil between copper and steel. Therefore, the processing temperature is 900 to 1
000 ° C is suitable.

【0015】[0015]

【表3】 なお、超硬合金/銅/鋼の試験片は、WC−Co製の超
硬合金:厚さ5mm×10mm×10mm、無酸素銅
板:厚さ2mm×10mm×10mm、鋼:断面10m
m×10mmの角柱材である。
[Table 3] The test piece of cemented carbide / copper / steel is a cemented carbide made of WC-Co: thickness 5 mm × 10 mm × 10 mm, oxygen-free copper plate: thickness 2 mm × 10 mm × 10 mm, steel: section 10 m
It is a prism material of mx 10 mm.

【0016】[0016]

【発明の実施の形態】以下本発明の具体的な実施の形態
を実施例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below based on examples.

【0017】[0017]

【実施例】実施例1 図1に示すように、WC−Co製の超硬合金板(厚さ4
mm×100mm×60mm)1を鋼板(厚さ6mm×
240mm×500mm)2上に配置して積層した耐摩
耗プレートを製作した。超硬合金板1と鋼板2との間に
は、超硬合金板1側に厚さ1mmの無酸素銅板3と鋼2
側に厚さ10μmのNi箔4を挿入して、真空ホットプ
レス装置を用いて、930℃×1.5hr×10MPa
の条件によって接合を行った。接合結果は、超硬合金に
割れその他の結果は観察されず、超音波探傷試験によっ
て検査したところ、接合は完全であることが確認され
た。 実施例2 図2に示すように、超硬合金板(厚さ5mm×45mm
×45mm)1と鋼板(厚さ10mm×45mm×45
mm)2を積層した耐摩耗部品を製作した。超硬合金板
1と鋼板2との間には、厚さ0.3mmの無酸素銅板3
を挿入して、真空ホットプレス装置を用いて、900℃
×0.5hr×10MPaの条件で接合を行った。接合
結果は良好で、超硬合金に割れその他の欠陥は観察され
なかった。
EXAMPLE 1 As shown in FIG. 1, a cemented carbide plate made of WC-Co (thickness: 4 mm) was used.
mm × 100mm × 60mm) 1 into a steel plate (thickness 6mm ×
240 mm × 500 mm) 2 to produce a laminated wear-resistant plate. Between the cemented carbide plate 1 and the steel plate 2, a 1 mm thick oxygen-free copper plate 3 and a steel plate 2
Insert Ni foil 4 having a thickness of 10 μm on the side, and use a vacuum hot press device at 930 ° C. × 1.5 hr × 10 MPa
Bonding was performed under the following conditions. As for the joining results, no cracks and other results were observed in the cemented carbide, and inspection by an ultrasonic flaw detection test confirmed that the joining was complete. Example 2 As shown in FIG. 2, a cemented carbide plate (5 mm × 45 mm thick)
× 45mm) 1 and steel plate (thickness 10mm × 45mm × 45)
mm) 2 was manufactured. An oxygen-free copper plate 3 having a thickness of 0.3 mm is provided between the cemented carbide plate 1 and the steel plate 2.
And 900 ° C using a vacuum hot press
Bonding was performed under the conditions of × 0.5 hr × 10 MPa. The joining results were good, and no cracks or other defects were observed in the cemented carbide.

【0018】実施例3 図2に示すような形態で、超硬合金板(厚さ5mm×4
5mm×45mm)1を鋼板(厚さ10mm×45mm
×45mm)2に配置して積層した耐摩耗部品を製作し
た。超硬合金板1と鋼板2との間には、厚さ0.5mm
のNi板4を挿入して、真空ホットプレス装置を用い
て、950℃×0.5hr×10MPaの条件で接合を
行った。接合結果は良好で、超硬合金に割れその他の欠
陥は観察されなかった。
Example 3 A cemented carbide plate (thickness 5 mm × 4
5mm × 45mm) 1 to steel plate (10mm × 45mm thick)
× 45 mm) 2 to produce laminated wear-resistant parts. 0.5 mm thick between cemented carbide plate 1 and steel plate 2
Was joined by using a vacuum hot press device under the conditions of 950 ° C. × 0.5 hr × 10 MPa. The joining results were good, and no cracks or other defects were observed in the cemented carbide.

【0019】[0019]

【発明の効果】本発明によれば、耐摩耗材料としての超
硬合金の特性を産業上最大限に利用することが可能であ
る。すなわち、鋼を基材に用いることによって、既設部
材または機器に対してアーク溶接によって簡単に取りつ
けることができること、さらに、基材どうしをアーク溶
接によってつなぎ合わせることによって、任意の大きさ
の部品として使用可能になり、利用範囲が広くなると考
えられる。
According to the present invention, the characteristics of cemented carbide as a wear-resistant material can be utilized to the fullest extent in industry. In other words, by using steel as the base material, it can be easily attached to existing members or equipment by arc welding, and furthermore, it can be used as a component of any size by joining the base materials together by arc welding. It will be possible and the range of use will be widened.

【0020】また、設備保全において、短周期で部品の
取り替えを行う必要がなくなるので、取り替えに伴うコ
ストの大幅削減となり、また、長期的に見れば材料費の
削減の効果もある。
In addition, since there is no need to replace parts in a short cycle in equipment maintenance, the cost associated with replacement is greatly reduced, and material costs are also reduced over the long term.

【0021】さらに、日常の点検において、超硬合金部
分の損耗の状況を把握しておくことによって、次回の取
り替え時期を予め知ることができるので、緊急保全によ
る人員配置のロスをなくすことが可能となる。
Further, by grasping the condition of wear of the cemented carbide part in daily inspection, it is possible to know in advance the next replacement time, so that it is possible to eliminate the loss of staffing due to emergency maintenance. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】 本発明の別実施例を示す説明図である。FIG. 2 is an explanatory view showing another embodiment of the present invention.

【符号の説明】 1:超硬合金 2:鋼板 3:銅板 4:Ni板[Explanation of Signs] 1: Cemented carbide 2: Steel plate 3: Copper plate 4: Ni plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 厚さが1〜25mmの超硬合金板と鋼板
とを固相拡散接合によって積層した耐摩耗ライナー。
1. A wear-resistant liner obtained by laminating a cemented carbide plate having a thickness of 1 to 25 mm and a steel plate by solid phase diffusion bonding.
【請求項2】 超硬合金板と鋼板の界面に、超硬合金側
には銅を、鋼側にはNiを配して接合した請求項1記載
の耐摩耗ライナー。
2. The wear-resistant liner according to claim 1, wherein copper is provided on the cemented carbide side and Ni is provided on the steel side at the interface between the cemented carbide sheet and the steel sheet.
【請求項3】 銅板が無酸素銅からなる請求項1又は2
記載の耐摩耗ライナー。
3. The copper plate according to claim 1, wherein the copper plate is made of oxygen-free copper.
The described wear-resistant liner.
JP10209873A 1998-07-24 1998-07-24 Wear resistant liner Pending JP2000042756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10209873A JP2000042756A (en) 1998-07-24 1998-07-24 Wear resistant liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10209873A JP2000042756A (en) 1998-07-24 1998-07-24 Wear resistant liner

Publications (1)

Publication Number Publication Date
JP2000042756A true JP2000042756A (en) 2000-02-15

Family

ID=16580063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10209873A Pending JP2000042756A (en) 1998-07-24 1998-07-24 Wear resistant liner

Country Status (1)

Country Link
JP (1) JP2000042756A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131917A (en) * 2007-11-29 2009-06-18 Mitsubishi Materials Corp Composite material having high bonding strength between cemented carbide member and steel member, and composite raw material for cutting tool and cutting tool composed of the composite material
KR101496619B1 (en) 2014-07-10 2015-02-26 한국생산기술연구원 Chute liner
EP3406374A1 (en) * 2017-05-24 2018-11-28 Sandvik Intellectual Property AB A method of manufacturing a component comprising a body of a cemented carbide and a body of a metal alloy or of a metal matrix composite, and a product manufactured thereof
CN114309853A (en) * 2021-12-22 2022-04-12 无锡天杨电子有限公司 Buffer welding method for thick SiC ceramic part and thick stainless steel part
WO2023020986A1 (en) * 2021-08-16 2023-02-23 Ab Sandvik Coromant Method of making a tool
EP4176996A1 (en) * 2021-11-03 2023-05-10 AB Sandvik Coromant Method of making a tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131917A (en) * 2007-11-29 2009-06-18 Mitsubishi Materials Corp Composite material having high bonding strength between cemented carbide member and steel member, and composite raw material for cutting tool and cutting tool composed of the composite material
KR101496619B1 (en) 2014-07-10 2015-02-26 한국생산기술연구원 Chute liner
EP3406374A1 (en) * 2017-05-24 2018-11-28 Sandvik Intellectual Property AB A method of manufacturing a component comprising a body of a cemented carbide and a body of a metal alloy or of a metal matrix composite, and a product manufactured thereof
WO2018215608A1 (en) * 2017-05-24 2018-11-29 Sandvik Intellectual Property Ab A process of manufacturing an article comprising a body of a cemented carbide and a body of a metal alloy or of a metal matrix composite, and a product manufactured thereof
US11794246B2 (en) 2017-05-24 2023-10-24 Mtc Powder Solutions Ab Process of manufacturing an article comprising a body of a cemented carbide and a body of a metal alloy or of a metal matrix composite, and a product manufactured thereof
WO2023020986A1 (en) * 2021-08-16 2023-02-23 Ab Sandvik Coromant Method of making a tool
EP4176996A1 (en) * 2021-11-03 2023-05-10 AB Sandvik Coromant Method of making a tool
CN114309853A (en) * 2021-12-22 2022-04-12 无锡天杨电子有限公司 Buffer welding method for thick SiC ceramic part and thick stainless steel part

Similar Documents

Publication Publication Date Title
CA2893021C (en) Composite wear pad and methods of making the same
CN104588963B (en) Break repair technology for universal connecting rod of universal coupling
US20120282480A1 (en) High-temperature material transferring member
TWI302949B (en)
CN108855377A (en) A kind of coal pulverizer mill roll sleeve and preparation method thereof
JP2000042756A (en) Wear resistant liner
CN110344048B (en) Laser cladding layer of high manganese steel frog, preparation method of laser cladding layer and high manganese steel frog
CN113957332A (en) High-hardness wear-resistant material composition
JPH04246142A (en) Wear resistant copper-base alloy for surfacing
JPH11207471A (en) Wear resistant liner
WO2005123310A1 (en) Method for manufacturing composite material with hot isostatic pressing, and a composite material
Nowacki et al. Microstructure and characteristics of high dimension brazed joints of cermets and steel
Qian et al. Surface hardening of ductile cast iron using stainless steel
US20230278133A1 (en) Friction welding of cladded cemented or sintered carbides to a structural element
Ishio et al. Trial fabrication of heavy section base metals and welded joints for ITER TF coil
JP2000153325A (en) Clad die for hot press and its production
JPWO2021060173A1 (en) Clad steel sheet and its manufacturing method
JPH10140856A (en) Blade for crusher
JP2023058289A (en) Abrasion resistant liner, abrasion resistant liner construct, and manufacturing method thereof
JPH0671451A (en) Production of shovel
Simson et al. Comparison of plasma transferred arc and submerged arc welded abrasive wear resistant composite hardfacings
JPH05293641A (en) Method for joining titanium carbide sintered alloy and stainless steel
JPH11115095A (en) Wear-resistant liner and its manufacture
WO2009155655A1 (en) Manufacture of wear resistant composite components
JP4576854B2 (en) High temperature wear resistant member and overlay welding material used therefor