JP2000039308A - Method for measuring dynamic strain of welding part - Google Patents

Method for measuring dynamic strain of welding part

Info

Publication number
JP2000039308A
JP2000039308A JP10205702A JP20570298A JP2000039308A JP 2000039308 A JP2000039308 A JP 2000039308A JP 10205702 A JP10205702 A JP 10205702A JP 20570298 A JP20570298 A JP 20570298A JP 2000039308 A JP2000039308 A JP 2000039308A
Authority
JP
Japan
Prior art keywords
strain
crack
change
laser
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10205702A
Other languages
Japanese (ja)
Other versions
JP3015877B2 (en
Inventor
Yoshiki Muramatsu
由樹 村松
Seiji Kuroda
聖治 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP10205702A priority Critical patent/JP3015877B2/en
Publication of JP2000039308A publication Critical patent/JP2000039308A/en
Application granted granted Critical
Publication of JP3015877B2 publication Critical patent/JP3015877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure strain and a high-temperature crack with a simple method by applying a laser beam to a place where the welding part of arc welding is subjected to fluxing and coagulation processes or the like, and by dynamically measuring the amount of strain according to change in the heating source movement direction of a speckle pattern obtained by continuous measurement or an orthogonal direction. SOLUTION: One side of an object 1 to be measured is heated by a heat source 2, thermal strain is generated, and the beam of a laser 3 is applied to a specific place to be measured. Due to the mutual interference of beams being irregularly reflected at a laser spot, the change of intensity distribution of light with a random pattern (a speckle pattern) formed on a linear image sensor 4 is continuously measured by the sensor 4, and a data is analyzed by data-recording/-analyzing device 5 and is converted to a strain change curve 7 by a computer 6 using measurement distance, an aim angle, or the like. When a crack occurs in a specimen, an abnormal tendency occurs in the strain change curve 7, thus measuring the relationship between the occurrence and timing of the crack and the strain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、溶接部の
動的ひずみ測定方法に関するものである。さらに詳しく
は、この出願の発明は、溶接にともなう材料の凝固直後
からのひずみ挙動とそれに付随しての高温割れや相変態
の情報をその場で取得し、材料の溶接性の評価と信頼性
の向上を可能とする、新しい非接触方式による動的測定
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the dynamic strain of a weld. More specifically, the invention of this application obtains on-the-spot information on the strain behavior immediately after solidification of the material accompanying welding and the accompanying hot cracking and phase transformation, and evaluates the weldability of the material and its reliability. The present invention relates to a new non-contact dynamic measurement method capable of improving the measurement.

【0002】[0002]

【従来の技術とその課題】溶接部に生じるひずみは高温
割れなどの溶接欠陥、材料の変形あるいは残留応力など
製品の品質管理の上で重要な問題であり、ひずみを非接
触でその場測定する手法の確立が期待されている。従
来、このような溶接高温部での動的なひずみは溶接部表
面の凹凸などをマーキングとみなして、これらを高速度
撮影したフィルム上のマーキングの位置関係の変化から
算出するなど、極めて面倒な方法を採っていた。
2. Description of the Related Art Strain generated in a weld is an important problem in product quality control such as welding defects such as hot cracks, material deformation or residual stress, and the strain is measured in situ without contact. The establishment of a method is expected. Conventionally, such dynamic strain in the high-temperature welding zone is extremely troublesome, assuming that irregularities on the surface of the welding zone are considered as markings and calculating them from changes in the positional relationship of the markings on the film taken at high speed. Was taking the method.

【0003】また、従来、高温割れとひずみの関係を判
定するには施工途上で溶接部に外部から引張りまたは曲
げ荷重を負荷して強制的に割れを発生させるモデル的な
方法がとられていたが、溶接部の溶融・凝固の過程での
割れとは対応関係は明瞭でなく、溶接性の評価としては
信頼性の低いものであった。そこで、この出願の発明
は、以上のような従来技術の欠点を解消し、簡便な方法
で、しかも実溶接の過程に沿って、ひずみや高温割れの
測定を可能とする新しい方法を提供することを課題とし
ている。
Conventionally, in order to determine the relationship between hot cracking and strain, a model method has been employed in which a tensile or bending load is externally applied to a weld during construction to forcibly generate cracks. However, the correspondence with the cracks in the process of melting and solidification of the weld was not clear, and the reliability of the weldability was low. Therefore, the invention of this application solves the above-mentioned drawbacks of the prior art, and provides a new method that enables measurement of strain and hot cracking by a simple method and along the actual welding process. Is an issue.

【0004】[0004]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、まず第1には、溶接部の
溶融・凝固の過程を経る箇所もしくは熱的にその影響を
受ける近傍箇所にレーザービームを照射し、スペックル
・パターンの変化によりひずみ量を動的に測定すること
を特徴とする溶接部の動的測定方法を提供する。
Means for Solving the Problems The invention of the present application is to solve the above-mentioned problems. First, a portion of a welded portion that undergoes a process of melting and solidifying or a portion that is thermally affected by the portion is subjected to the process. A dynamic measurement method for a welded portion characterized by irradiating a laser beam to a location and dynamically measuring a strain amount based on a change in a speckle pattern.

【0005】そしてこの出願の発明は、第2には、ひず
み量の時間変化としてのひずみ曲線に現われる不連続部
により溶接部の高温割れを検出する測定方法を、第3に
は、ひずみ量の時間変化としてのひずみ曲線の健全な溶
接ビードの場合との比較から溶接部の高温割れを検出す
る測定方法を、第4には、ひずみ量の時間変化としての
ひずみ曲線に現われる膨張により相変態を検出する測定
方法を、第5には、膨張量により溶接部の変態途上のト
ータルなひずみ量を検出する測定方法をも提供する。
The second aspect of the invention of this application is a measuring method for detecting a hot crack in a welded portion by a discontinuous portion appearing in a strain curve as a time change of a strain amount. A measurement method for detecting a hot crack in a welded portion by comparing a strain curve as a time change with a sound weld bead, and fourthly, a phase transformation is caused by expansion appearing in a strain curve as a time change of a strain amount. Fifth, the present invention also provides a measuring method for detecting a total strain amount during the transformation of a welded portion based on an expansion amount.

【0006】以上のとおりのこの出願の発明によって、
容易に、高精度で溶接部高温域のひずみを測定すること
が可能となる。また、実溶接部に発生する高温割れ(凝
固割れ)の生じない健全な溶接部のひずみ変化曲線と比
較することにより、もしくはひずみ曲線に現れる不連続
箇所をもって検出することを可能とする。
According to the invention of this application as described above,
It is possible to easily and accurately measure the strain in the high temperature region of the weld. In addition, it is possible to detect a discontinuous point appearing in a strain curve by comparing with a strain change curve of a sound weld having no hot crack (solidification crack) generated in an actual weld.

【0007】さらに溶接凝固部が冷却途上において相変
態を生じる場合、ひずみ曲線上に膨張が現れることから
相変態の発生時期、変態途上の膨張ひずみ量などを的確
に検出することができる。
Further, when a phase transformation occurs during the cooling of the weld solidified portion, the expansion appears on the strain curve, so that the timing of the phase transformation, the amount of expansion strain during the transformation, and the like can be accurately detected.

【0008】[0008]

【発明の実施の形態】この出願の発明は、以上のとおり
の手段によっての目的はレーザーを用いた非接触的手段
により溶接部のひずみ測定を行い、材料の凝固直後から
のひずみ挙動とそれに付随して高温割れならびに相変態
に関する情報を取得し、材料の溶接性の評価と製品の信
頼性向上を図ることを可能とするものであるが、以下に
その実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The purpose of the invention of this application is to measure the strain of a welded portion by a non-contact means using a laser as described above, Then, information on hot cracking and phase transformation is obtained to enable evaluation of the weldability of the material and improvement of the reliability of the product. Embodiments thereof will be described below.

【0009】まず、測定の具体的手段としては、この発
明では、レーザースペックル法を採用している。このレ
ーザースペックルひずみ測定法は物体の表面ひずみを非
接触で測定できる方法である。溶接部表面の測定点にレ
ーザービームを照射すると乱反射したビームの相互干渉
により観察面上に不規則な斑紋(レーザースペックルと
呼ばれる)が生じ、その移動・変化より物体表面のひず
みを非接触で測定できる。この発明では、溶接部の溶融
・凝固を経る箇所もしくは熱的にその影響を受ける近傍
の箇所にレーザービームを照射し、その位置のひずみを
レーザースペックルひずみ測定法によってその場測定す
る。
First, as specific means for measurement, the present invention employs a laser speckle method. This laser speckle strain measurement method is a method capable of measuring the surface strain of an object in a non-contact manner. Irradiation of the laser beam on the measurement point on the surface of the weld produces irregular spots (called laser speckles) on the observation surface due to the mutual interference of the irregularly reflected beams. Can be measured. According to the present invention, a laser beam is applied to a portion of a welded portion that undergoes melting and solidification or a nearby portion that is thermally affected by the laser beam, and the strain at that position is measured in situ by a laser speckle strain measurement method.

【0010】図1は、レーザースペックルひずみ測定法
の一般的構成を例示したものである。たとえばこの図1
に例示したように、測定対象物(矩形板試験片)(1)
の片側をGTA(2)で加熱し、熱ひずみを生じさせ
る。試験片裏面もしくは表面の所定の測定位置をレーザ
ー(3)で照射する。レーザー・スポットで乱反射した
ビームの相互干渉によりリニア・イメージセンサ(4)
上に形成されるランダムな模様(スペックル・パター
ン)の光の強度分布の変化を同センサで連続的に測定
し、データ収録・解析装置(5)に順次収納・解析し、
測定距離:L0 およびねらい角:θ0 など幾何学的数値
(可変)を用いてコンピュータ(6)によるひずみ変化
曲線(7)に換算する。
FIG. 1 illustrates a general configuration of a laser speckle distortion measuring method. For example, this Figure 1
As shown in (1), the measurement object (rectangular plate test piece) (1)
Is heated with GTA (2) to generate thermal strain. A predetermined measurement position on the back or front surface of the test piece is irradiated with a laser (3). Linear image sensor by mutual interference of beams diffusely reflected by laser spot (4)
The change of the intensity distribution of the light of the random pattern (speckle pattern) formed on the top is continuously measured by the same sensor, and sequentially stored and analyzed in the data recording and analysis device (5).
Using a geometrical numerical value (variable) such as a measuring distance: L 0 and an aiming angle: θ 0 , it is converted into a strain change curve (7) by a computer (6).

【0011】試験片に割れが生じた場合はひずみ変化曲
線上に不連続もしくは健全な試験片のひずみ変化曲線と
比較して異常な傾向を示す。それにより、割れの発生・
時期およびひずみとの関連を判定する。同様に相変態も
ひずみ変化曲線上に現れた変態膨張により判定する。そ
こで以下に実施例を示し、さらに詳しく説明する。
[0011] When a crack occurs in the test piece, it shows an abnormal tendency on the strain change curve as compared with the strain change curve of a discontinuous or sound test piece. As a result, cracks
Determine the relationship between time and strain. Similarly, the phase transformation is determined based on the transformation expansion appearing on the strain change curve. Therefore, an embodiment will be shown below and will be described in more detail.

【0012】[0012]

【実施例】SUS304ステンレス薄板矩形板(60×
120×4mm)およびSUS310ステンレス矩形板
(60×120×10mm)を試験片として用い、その
矩形板中央を60mmの長さにティグ・アークで加熱し
た(アーク電流110〜155A、熱源移動速度120
mm/min、加熱方向は板の長手方向、図2参照)。
その際、板の裏面まで溶け込みを与えるため試験片に幅
6〜8mm、深さ2〜8mmの溝(グループ)を加工し
たものと原形のままのものを用いた。溝なしの試験片は
板表面、溝付きの試験片はその溝の底を上記の条件で加
熱した。そして試験片裏面の中央、加熱線直下をArイ
オンレーザーで照射(照射スポット径約2.5mm)し
てレーザースペックルひずみ測定法によりひずみを連続
的に測定した。
[Example] SUS304 stainless thin rectangular plate (60 ×
120 × 4 mm) and a SUS310 stainless steel rectangular plate (60 × 120 × 10 mm) were used as test pieces, and the center of the rectangular plate was heated by a TIG arc to a length of 60 mm (arc current 110 to 155 A, heat source moving speed 120).
mm / min, the heating direction is the longitudinal direction of the plate, see FIG. 2).
At that time, in order to give penetration to the back surface of the plate, a test piece having a groove (group) having a width of 6 to 8 mm and a depth of 2 to 8 mm, and a test piece in its original form were used. The test piece without a groove was heated at the plate surface, and the test piece with a groove was heated at the bottom of the groove under the above conditions. Then, the center of the back surface of the test piece and immediately below the heating line were irradiated with an Ar ion laser (irradiation spot diameter: about 2.5 mm), and the strain was continuously measured by a laser speckle strain measurement method.

【0013】図3および図4は、裏波(加熱により試験
片裏面に生じたビード)表面のひずみの実測例を示した
ものであり、図3は、加熱線の直角方向のひずみ変化
を、図4は、熱源移動方向のひずみ変化を示している。
図3および図4のいずれの場合も、試験片板厚4mm、
アーク電流155Aの場合の裏波表面のひずみ変化曲線
(ひずみ−時間曲線)であり、材料の溶融期間、凝固時
期ならびに凝固直後からのひずみ変化が測定された。
FIG. 3 and FIG. 4 show actual measurement examples of strain on the surface of a back wave (bead generated on the back surface of a test piece by heating). FIG. 3 shows the change in strain in the direction perpendicular to the heating wire. FIG. 4 shows a change in strain in the moving direction of the heat source.
In both cases of FIGS. 3 and 4, the test piece thickness is 4 mm,
FIG. 4 is a strain change curve (strain-time curve) of a Uranami surface at an arc current of 155 A, in which a melting period of a material, a solidification time, and a strain change from immediately after solidification were measured.

【0014】図5は、溝付き試験片のクレータ部(ビー
ド終端部)に生じた割れを示しており、SUS310ス
テンレス鋼板(10mm厚、溝付き)に生じた凝固割れ
である。図6は、溝付き試験片のこのクレータ部におけ
る割れ発生をひずみ曲線において検出した例を示してい
る。そして図7は、割れが生じた場合と生じなかった場
合のひずみ変化曲線の比較である。割れの生じたSUS
310試験片においては凝固後、収縮ひずみがほとんど
生じていないことが確認できる。さらにひずみ変化曲線
に現れた不連続部から割れ発生の時期を推測することも
できる。
FIG. 5 shows cracks generated in the crater portion (bead end portion) of the grooved test piece, which are solidification cracks generated in a SUS310 stainless steel plate (10 mm thick, grooved). FIG. 6 shows an example in which the occurrence of a crack in the crater portion of the grooved test piece is detected in a strain curve. FIG. 7 is a comparison of strain change curves when a crack is generated and when a crack is not generated. SUS with cracks
In the 310 test piece, it can be confirmed that almost no shrinkage strain occurs after solidification. Further, the time of crack generation can be estimated from the discontinuous portion appearing in the strain change curve.

【0015】図8は、冷却途上における相変態の検出例
を示したものである。溶融・凝固を経た箇所のひずみ−
時間変化曲線上に現われた変態途上の膨張を示してい
る。
FIG. 8 shows an example of detection of a phase transformation during cooling. Strain at the place after melting and solidification
This shows the expansion during the transformation appearing on the time change curve.

【0016】[0016]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、溶接部の高温域におけるひずみ挙動の測
定により、溶接部材の凝固直後からのひずみ挙動、高温
割れとひずみの関連などを評価することができ、製品の
信頼性向上に効果が期待される。また、相変態検出によ
り溶接継手の残留応力分布に関する情報を得ることが期
待できる。
As described in detail above, according to the invention of this application, it is possible to evaluate the strain behavior immediately after solidification of a welded member, the relationship between hot cracking and strain, etc. by measuring the strain behavior in the high temperature region of the welded part. It is expected to improve the product reliability. Further, it can be expected that information on the residual stress distribution of the welded joint is obtained by detecting the phase transformation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レーザースペックル測定の構成を例示した図で
ある。
FIG. 1 is a diagram illustrating a configuration of laser speckle measurement.

【図2】実施例における試験片を示した図である。FIG. 2 is a view showing a test piece in an example.

【図3】加熱線に直角方向の溶融・凝固を経た箇所のひ
ずみ−時間変化曲線を示した図である。
FIG. 3 is a diagram showing a strain-time change curve of a portion that has undergone melting and solidification in a direction perpendicular to a heating wire.

【図4】加熱先方向の溶融・凝固を経た箇所のひずみ−
時間変化曲線を示した図である。
[Fig. 4] Strain at the place after melting and solidification in the direction of heating
FIG. 4 is a diagram showing a time change curve.

【図5】クレータ割れの形態を示した図である。FIG. 5 is a view showing a form of a crater crack.

【図6】クレータ割れの検出例を示した図である。FIG. 6 is a diagram showing an example of detecting a crater crack.

【図7】割れ発生時のひずみ挙動を示した図である。FIG. 7 is a diagram showing a strain behavior when a crack occurs.

【図8】冷却途上における相変態の検出を示した図であ
る。
FIG. 8 is a diagram showing detection of a phase transformation during cooling.

【符号の説明】[Explanation of symbols]

1 試験片 2 加熱源(GTA) 3 レーザー 4 リニア・イメージセンサ 5 データ収録・解析装置 6 コンピュータ 7 ひずみ変化曲線 8 ビーム・エキスパンダ DESCRIPTION OF SYMBOLS 1 Test piece 2 Heat source (GTA) 3 Laser 4 Linear image sensor 5 Data recording / analysis device 6 Computer 7 Strain change curve 8 Beam expander

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月6日(1999.9.6)[Submission Date] September 6, 1999 (September 9, 1999)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 溶接部の動的ひずみ測定方法[Title of the Invention] Method for measuring dynamic strain in welds

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、アーク溶
接による溶接部の動的ひずみ測定方法に関するものであ
る。さらに詳しくは、この出願の発明は、アーク溶接に
ともなう材料の凝固直後からのひずみ挙動とそれに付随
しての高温割れや相変態の情報をその場で取得し、材料
の溶接性の評価と信頼性の向上を可能とする、新しい非
接触方式による動的測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the dynamic strain of a weld by arc welding. More specifically, the invention of the present application obtains on-the-spot information on the strain behavior immediately after solidification of the material accompanying arc welding and the accompanying hot cracking and phase transformation, and evaluates and evaluates the weldability of the material. The present invention relates to a new non-contact dynamic measurement method capable of improving performance.

【0002】[0002]

【従来の技術とその課題】アーク溶接による溶接部に生
ずるひずみは高温割れなどの溶接欠陥、材料の変形ある
いは残留応力など製品の品質管理の上で重要な問題であ
り、ひずみを非接触でその場測定する手法の確立が期待
されている。従来、このようなアーク溶接による溶接高
温部での動的なひずみ測定は、溶接部表面の凹凸などを
マーキングとみなして、これらを高速度撮影したフィル
ム上のマーキングの位置関係の変化から算出するなど、
極めて面倒な方法を採っていた。
2. Description of the Related Art Strain generated in a weld by arc welding is an important problem in quality control of products such as welding defects such as high temperature cracks, material deformation or residual stress. It is expected to establish a method for field measurement. Conventionally, dynamic strain measurement in a high-temperature welding zone by such arc welding is performed by regarding the unevenness of the surface of the welded portion as a marking and calculating them from a change in the positional relationship of the markings on the film at a high speed. Such,
It took an extremely cumbersome method.

【0003】また、従来、高温割れとひずみの関係を判
定するには施工途上で溶接部に外部から引張りまたは曲
げ荷重を負荷して強制的に割れを発生させるモデル的な
方法がとられていたが、溶接部の溶融・凝固の過程での
割れとは対応関係は明瞭でなく、溶接性の評価としては
信頼性の低いものであった。そこで、この出願の発明
は、以上のような従来技術の欠点を解消し、簡便な方法
で、しかも実溶接の過程に沿って、ひずみや高温割れの
測定を可能とする新しい方法を提供することを課題とし
ている。
Conventionally, in order to determine the relationship between hot cracking and strain, a model method has been employed in which a tensile or bending load is externally applied to a weld during construction to forcibly generate cracks. However, the correspondence with the cracks in the process of melting and solidification of the weld was not clear, and the reliability of the weldability was low. Therefore, the invention of this application solves the above-mentioned drawbacks of the prior art, and provides a new method that enables measurement of strain and hot cracking by a simple method and along the actual welding process. Is an issue.

【0004】[0004]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、まず第1には、アーク溶
接による溶接部の溶融・凝固の過程を経る箇所もしくは
熱的にその影響を受ける近傍箇所にレーザービームを照
射し、スペックル・パターンを連続的に測定し、得ら
れたスペックル・パターンの加熱源移動方向またはその
直角方向での変化によりひずみ量を動的に測定すること
を特徴とする溶接部の動的測定方法を提供する。
Means for Solving the Problems The invention of the present application is to solve the above-mentioned problems. First of all, the present invention relates to a portion which undergoes a process of melting and solidification of a welded portion by arc welding or its influence on heat. by irradiating a laser beam in the vicinity of places undergoing, the speckle pattern measured continuously, dynamically measure the strain amount due to a change in the heating source moving direction or perpendicular direction of the resultant speckle pattern And a method for dynamic measurement of a welded part.

【0005】そしてこの出願の発明は、第2には、動的
測定のひずみ量を時間変化のひずみとして測定し、得ら
れたひずみ曲線に現われる不連続部により溶接部の高温
割れを検出する測定方法を、第3には、動的測定のひず
み量の時間変化としてのひずみ曲線を、健全な溶接ビー
ドの場合のひずみ曲線との比較から溶接部の高温割れを
検出する測定方法を、第4には、ひずみ量の時間変化と
してのひずみ曲線に現われる膨張によって、相変態を検
出する測定方法を、第5には、膨張量によって、溶接部
の変態途上のトータルなひずみ量を検出する測定方法を
も提供する。
[0005] Secondly, the invention of the present application is a measurement in which the amount of dynamic measurement is measured as time-varying strain, and a hot crack in a weld is detected by a discontinuous portion appearing in the obtained strain curve. A third method is a measurement method for detecting a hot crack in a weld by comparing a strain curve as a time change of a strain amount in dynamic measurement with a strain curve in a case of a sound weld bead. The fifth is a measurement method for detecting a phase transformation by expansion appearing in a strain curve as a time change of a strain amount, and the fifth is a measurement method for detecting a total strain amount during transformation of a welded portion by an expansion amount. Also provide.

【0006】以上のとおりのこの出願の発明によって、
容易に、高精度でアーク溶接部高温域のひずみを測定す
ることが可能となる。また、実溶接部に発生する高温割
れ(凝固割れ)の生じない健全な溶接部のひずみ変化曲
線と比較することにより、もしくはひずみ曲線に現れる
不連続箇所をもって検出することを可能とする。
According to the invention of this application as described above,
It is possible to easily and accurately measure the strain in the high temperature region of the arc welded portion. In addition, it is possible to detect a discontinuous point appearing in a strain curve by comparing with a strain change curve of a sound weld having no hot crack (solidification crack) generated in an actual weld.

【0007】さらに溶接凝固部が冷却途上において相変
態を生じる場合、ひずみ曲線上に膨張が現れることから
相変態の発生時期、変態途上の膨張ひずみ量などを的確
に検出することができる。
Further, when a phase transformation occurs during the cooling of the weld solidified portion, the expansion appears on the strain curve, so that the timing of the phase transformation, the amount of expansion strain during the transformation, and the like can be accurately detected.

【0008】[0008]

【発明の実施の形態】この出願の発明は、以上のとおり
の手段によっての目的はレーザーを用いた非接触的手段
により溶接部のひずみ測定を行い、材料の凝固直後から
のひずみ挙動とそれに付随して高温割れならびに相変態
に関する情報を取得し、材料の溶接性の評価と製品の信
頼性向上を図ることを可能とするものであるが、以下に
その実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The purpose of the invention of this application is to measure the strain of a welded portion by a non-contact means using a laser as described above, Then, information on hot cracking and phase transformation is obtained to enable evaluation of the weldability of the material and improvement of the reliability of the product. Embodiments thereof will be described below.

【0009】まず、測定の具体的手段としては、この発
明では、レーザースペックル法を採用している。このレ
ーザースペックルひずみ測定法は物体の表面ひずみを非
接触で測定できる方法である。溶接部表面の測定点にレ
ーザービームを照射すると乱反射したビームの相互干渉
により観察面上に不規則な斑紋(レーザースペックルと
呼ばれる)が生じ、得られるスペックル・パターンにお
ける、加熱源移動方向またはその直角方向での、移動・
変化より物体表面のひずみを非接触で測定できる。この
発明では、アーク溶接部の溶融・凝固を経る箇所もしく
は熱的にその影響を受ける近傍の箇所にレーザービーム
を照射し、その位置のひずみをレーザースペックルひず
み測定法によってその場測定する。
First, as specific means for measurement, the present invention employs a laser speckle method. This laser speckle strain measurement method is a method capable of measuring the surface strain of an object in a non-contact manner. When a measurement point on the surface of the weld is irradiated with a laser beam, irregular spots (called laser speckles) occur on the observation surface due to the mutual interference of the irregularly reflected beams, and the direction of movement of the heating source or In the right angle direction,
From the change, the strain on the object surface can be measured in a non-contact manner. According to the present invention, a laser beam is applied to a portion of an arc welded portion that undergoes melting and solidification or a nearby portion that is thermally affected by the laser beam, and the strain at that position is measured in situ by a laser speckle strain measurement method.

【0010】図1は、レーザースペックルひずみ測定法
の一般的構成を例示したものである。たとえばこの図1
に例示したように、測定対象物(矩形板試験片)(1)
の片側をGTA(2)で加熱し、熱ひずみを生じさせ
る。試験片裏面もしくは表面の所定の測定位置をレーザ
ー(3)で照射する。レーザー・スポットで乱反射した
ビームの相互干渉によりリニア・イメージセンサ(4)
上に形成されるランダムな模様(スペックル・パター
ン)の光の強度分布の変化を同センサで連続的に測定す
る。測定されたデータは、データ収録・解析装置(5)
に順次収納・解析し、測定距離:L0 およびねらい角:
θ0 など幾何学的数値(可変)を用いてコンピュータ
(6)によるひずみ変化曲線(7)に換算する。
FIG. 1 illustrates a general configuration of a laser speckle distortion measuring method. For example, this Figure 1
As shown in (1), the measurement object (rectangular plate test piece) (1)
Is heated with GTA (2) to generate thermal strain. A predetermined measurement position on the back or front surface of the test piece is irradiated with a laser (3). Linear image sensor by mutual interference of beams diffusely reflected by laser spot (4)
A change in the intensity distribution of light of a random pattern (speckle pattern) formed thereon is continuously measured by the same sensor. The measured data is stored in a data recording and analysis device (5)
Are sequentially stored and analyzed, and the measurement distance: L 0 and the target angle:
Using a geometrical numerical value (variable) such as θ 0 , it is converted into a strain change curve (7) by a computer (6).

【0011】試験片に割れが生じた場合はひずみ変化曲
線上に不連続もしくは健全な試験片のひずみ変化曲線と
比較して異常な傾向となって現われる。それにより、割
れの発生・時期およびひずみとの関連を測定するとが
できる。同様に相変態もひずみ変化曲線上に現れた変態
膨張により判定することができる。そこで以下に実施例
を示し、さらに詳しく説明する。
[0011] When a crack occurs in the test piece, an abnormal tendency appears on the strain change curve as compared with the strain change curve of a discontinuous or sound test piece . This allows the arc to measure the relationship between generation and timing of cracking and distortion. Similarly, the phase transformation can be determined by the transformation expansion that appears on the strain change curve. Therefore, an embodiment will be shown below and will be described in more detail.

【0012】[0012]

【実施例】SUS304ステンレス薄板矩形板(60×
120×4mm)およびSUS310ステンレス矩形板
(60×120×10mm)を試験片として用い、その
矩形板中央を60mmの長さにティグ・アークで加熱し
た(アーク電流110〜155A、熱源移動速度120
mm/min、加熱方向は板の長手方向、図2参照)。
その際、板の裏面まで溶け込みを与えるため試験片に幅
6〜8mm、深さ2〜8mmの溝(グルーブ)を加工し
たものと原形のままのものを用いた。溝なしの試験片は
板表面、溝付きの試験片はその溝の底を上記の条件で加
熱した。そして試験片裏面の中央、加熱線直下をArイ
オンレーザーで照射(照射スポット径約2.5mm)し
てレーザースペックルひずみ測定法によりひずみを連続
的に測定した。
[Example] SUS304 stainless thin rectangular plate (60 ×
120 × 4 mm) and a SUS310 stainless steel rectangular plate (60 × 120 × 10 mm) were used as test pieces, and the center of the rectangular plate was heated by a TIG arc to a length of 60 mm (arc current 110 to 155 A, heat source moving speed 120).
mm / min, the heating direction is the longitudinal direction of the plate, see FIG. 2).
At that time, a test piece having a width of 6 to 8 mm and a depth of 2 to 8 mm processed into a groove (groove) and the original one were used in order to give penetration to the back surface of the plate. The test piece without a groove was heated at the plate surface, and the test piece with a groove was heated at the bottom of the groove under the above conditions. Then, the center of the back surface of the test piece and immediately below the heating line were irradiated with an Ar ion laser (irradiation spot diameter: about 2.5 mm), and the strain was continuously measured by a laser speckle strain measurement method.

【0013】図3および図4は、裏波(加熱により試験
片裏面に生じたビード)表面のひずみの実測例を示した
ものであり、図3は、加熱線の直角方向のひずみ変化
を、図4は、熱源移動方向のひずみ変化を示している。
図3および図4のいずれかの場合も、試験片板厚4m
m、アーク電流155Aの場合の裏波表面のひずみ変化
曲線(ひずみ−時間曲線)であり、材料の溶融期間、凝
固時期ならびに凝固直後からのひずみ変化が測定され
た。
FIG. 3 and FIG. 4 show actual measurement examples of strain on the surface of a back wave (bead generated on the back surface of a test piece by heating). FIG. 3 shows the change in strain in the direction perpendicular to the heating wire. FIG. 4 shows a change in strain in the moving direction of the heat source.
In either case of FIG. 3 and FIG.
m is a strain change curve (strain-time curve) of the surface of the backside wave when the arc current is 155 A, in which the melting period of the material, the solidification time, and the strain change immediately after solidification were measured.

【0014】図5は、溝付き試験片のクレータ部(ビー
ド終端部)に生じた割れを示しており、SUS310ス
テンレス鋼板(10mm厚、溝付き)に生じた凝固割れ
である。図6は、溝付き試験片のこの図5のクレータ部
ビード終端部における割れ発生をひずみ曲線において検
出した例を示している。そして図7は、割れが生じた場
合と生じなかった場合のひずみ変化曲線の比較である。
割れの生じたSUS310試験片においては不連続部が
現れ、凝固後、収縮ひずみがほとんど生じていないこと
が確認できる。さらにひずみ変化曲線に現れた不連続部
から割れ発生の時期を推測することもできる。
FIG. 5 shows cracks generated in the crater portion (bead end portion) of the grooved test piece, which are solidification cracks generated in a SUS310 stainless steel plate (10 mm thick, grooved). FIG. 6 shows an example in which the occurrence of a crack at the end of the bead of the crater in FIG. FIG. 7 is a comparison of strain change curves when a crack is generated and when a crack is not generated.
In the SUS310 test piece with cracks, a discontinuous portion appears, and it can be confirmed that almost no shrinkage strain occurs after solidification. Further, the time of crack generation can be estimated from the discontinuous portion appearing in the strain change curve.

【0015】図8は、冷却途上における溶接部の相変態
の検出例を示したものである。溶融・凝固を経た箇所の
ひずみ−時間変化曲線上に現われた変態途上の膨張を示
している。
FIG. 8 shows an example of detecting a phase transformation of a weld during cooling. It shows the expansion during transformation appearing on the strain-time change curve at the place after melting and solidification.

【0016】[0016]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、アーク溶接部の高温域におけるひずみ挙
動の測定により、溶接部材の凝固直後からのひずみ挙
動、高温割れとひずみの関連などを評価することがで
き、製品の信頼性向上に効果が期待される。また、相変
態検出により溶接継手の残留応力分布に関する情報を得
ることが期待できる。
As described in detail above, according to the invention of this application, the strain behavior immediately after solidification of a welded member, the relationship between hot cracking and strain, etc. are evaluated by measuring the strain behavior of an arc welded part in a high temperature range. It is expected to improve the product reliability. Further, it can be expected that information on the residual stress distribution of the welded joint is obtained by detecting the phase transformation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レーザースペックル測定の構成を例示した図で
ある。
FIG. 1 is a diagram illustrating a configuration of laser speckle measurement.

【図2】実施例における試験片を示した図である。FIG. 2 is a view showing a test piece in an example.

【図3】加熱源に直角方向の溶融・凝固を経た箇所のひ
ずみ−時間変化曲線を示した図である。
FIG. 3 is a diagram showing a strain-time change curve of a portion that has undergone melting and solidification in a direction perpendicular to a heating source.

【図4】加熱先方向の溶融・凝固を経た箇所のひずみ−
時間変化曲線を示した図である。
[Fig. 4] Strain at the place after melting and solidification in the direction of heating
FIG. 4 is a diagram showing a time change curve.

【図5】クレータ割れの形態を示した図である。FIG. 5 is a view showing a form of a crater crack.

【図6】クレータ割れの検出例を示した図である。FIG. 6 is a diagram showing an example of detecting a crater crack.

【図7】割れ発生時のひずみ挙動を示した図である。FIG. 7 is a diagram showing a strain behavior when a crack occurs.

【図8】冷却途上における相変態の検出を示した図であ
る。
FIG. 8 is a diagram showing detection of a phase transformation during cooling.

【符号の説明】 1 試験片 2 加熱源(GTA) 3 レーザー 4 リニア・イメージセンサ 5 データ収録・解析装置 6 コンピュータ 7 ひずみ変化曲線 8 ビーム・エキスパンダ[Description of Signs] 1 Test piece 2 Heating source (GTA) 3 Laser 4 Linear image sensor 5 Data recording and analysis device 6 Computer 7 Strain change curve 8 Beam expander

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶接部の溶融・凝固の過程を経る箇所も
しくは熱的にその影響を受ける近傍箇所にレーザービー
ムを照射し、スペックル・パターンの変化によりひずみ
量を動的に測定することを特徴とする溶接部の動的ひず
み測定方法。
1. A method for irradiating a laser beam to a portion of a welded portion that undergoes a process of melting and solidification or a nearby portion that is thermally affected by the laser beam, and dynamically measures a strain amount based on a change in a speckle pattern. Characteristic method for measuring dynamic strain in welds.
【請求項2】 ひずみ量の時間変化としてのひずみ曲線
に現われる不連続部により溶接部の高温割れを検出する
請求項1の測定方法。
2. The measuring method according to claim 1, wherein a hot crack in the weld is detected by a discontinuous portion appearing in a strain curve as a time change of the strain amount.
【請求項3】 ひずみ量の時間変化としてのひずみ曲線
の健全な溶接ビードの場合との比較から溶接部の高温割
れを検出する請求項1または2の測定方法。
3. The method according to claim 1, wherein a hot crack in the weld is detected by comparing a strain curve as a time change of the strain amount with a case of a sound weld bead.
【請求項4】 ひずみ量の時間変化としてのひずみ曲線
に現われる膨張により相変態を検出する請求項1の測定
方法。
4. The measuring method according to claim 1, wherein a phase transformation is detected by expansion appearing in a strain curve as a time change of the strain amount.
【請求項5】 膨張量により溶接部の変態途上のトータ
ルなひずみ量を検出する請求項1の測定方法。
5. The method according to claim 1, wherein the total amount of strain during the transformation of the weld is detected based on the amount of expansion.
JP10205702A 1998-07-21 1998-07-21 Dynamic strain measurement method for welds Expired - Lifetime JP3015877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10205702A JP3015877B2 (en) 1998-07-21 1998-07-21 Dynamic strain measurement method for welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10205702A JP3015877B2 (en) 1998-07-21 1998-07-21 Dynamic strain measurement method for welds

Publications (2)

Publication Number Publication Date
JP2000039308A true JP2000039308A (en) 2000-02-08
JP3015877B2 JP3015877B2 (en) 2000-03-06

Family

ID=16511299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10205702A Expired - Lifetime JP3015877B2 (en) 1998-07-21 1998-07-21 Dynamic strain measurement method for welds

Country Status (1)

Country Link
JP (1) JP3015877B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064864A (en) * 2005-09-01 2007-03-15 Toyo Seiki Seisakusho:Kk Strain measuring method and device therefor
WO2012143986A1 (en) 2011-04-18 2012-10-26 トヨタ自動車株式会社 Method and device for manufacturing driving force transmission device for vehicle
RU2475725C1 (en) * 2011-09-14 2013-02-20 Общество С Ограниченной Ответственностью Инженерно-Технологический Центр "Сварка" Method for nondestructive rapid inspection of weld joints and apparatus for realising said method
WO2014181458A1 (en) 2013-05-10 2014-11-13 株式会社日立製作所 Welding method, welding system, and system for monitoring weld solidification cracking
CN104990498A (en) * 2015-06-16 2015-10-21 广东电网有限责任公司电力科学研究院 Power plant boiler high-temperature pipe system macro displacement measurement device and method based on CCD photography
US9400237B2 (en) 2013-03-15 2016-07-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical method for detecting displacements and strains at ultra-high temperatures during thermo-mechanical testing
CN110954008A (en) * 2019-11-29 2020-04-03 上海交通大学 Welding strain measurement system and method based on three-dimensional digital image correlation method
EP3366414B1 (en) * 2017-02-27 2020-08-19 Universität Kassel Device and method for checking joint connections

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104275560B (en) * 2014-10-29 2016-05-18 武船重型工程股份有限公司 A kind of welding method of girder steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064864A (en) * 2005-09-01 2007-03-15 Toyo Seiki Seisakusho:Kk Strain measuring method and device therefor
WO2012143986A1 (en) 2011-04-18 2012-10-26 トヨタ自動車株式会社 Method and device for manufacturing driving force transmission device for vehicle
US9120184B2 (en) 2011-04-18 2015-09-01 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing vehicle power transmission device
RU2475725C1 (en) * 2011-09-14 2013-02-20 Общество С Ограниченной Ответственностью Инженерно-Технологический Центр "Сварка" Method for nondestructive rapid inspection of weld joints and apparatus for realising said method
US9400237B2 (en) 2013-03-15 2016-07-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical method for detecting displacements and strains at ultra-high temperatures during thermo-mechanical testing
WO2014181458A1 (en) 2013-05-10 2014-11-13 株式会社日立製作所 Welding method, welding system, and system for monitoring weld solidification cracking
CN104990498A (en) * 2015-06-16 2015-10-21 广东电网有限责任公司电力科学研究院 Power plant boiler high-temperature pipe system macro displacement measurement device and method based on CCD photography
EP3366414B1 (en) * 2017-02-27 2020-08-19 Universität Kassel Device and method for checking joint connections
CN110954008A (en) * 2019-11-29 2020-04-03 上海交通大学 Welding strain measurement system and method based on three-dimensional digital image correlation method
CN110954008B (en) * 2019-11-29 2021-08-24 上海交通大学 Welding strain measurement system and method based on three-dimensional digital image correlation method

Also Published As

Publication number Publication date
JP3015877B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
KR100333820B1 (en) Simultaneous temperature measurement during laser welding using at least two pyrometers for process parameter monitoring and welding quality control
US8235588B2 (en) Method for automated testing of a material joint
US8541746B2 (en) Process and system for the nondestructive quality determination of a weld seam, and a welding device
US6628404B1 (en) Acoustic sensor for real-time control for the inductive heating process
JPS6390383A (en) Method and device for continuously manufacturing tubular body through laser longitudinal seam welding
JP3015877B2 (en) Dynamic strain measurement method for welds
JP2528530B2 (en) Method for detecting surface flaws in non-magnetic steel billets
Santoro et al. Infrared in-line monitoring of flaws in steel welded joints: a preliminary approach with SMAW and GMAW processes
JP4187818B2 (en) Inspection method of welding state
JP2515460B2 (en) ERW welded pipe manufacturing method
Khan et al. Infrared thermography as a control for the welding process
JPH1177363A (en) Method for inspecting fillet weld part, and device used therefor
Lankalapalli et al. Laser weld penetration estimation using temperature measurements
JP2523379B2 (en) Metal foreign layer detector
JP2007253221A (en) Laser welding method
JP2663834B2 (en) Seam scanning control method in composite heat source welding
JP2000015474A (en) Inspecting method of weld zone in welded tube
JPH05223788A (en) Method for diagnosing soundness of weld on sheet
JPH06137853A (en) Automatic beveling inspection device
JP2803956B2 (en) ERW weld pipe edge offset adjustment method and measuring device
JPH01107141A (en) Non-destructive determining method of weld penetration
RU2248867C1 (en) Method of fusion depth control at laser welding of precision articles and sample for performing the method
SU832461A1 (en) Method of determining quality of materials
Gorkič et al. Measurement of weldpiece distortion during pulsed laser welding using rapid laser profilometry
Yang et al. Measurement of nugget size of spot weld by digital shearography

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term