JP2000039212A - Hot water supply apparatus with heat insulation function - Google Patents

Hot water supply apparatus with heat insulation function

Info

Publication number
JP2000039212A
JP2000039212A JP10210060A JP21006098A JP2000039212A JP 2000039212 A JP2000039212 A JP 2000039212A JP 10210060 A JP10210060 A JP 10210060A JP 21006098 A JP21006098 A JP 21006098A JP 2000039212 A JP2000039212 A JP 2000039212A
Authority
JP
Japan
Prior art keywords
temperature
water
heat
sensitive element
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10210060A
Other languages
Japanese (ja)
Other versions
JP3871810B2 (en
Inventor
Shuho Murahata
秀峰 村端
Kenichi Kozuka
謙一 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP21006098A priority Critical patent/JP3871810B2/en
Publication of JP2000039212A publication Critical patent/JP2000039212A/en
Application granted granted Critical
Publication of JP3871810B2 publication Critical patent/JP3871810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform reliable detection of normal water presence by a method wherein when a circuit trouble occurs to an energization control circuit, the second threshold of the heat generation state of a heat-sensitive element is further set and a heat generating state detected during self-heat generation of a heat-sensitive element is compared with the second threshold, and the circuit trouble of the energization control circuit is decided. SOLUTION: A hot water supply apparatus 1 is connected to a hot water supply pipe 6, and by opening a faucet, water flows through an apparatus. When flow-through of water is detected by a water quantity sensor 8, a controller 10 causes respective opening of a main solenoid valve 11 and a solenoid valve 13, a proportional control valve 12 is opened at a given opening, and an ignition electrode 16 is continuously sparked to ignite a burner 4. The controller 10 computes a necessary heating amount from an initial water quantity obtained from an initial water temperature obtained by an incoming water temperature sensor 7, so that hot water is supplied at a set temperature set by a regulation button of a remote control 14. Further, the controller performs correction control of the opening of the proportional control valve 12, based on a detecting temperature obtained from a hot water supply temperature sensor 9, so that a hot water supply temperature coincides with a set temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、止水状態でバーナ
の燃焼を行い、器具内の水温を所定温度範囲に維持する
保温制御が可能な保温機能付給湯器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heater with a heat retaining function capable of performing heat retention control to burn a burner in a water stopped state and maintain a water temperature in an appliance within a predetermined temperature range.

【0002】[0002]

【従来の技術】給湯器の使用開始時には、まず器具内に
貯留していた水が送出され、出湯温度の立上りに時間が
かかることから、給湯器を使わない止水状態でバーナを
所定の加熱量で燃焼させて、器具内の水温を所定温度範
囲に維持しておき、給湯器を使用する際には迅速な立上
りで設定温度での出湯を得て使い勝手を向上させる保温
機能を付与したものが知られている。しかし、上記保温
機能は、例えば凍結防止の水抜き等によって器具の内部
に水がない場合でも働くため、この状態で加熱されると
空焚きによって器具の内部が異常高温となり、内胴劣化
等の器具の損傷を招くおそれがある。そこで、本件出願
人は、保温制御を行う前に器具内の水の有無を判断し、
水がない場合は保温制御を行わない有水検知を行う発明
を先に提供している。これは、器具内の水管にサーミス
タ等の感温素子を設けると共に、サーミスタへ通電させ
て自己発熱させ、その発熱状態の変化を検知する通電制
御回路をトランジスタやマイコン等によって構成する一
方、マイコンには、サーミスタの周囲の環境が水の場合
における発熱状態の変化の閾値を予め記憶させておき、
保温制御におけるバーナの燃焼前にサーミスタを自己発
熱させて、検知される発熱状態の変化を閾値と比較する
ことで、閾値より大きい場合は、器具内に水無しと、温
度上昇が閾値より小さい場合は、器具内に水有りと夫々
判断するものである。
2. Description of the Related Art At the start of use of a water heater, first, water stored in the appliance is sent out, and it takes time to rise the tap water temperature. Therefore, the burner is heated to a predetermined temperature without using the water heater. Combustion in quantity, water temperature in the appliance is maintained in a predetermined temperature range, and when using a water heater, a warming function is provided to obtain hot water at the set temperature with a quick rise and improve usability. It has been known. However, the above-mentioned heat retention function works even when there is no water inside the appliance due to, for example, drainage for preventing freezing.When heated in this state, the interior of the appliance becomes an abnormally high temperature due to empty heating, and the inner body deteriorates. This can cause damage to the equipment. Therefore, the applicant has determined the presence or absence of water in the appliance before performing the heat retention control,
An invention for detecting presence of water without performing heat retention control when there is no water is provided earlier. This is done by installing a temperature-sensitive element such as a thermistor in the water pipe inside the appliance, and energizing the thermistor to generate heat by itself, and configuring an energization control circuit that detects the change in the heat generation state with a transistor or a microcomputer, etc. Is stored in advance the threshold value of the change in the heat generation state when the environment around the thermistor is water,
By causing the thermistor to self-heat before the burner burns in the heat retention control, and comparing the change in the detected heat generation state with the threshold, if it is larger than the threshold, there is no water in the appliance, and if the temperature rise is smaller than the threshold Is to judge that there is water in the appliance.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記発明にお
いては、通電制御回路の故障による誤検知の可能性があ
る。例えば、サーミスタへ通電させるトランジスタがO
FF故障したりすることでサーミスタが自己発熱できな
い場合でも、温度上昇が生じず閾値を下回ることで、水
有りと判断され、この場合に保温制御が実行されると空
焚きとなってしまう。又、サーミスタの入力側に配置し
た抵抗のショート故障等によりサーミスタが自己発熱し
過ぎる場合は、温度上昇が生じて閾値を上回ることで水
無しと判断され、実際には器具内に水があるにも拘わら
ず、保温制御が実行されないことになる。更に、上記ト
ランジスタが逆にON故障したりすることでサーミスタ
が常時自己発熱している場合も、温度上昇は閾値を上回
る値で固定されるため、ここでも水無しと判断され、保
温制御が実行されなくなってしまう。
However, in the above invention, there is a possibility of erroneous detection due to a failure of the power supply control circuit. For example, if the transistor for energizing the thermistor is O
Even when the thermistor cannot self-heat due to FF failure or the like, the temperature rise does not occur and the temperature falls below the threshold, so that it is determined that there is water, and in this case, if the heat retention control is executed, it results in idle heating. If the thermistor self-heats excessively due to a short-circuit failure of a resistor placed on the input side of the thermistor, it is determined that there is no water because the temperature rises and exceeds the threshold value. Nevertheless, the heat retention control is not executed. Further, even if the thermistor is constantly generating heat due to the ON failure of the transistor, the temperature rise is fixed at a value exceeding the threshold value. Will not be done.

【0004】そこで、請求項1に記載の発明は、このよ
うな回路故障が生じた場合以外は正常な有水検知が確実
に行える信頼性の高い保温機能付給湯器を提供すること
を目的としたものである。
[0004] Therefore, an object of the present invention is to provide a highly reliable water heater with a heat retaining function that can reliably detect normal water presence except when such a circuit failure occurs. It was done.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、前記通電制御回路に回路
故障が生じた場合における前記感温素子の発熱状態の第
二の閾値を更に設定し、前記感温素子の自己発熱の際に
検知される発熱状態を前記第二の閾値と比較して、前記
通電制御回路の回路故障を判断可能としたことを特徴と
するものである。請求項2に記載の発明は、請求項1の
目的に加えて、器具内の水無しや通電制御回路の回路故
障の判断に適切に対処するために、器具内の水無し状態
又は通電制御回路の回路故障を判断した場合は保温制御
を禁止するものである。請求項3に記載の発明は、請求
項1又は2の目的に加えて、感温素子を入水温センサと
しても利用する場合の回路故障に適切に対処するため
に、通電制御回路による感温素子への通電量を、前記感
温素子を水管の温度検出に利用できる通電量に切換可能
とする一方、前記通電制御回路の回路故障が、前記感温
素子を前記水管の温度検出に利用できないものである場
合は、通常の燃焼制御を禁止するものである。
In order to achieve the above object, according to the present invention, a second threshold value of a heat generation state of the temperature sensing element when a circuit failure occurs in the conduction control circuit. Is further set, and a heat generation state detected at the time of self-heating of the temperature-sensitive element is compared with the second threshold value, so that a circuit failure of the energization control circuit can be determined. is there. The invention according to claim 2 provides, in addition to the object of claim 1, a water-free state in the appliance or an energization control circuit in order to appropriately cope with the determination of the absence of water in the appliance or a circuit failure of the energization control circuit. If it is determined that the circuit has failed, the heat retention control is prohibited. According to a third aspect of the present invention, in addition to the object of the first or second aspect, in order to appropriately cope with a circuit failure when the temperature-sensitive element is also used as an incoming water temperature sensor, the temperature-sensitive element is controlled by an energization control circuit. While the amount of current supplied to the temperature control element can be switched to the amount of current that can be used to detect the temperature of the water pipe, the circuit failure of the power supply control circuit prevents the temperature sensitive element from being used to detect the temperature of the water pipe. If, the normal combustion control is prohibited.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、保温機能付給湯器(以下
「給湯器」と略称する)の概略図で、給湯器1は、燃焼
室2内に、接続された給水管3からの水をバーナ4の燃
焼熱で加熱する熱交換器5を備え、熱交換器5には、加
熱された湯を送り出す出湯管6が接続される。給水管3
には、給水管3を通る水の温度を検出する入水温センサ
7、水の流量を検出する水量センサ8とが設けられる一
方、出湯管6には、出湯管6を通る水の温度を検出する
出湯温センサ9が設けられ、各センサの検出信号はコン
トローラ10に入力される。又、バーナ4へのガス流路
には、上流側から、元電磁弁11、比例制御弁12、メ
イン電磁弁13が夫々設けられ、これらの弁もコントロ
ーラ10によって開閉制御される。更に、コントローラ
10には、運転スイッチや設定温度の調整ボタン、保温
制御用の保温スイッチ15等を備えたリモコン14の
他、バーナ4点火用の点火電極16、炎検知用のフレー
ムロッド17が夫々接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a water heater with a heat retention function (hereinafter abbreviated as “water heater”). The water heater 1 is configured to supply water from a water supply pipe 3 connected to a combustion chamber 2 to heat generated by a burner 4. A heat exchanger 5 for heating the hot water is provided, and a tapping pipe 6 for feeding the heated hot water is connected to the heat exchanger 5. Water pipe 3
Is provided with an incoming water temperature sensor 7 for detecting the temperature of the water passing through the water supply pipe 3 and a water quantity sensor 8 for detecting the flow rate of the water, while the tapping pipe 6 detects the temperature of the water passing through the tapping pipe 6. A hot water temperature sensor 9 is provided, and a detection signal of each sensor is input to a controller 10. A main solenoid valve 11, a proportional control valve 12, and a main solenoid valve 13 are provided in the gas flow path to the burner 4 from the upstream side, and these valves are also opened and closed by the controller 10. Further, the controller 10 includes a remote controller 14 including an operation switch, a button for adjusting a set temperature, an insulation switch 15 for insulation control, an ignition electrode 16 for ignition of the burner 4, and a frame rod 17 for flame detection. It is connected.

【0007】よって、この給湯器1においては、出湯管
6に接続された図示しない蛇口の開栓により、器具内に
通水して水量センサ8がこれを検知すると、コントロー
ラ10は、元電磁弁11とメイン電磁弁13とを夫々開
弁させると共に、比例制御弁12を所定の開度で開弁さ
せて点火電極16を連続スパークさせ、バーナ4へ点火
する。その後、コントローラ10は、リモコン14の調
整ボタンで設定された設定温度で出湯されるように、入
水温センサ7から得られる初期水温から必要な加熱量を
演算して、比例制御弁12の開度を調整すると共に、出
湯温センサ9から得られる検出温度を基に、出湯温度が
設定温度と一致するように比例制御弁12の開度を補正
制御する。
Therefore, in the water heater 1, when the water flow sensor 8 detects the water flow through the appliance by opening a faucet (not shown) connected to the tapping pipe 6, the controller 10 returns to the original solenoid valve. 11 and the main solenoid valve 13 are each opened, and the proportional control valve 12 is opened at a predetermined opening to continuously spark the ignition electrode 16 and ignite the burner 4. Thereafter, the controller 10 calculates the required heating amount from the initial water temperature obtained from the incoming water temperature sensor 7 so that the hot water is discharged at the set temperature set by the adjustment button of the remote controller 14, and the opening of the proportional control valve 12. Is adjusted, and the opening of the proportional control valve 12 is corrected and controlled based on the detected temperature obtained from the tapping temperature sensor 9 so that the tapping temperature matches the set temperature.

【0008】そして、給水管3に設けられる入水温セン
サ7は、NTCサーミスタが用いられるが、これは、給
水管3内の水の有無を検知するための感温素子としても
利用される。この入水温センサ(尚、このように複数の
機能を有するため、以下単に「サーミスタ」という)7
は、図2に示すように、コントローラ10内の通電制御
回路20において、マイコン21にマイコンポート保護
用のトランジスタ22を介してベースを接続したPNP
形のトランジスタ23のエミッタ側に、コントローラ1
0内で作られる電源V1 と、トランジスタ23の出力側
にある抵抗24とが直列接続され、サーミスタ7の端子
電圧がマイコン21のA/D変換ポートに入力される。
即ち、マイコン21によりサーミスタ7への通電制御と
その通電に伴う端子電圧(温度検知信号)の検出とが可
能となっている。一方、サーミスタ7には、コントロー
ラ10内で作られるV1 よりも低い電源V2 が抵抗25
を経て供給可能となっており、トランジスタ23のOF
F時には、抵抗25とサーミスタ7のV2 を基準とする
分圧比で決められた電圧がマイコン21のA/D変換ポ
ートに入力される。尚、A/D変換ポートの入力側に
は、A/D変換ポートの保護用にツェナダイオード26
が配置されている。
The water temperature sensor 7 provided in the water supply pipe 3 uses an NTC thermistor, which is also used as a temperature sensing element for detecting the presence or absence of water in the water supply pipe 3. This incoming water temperature sensor (hereinafter, simply referred to as a "thermistor" because it has a plurality of functions) 7
As shown in FIG. 2, a PNP having a base connected to a microcomputer 21 via a transistor 22 for protecting a microcomputer port in an energization control circuit 20 in the controller 10.
The controller 1 is connected to the emitter side of the
The power supply V 1 generated in the circuit 0 is connected in series with the resistor 24 on the output side of the transistor 23, and the terminal voltage of the thermistor 7 is input to the A / D conversion port of the microcomputer 21.
That is, the microcomputer 21 can control the energization of the thermistor 7 and detect the terminal voltage (temperature detection signal) accompanying the energization. On the other hand, the thermistor 7 is lower power V 2 than V 1 produced by the controller 10 within the resistor 25
Through the transistor 23, and the OF of the transistor 23
At the time of F, a voltage determined by a voltage dividing ratio based on V 2 of the resistor 25 and the thermistor 7 is input to the A / D conversion port of the microcomputer 21. The input side of the A / D conversion port has a Zener diode 26 for protecting the A / D conversion port.
Is arranged.

【0009】又、マイコン21は、リモコン14に設け
た保温スイッチ15がONされると、止水状態でバーナ
4を点火させ、器具内に水を貯留させたまま加熱を行
い、出湯温センサ9から得られる検出温度を監視して、
器具内の水を一定の温度に保持させる保温制御と、その
保温制御を行う前に器具内の水の有無を検知して、器具
内に水がない場合は保温制御を行わない有水検知制御と
を実行している。以下、この有水検知制御を図3のフロ
ーチャートに従って説明する。まず、保温スイッチ15
をONしない状態では、S1でトランジスタ22,23
は夫々OFFとなるため、電源V2 の供給により、サー
ミスタ7は給水管3内の水温を検知する入水温センサと
して働く。即ち、自己発熱量を極端に小さくしたもので
ある。よって、マイコン21はサーミスタ7により得ら
れる温度検出信号に基づいて通常の出湯制御を行う。そ
して、S2で保温スイッチ15のONが得られると、ま
ずS3でサーミスタ7の温度T1 を検知した後、S4で
トランジスタ22,23をONさせ、サーミスタ7へ通
電させると共に、有水検知用のタイマー(ここでは5
秒)をスタートさせる。S5でタイマーがタイムアップ
すると、S6でサーミスタ7の温度T2を検知し、S7
では、温度T1 からT2 までの温度上昇が、第二の閾値
としての5°deg 以上15°deg 以下の範囲内にあるか
否かを判別し、ここで当該範囲外であれば、S8で回路
故障が生じたとの異常判定を行う。
When the heat retention switch 15 provided on the remote control 14 is turned on, the microcomputer 21 ignites the burner 4 in a water-stopped state, performs heating with water stored in the appliance, and outputs the hot water temperature sensor 9. Monitoring the detected temperature obtained from
Insulation control that keeps the water in the appliance at a constant temperature, and detects the presence or absence of water in the appliance before performing the insulation control.Water detection control that does not perform the insulation control when there is no water in the appliance And running. Hereinafter, this water detection control will be described with reference to the flowchart of FIG. First, the thermal insulation switch 15
Are not turned on, the transistors 22 and 23 are set in S1.
Are turned off, the thermistor 7 functions as an incoming water temperature sensor for detecting the water temperature in the water supply pipe 3 when the power supply V 2 is supplied. That is, the self-heating amount is extremely reduced. Therefore, the microcomputer 21 performs normal hot water supply control based on the temperature detection signal obtained by the thermistor 7. When the ON warmth switch 15 is obtained in S2, after detecting the temperature T 1 of the thermistor 7 first in S3, the transistors 22 and 23 is turned ON in S4, with energizing the thermistor 7, Arimizu detection for Timer (here 5
Seconds). When the timer times up in S5, detects the temperature T 2 of the thermistor 7 at S6, S7
In the temperature rise from temperatures T 1 to T 2 is either in a second range below 5 ° deg least 15 ° deg as a threshold whether determined, if here outside the range, S8 To judge that a circuit failure has occurred.

【0010】これは、図4のグラフに示す如く、通電制
御回路20において、トランジスタ22,23が共にO
FF故障又は抵抗24がオープン故障の場合は、サーミ
スタ7が自己発熱できず、グラフaのように温度上昇5
°deg 以下として現れることで、後述する閾値A(10
°deg )を下回り、水有りと誤検知される虞れがあるた
めで、同様に、抵抗24がショート故障の場合は、サー
ミスタ7が自己発熱し過ぎて、グラフbのように温度上
昇15°deg 以上として現れることで、閾値Aを上回
り、水無しと誤検知される虞れがあるためで、更に、ト
ランジスタ22,23が共にON故障の場合は、サーミ
スタ7が常時自己発熱して、グラフcのように15°de
g 以上の高い温度上昇で固定されることで、閾値Aを上
回り、水無しと誤検知される虞れがあるためで、即ち同
図の斜線部分が第二の閾値により排除される範囲とな
る。
This is because, as shown in the graph of FIG.
When the FF failure or the resistor 24 is an open failure, the thermistor 7 cannot generate heat by itself, and the temperature rises 5 as shown in the graph a.
° deg or less, a threshold A (10
° deg), and there is a risk of being erroneously detected as having water. Similarly, when the resistor 24 is short-circuited, the thermistor 7 generates too much heat and the temperature rises by 15 ° as shown in graph b. If the transistor 22 and 23 both have an ON failure, the thermistor 7 will generate heat by itself, and the temperature will exceed the threshold value A. 15 ° de as in c
g is fixed at a high temperature rise of not less than the threshold value A, and there is a possibility that it is erroneously detected that there is no water, that is, the hatched portion in the figure is a range excluded by the second threshold value. .

【0011】但しここでは、S9で、第二の閾値により
排除される範囲でもそれがグラフcの常時自己発熱によ
る異常か否かを更に判別し、常時自己発熱によるもので
なければ、S10で保温燃焼のみを禁止すると共に、ブ
ザーやランプ等で報知を行う。一方、S9の判別で異常
が常時自己発熱によるものであれば、S11において、
保温燃焼は勿論、通常の燃焼制御も禁止して報知を行
う。これは、グラフcのトランジスタ22,23のON
故障による常時自己発熱状態では、サーミスタ7による
給水管3の温度検出ができず、通常の出湯温制御に支障
を与えるからである。尚、S10の報知とS11の報知
とは、ブザーの鳴り方やランプの色、点滅等で区別する
のが望ましい。
In this case, however, it is further determined in S9 whether or not the range excluded by the second threshold is an abnormality due to the constant self-heating in the graph c. In addition to prohibiting combustion only, a buzzer, lamp, etc. will be used to notify the user. On the other hand, if it is determined in S9 that the abnormality is always caused by self-heating, in S11,
The normal combustion control as well as the insulated combustion is prohibited and the notification is performed. This is because the transistors 22 and 23 in the graph c are turned on.
This is because the temperature of the water supply pipe 3 cannot be detected by the thermistor 7 in a self-heating state due to a failure, which hinders normal hot water temperature control. It is desirable that the notification in S10 and the notification in S11 be distinguished by how the buzzer sounds, the color of the lamp, blinking, and the like.

【0012】一方、S7の判別において温度上昇が、5
°deg 以上15°deg 以下の範囲内にあれば、S12で
トランジスタ22,23をOFFし、続くS13ではそ
の温度上昇が閾値A(ここでは10°deg )以上である
か否かを判別する。これは、サーミスタ7に電流を流し
て自己発熱させると、5秒程度で熱平衡に達し、電流と
抵抗値も一定化するが、周りの環境が空気か水かによっ
て、図4の如く熱平衡に達した際の温度上昇に相違が生
じることを利用したもので、この温度上昇は、サーミス
タの熱放散定数δ(mw/℃)によって決まり、以下の
数1の関係が成り立っている。
On the other hand, in the determination of S7, the temperature rise is 5
If it is within the range of not less than ° deg and not more than 15 ° deg, the transistors 22 and 23 are turned off in S12, and it is determined in subsequent S13 whether or not the temperature rise is equal to or more than the threshold value A (here, 10 ° deg). This is because, when a current is passed through the thermistor 7 to cause self-heating, a thermal equilibrium is reached in about 5 seconds, and the current and resistance are also stabilized. However, depending on whether the surrounding environment is air or water, the thermal equilibrium is reached as shown in FIG. This is based on the fact that there is a difference in the temperature rise when the temperature rise is performed. This temperature rise is determined by the heat dissipation constant δ (mw / ° C.) of the thermistor, and the following equation 1 holds.

【0013】[0013]

【数1】 T:熱平衡に達した際の温度、Ta :外界雰囲気温度、
I:温度Tの時のサーミスタに流れる電流(mA)、
R:温度Tの時のサーミスタの抵抗値(kΩ)
(Equation 1) T: temperature when thermal equilibrium is reached, Ta: ambient temperature,
I: current (mA) flowing through the thermistor at temperature T,
R: Resistance value of thermistor at temperature T (kΩ)

【0014】δは、水中と空気中とで異なり、通常、水
中で4mw/℃、空気中で2mw/℃となる。よって、
サーミスタ7の消費電力が20mWであれば、水中で5
°deg 、空気中で10°deg となり、図4に示す温度上
昇の差が現れる。従って、ここでは、予めマイコン21
に水中での温度上昇と空気中での温度上昇とを区別する
閾値Aとして10°deg を設定しておき、サーミスタ7
への通電開始時から熱平衡までの温度上昇をこの閾値A
と比較することで、サーミスタ7の周囲の環境が水か空
気か、即ち給水管3内に水があるか否かを判断可能とし
たのである。
Δ differs between water and air, and is usually 4 mw / ° C. in water and 2 mw / ° C. in air. Therefore,
If the power consumption of the thermistor 7 is 20 mW, 5
° deg., And 10 ° deg. In air, and the difference in temperature rise shown in FIG. 4 appears. Therefore, here, the microcomputer 21
10 ° deg is set as a threshold value A for distinguishing between a temperature rise in water and a temperature rise in air.
The temperature rise from the start of energization to
Thus, it is possible to determine whether the environment around the thermistor 7 is water or air, that is, whether there is water in the water supply pipe 3.

【0015】従って、S13の判別で、温度上昇が10
°deg 以上であれば、S14でサーミスタ7の周囲の環
境は空気中、即ち器具内に水無しと判定して、S10で
保温燃焼を禁止してランプやブザー等による報知を行
う。一方、温度上昇が10°deg より小さければ、S1
5でサーミスタ7の周囲の環境は水中、即ち器具内に水
有りと判定して、S16で保温制御を実行する。この保
温制御は、例えば、比例制御弁12の最小インプットに
よるバーナ4の7秒間の燃焼を10分間隔で行う断続燃
焼を、保温スイッチ15のONによりスタートした所定
の保温タイマーの時間中に行う等の制御であり、S17
で保温タイマーがタイムアップすると、再びS1で保温
スイッチ15がONされるまで保温制御は停止され、サ
ーミスタ7は入水温センサとして使用されることにな
る。
Therefore, in the determination of S13, the temperature rise is 10
If it is not less than ° deg, it is determined in S14 that the environment around the thermistor 7 is in the air, that is, that there is no water in the appliance, and in S10, the heat-retaining combustion is prohibited and a notification is given by a lamp, a buzzer, or the like. On the other hand, if the temperature rise is less than 10 ° deg, S1
At 5, it is determined that the environment around the thermistor 7 is underwater, that is, there is water in the appliance, and the heat retention control is executed at S16. In this heat retention control, for example, intermittent combustion in which the burner 4 is burned for 7 seconds with a minimum input of the proportional control valve 12 at intervals of 10 minutes is performed during a predetermined heat retention timer started by turning on the heat retention switch 15. Control in S17
When the heat retention timer expires, the heat retention control is stopped until the heat retention switch 15 is turned on again at S1, and the thermistor 7 is used as a water temperature sensor.

【0016】このように上記形態によれば、保温制御を
行う前に、サーミスタ7への通電による温度上昇の監視
によって器具内の水の有無を判別でき、水無し状態で加
熱されることによる内胴等への損傷の発生や耐久性の低
下等を効果的に防止することができる。又、ここでは、
サーミスタ7の自己発熱を利用して有水検知を行う構成
であるから、熱交換器5等には何ら影響を与えず、バー
ナ4を用いた場合の空焚きによる内胴劣化等の影響は生
じないため、安心して使用できる。更に、入水温センサ
を有水検知用のサーミスタに兼用しているため、部品や
回路構成が共用でき、よりコストの少ない合理的な構成
とすることができる。そして、有水検知の最初の段階
で、有水検知を行う温度上昇を第二の閾値との比較を経
た一定範囲に限定し、当該範囲外の場合は保温制御を行
わないようにしたことで、回路故障に起因した温度上昇
による誤検知を排除して、確実な有水検知を行うことが
できる。特に、範囲外の温度上昇が常時自己発熱による
場合は保温燃焼に加えて通常燃焼も禁止しているため、
トランジスタ22,23のON故障でサーミスタ7を入
水温センサとして使用できない状態での通常燃焼を防止
可能となり、器具の信頼性がより高まる。
As described above, according to the above-described embodiment, the presence or absence of water in the appliance can be determined by monitoring the temperature rise due to energization of the thermistor 7 before the heat retention control is performed. It is possible to effectively prevent the occurrence of damage to the body and the like and a decrease in durability. Also, here
Since the configuration is such that the self-heating of the thermistor 7 is used to detect the presence of water, the heat exchanger 5 and the like are not affected at all, and when the burner 4 is used, there is an effect such as deterioration of the inner body due to empty heating. Because there is not, we can use in peace. Further, since the incoming water temperature sensor is also used as the thermistor for detecting water presence, the components and circuit configuration can be shared, and a reasonable configuration with lower cost can be obtained. Then, at the first stage of the water presence detection, the temperature rise at which the water presence detection is performed is limited to a certain range after comparison with the second threshold value, and when the temperature is outside the range, the heat retention control is not performed. In addition, erroneous detection due to a rise in temperature due to a circuit failure can be eliminated, and reliable water detection can be performed. In particular, if the temperature rise outside the range is always caused by self-heating, normal combustion is also prohibited in addition to warm combustion,
Normal combustion can be prevented in a state where the thermistor 7 cannot be used as an incoming water temperature sensor due to an ON failure of the transistors 22 and 23, and the reliability of the appliance is further improved.

【0017】尚、通電制御回路の構成は上記形態に限定
するものでなく、サーミスタ7の自己発熱と閾値との比
較が可能であれば、適宜変更可能で、又、回路故障を判
定する第二の閾値や有水検知用の閾値Aの設定も、採用
するサーミスタや通電制御回路等に合わせて変更や増減
を行って差し支えないが、特に、自己発熱させる前のサ
ーミスタ7の抵抗値によって閾値を増減させるのが好ま
しい。これは、例えば水温の低いときはサーミスタの抵
抗値は大きく、サーミスタの通電量は小さくなるため、
自己発熱量が小さくなり、水が無い場合に閾値を越えな
い可能性があるからである。又、逆の場合(水温が高
く、サーミスタの抵抗値が小さい場合)は、自己発熱量
が大きくなり、水が有っても無いと判断する可能性が有
るからである。
The configuration of the power supply control circuit is not limited to the above-described embodiment, and can be changed as appropriate as long as the self-heating of the thermistor 7 can be compared with a threshold value. The threshold value A and the threshold value A for detecting presence of water may be changed or increased or decreased in accordance with the thermistor or the energization control circuit to be employed. In particular, the threshold value is determined by the resistance value of the thermistor 7 before self-heating. It is preferable to increase or decrease. This is because, for example, when the water temperature is low, the resistance value of the thermistor is large, and the amount of current supplied to the thermistor is small.
This is because the self-heating value becomes small and the threshold value may not be exceeded when there is no water. In the opposite case (when the water temperature is high and the resistance value of the thermistor is low), the amount of self-heating increases, and there is a possibility that it is determined that there is no water.

【0018】[0018]

【発明の効果】請求項1に記載の発明によれば、有水検
知により器具内に水がない場合には報知や保温制御を行
わない等の事前の対処が可能となり、水無し状態で加熱
されることによる内胴劣化等の損傷の発生や耐久性の低
下等を効果的に防止することができる。又、第二の閾値
の設定により、有水検知に加えて、通電制御回路の回路
故障も判断可能となるため、器具内の水の有無を誤検知
なく確実に知ることができる。請求項2に記載の発明に
よれば、請求項1の効果に加えて、通電制御回路の回路
故障又は器具内の水無しを判断した場合は保温制御を禁
止することで、回路故障や器具内の水無しに適切に対処
することができる。請求項3に記載の発明によれば、請
求項1又は2の効果に加えて、通電制御回路による感温
素子への通電量を、前記感温素子を水管の温度検出に利
用できる通電量に切換可能とする一方、前記通電制御回
路の回路故障が、前記感温素子を前記水管の温度検出に
利用できないものである場合は、通常の燃焼制御を禁止
する構成としたことで、通常の燃焼制御に支障を及ぼす
回路故障に適切に対処して器具の信頼性を高めることが
できる。
According to the first aspect of the present invention, if water is not present in the appliance by detecting presence of water, it is possible to take a precautionary measure such as not performing a notification or performing a heat retention control. Accordingly, it is possible to effectively prevent the occurrence of damage such as deterioration of the inner body, a decrease in durability, and the like. In addition, by setting the second threshold value, in addition to the detection of water presence, a circuit failure of the power supply control circuit can be determined, so that the presence or absence of water in the appliance can be reliably known without erroneous detection. According to the second aspect of the present invention, in addition to the effect of the first aspect, when it is determined that there is a circuit failure of the power supply control circuit or that there is no water in the appliance, the heat retention control is prohibited, thereby preventing a circuit failure or an internal appliance failure. We can cope appropriately without water. According to the invention described in claim 3, in addition to the effect of claim 1 or 2, the amount of current supplied to the temperature-sensitive element by the power supply control circuit is changed to the amount of current that can be used by the temperature-sensitive element to detect the temperature of the water pipe. On the other hand, if the circuit failure of the current supply control circuit is such that the temperature-sensitive element cannot be used for detecting the temperature of the water pipe, normal combustion control is prohibited. The reliability of the appliance can be increased by appropriately coping with a circuit failure that hinders control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】保温機能付給湯器の概略図である。FIG. 1 is a schematic view of a water heater with a heat retaining function.

【図2】通電制御回路の回路図である。FIG. 2 is a circuit diagram of an energization control circuit.

【図3】有水検知制御のフローチャートである。FIG. 3 is a flowchart of water presence detection control.

【図4】サーミスタの温度上昇の変化を示すグラフであ
る。
FIG. 4 is a graph showing a change in temperature rise of a thermistor.

【符号の説明】[Explanation of symbols]

1・・保温機能付給湯器、2・・燃焼室、3・・給水
管、4・・バーナ、7・・入水温センサ、10・・コン
トローラ、14・・リモコン、15・・保温スイッチ、
20・・通電制御回路、21・・マイコン、22,23
・・トランジスタ、24,25・・抵抗。
1. Water heater with heat retention function, 2. Combustion chamber, 3. Water supply pipe, 4. Burner, 7. Water temperature sensor, 10. Controller, 14. Remote controller, 15. Heat switch,
20 .. energization control circuit, 21 .. microcomputer, 22, 23
..Transistors, 24, 25 .. resistors.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 止水状態でバーナの燃焼を行い、器具内
の水温を所定温度範囲に維持する保温制御が可能で、前
記器具内の水管に、所定の通電量により自己発熱し、周
囲の環境によって発熱状態を変化させる感温素子を備え
る一方、前記感温素子へ通電させてその発熱状態の変化
を検知可能な通電制御回路を設け、更に、前記感温素子
の周囲の環境が水の場合における前記感温素子の発熱状
態の変化の閾値を記憶し、前記保温制御における前記バ
ーナの燃焼前に、前記通電制御回路により前記感温素子
を自己発熱させ、検知される発熱状態を前記閾値と比較
して、前記器具内の水の有無を判断可能とした保温機能
付給湯器であって、 前記通電制御回路に回路故障が生じた場合における前記
感温素子の発熱状態の第二の閾値を更に設定し、前記感
温素子の自己発熱の際に検知される発熱状態を前記第二
の閾値と比較して、前記通電制御回路の回路故障を判断
可能としたことを特徴とする保温機能付給湯器。
1. A burner is burned in a water-stop state, and a heat retention control for maintaining a water temperature in an appliance within a predetermined temperature range is possible. While having a temperature-sensitive element that changes the heat generation state depending on the environment, an energization control circuit capable of detecting a change in the heat generation state by energizing the temperature-sensitive element is provided, and further, the environment around the temperature-sensitive element is water. In this case, a threshold value of a change in the heat generation state of the temperature sensing element is stored, and before the burner is burned in the heat retention control, the temperature control element causes the temperature sensing element to self-heat, and the detected heat generation state is determined by the threshold value. A water heater with a heat retention function that can determine the presence or absence of water in the appliance as compared with the second threshold value of the heat generation state of the thermosensitive element when a circuit failure occurs in the energization control circuit. Is further set, and The heating condition is detected during the self-heating of the temperature sensing element as compared with the second threshold value, the water heater with heat insulating function, characterized in that to enable determining circuit failure of the conduction control circuit.
【請求項2】 器具内の水無し状態又は通電制御回路の
回路故障を判断した場合は保温制御を禁止する請求項1
に記載の保温機能付給湯器。
2. The heat retention control is prohibited when it is determined that there is no water in the appliance or a circuit failure of the power supply control circuit.
Water heater with heat retention function as described in.
【請求項3】 通電制御回路による感温素子への通電量
を、前記感温素子を水管の温度検出に利用できる通電量
に切換可能とする一方、前記通電制御回路の回路故障
が、前記感温素子を前記水管の温度検出に利用できない
ものである場合は、通常の燃焼制御を禁止する請求項1
又は2に記載の保温機能付給湯器。
3. An electric power supply to the temperature-sensitive element by the electric power supply control circuit can be switched to an electric power supply amount that can be used for detecting the temperature of the water sensitive element by the temperature-sensitive element. The normal combustion control is prohibited when the temperature element cannot be used for detecting the temperature of the water pipe.
Or the water heater with a heat retention function described in 2.
JP21006098A 1998-07-24 1998-07-24 Water heater with thermal insulation function Expired - Fee Related JP3871810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21006098A JP3871810B2 (en) 1998-07-24 1998-07-24 Water heater with thermal insulation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21006098A JP3871810B2 (en) 1998-07-24 1998-07-24 Water heater with thermal insulation function

Publications (2)

Publication Number Publication Date
JP2000039212A true JP2000039212A (en) 2000-02-08
JP3871810B2 JP3871810B2 (en) 2007-01-24

Family

ID=16583159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21006098A Expired - Fee Related JP3871810B2 (en) 1998-07-24 1998-07-24 Water heater with thermal insulation function

Country Status (1)

Country Link
JP (1) JP3871810B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665486B2 (en) 2000-02-17 2003-12-16 Nec Corporation Single photon generating apparatus
JP2016024129A (en) * 2014-07-23 2016-02-08 株式会社ノーリツ Temperature detection device and hot water supply system
CN109780732A (en) * 2019-01-21 2019-05-21 浙江传福电器有限公司 Anti-dry instant electric water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665486B2 (en) 2000-02-17 2003-12-16 Nec Corporation Single photon generating apparatus
JP2016024129A (en) * 2014-07-23 2016-02-08 株式会社ノーリツ Temperature detection device and hot water supply system
CN109780732A (en) * 2019-01-21 2019-05-21 浙江传福电器有限公司 Anti-dry instant electric water heater

Also Published As

Publication number Publication date
JP3871810B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP3871810B2 (en) Water heater with thermal insulation function
JPH08152131A (en) Combistion device
JP4102339B2 (en) Combustion device
US5804796A (en) Ignition system with resistance value difference fire extinction detection circuit
JPH11325598A (en) Water heater with heat insulating function
JP3830251B2 (en) Fluid detection device and hot water supply device
JP3476594B2 (en) Water heater
AU2016266056A1 (en) Water Heater
JP3558439B2 (en) Safe combustion device
KR0153713B1 (en) Combustion device
JP3111171B2 (en) Water heater with freeze prevention function
JP3731990B2 (en) Fluid detector
JP3862857B2 (en) Water heater with thermal insulation function
EP0727613B1 (en) Method and apparatus for the control of flammable fluid heating apparatus
JP3862856B2 (en) Water heater with thermal insulation function
JP5480506B2 (en) Combustion control device
JP2000009518A (en) Gas/liquid decision device
KR0169056B1 (en) Hot water temperature keeping method for gas-boiler in case of adverse wind
KR920010739B1 (en) Temperature control apparatus
JP3572958B2 (en) Water heater
JP3884873B2 (en) Incomplete combustion detector for combustion equipment
JP3143259B2 (en) Combustion device abnormality detection device
JPH08121754A (en) Device for detecting concentration of unburnt component of combustion equipment
JP3698534B2 (en) Gas detector
KR920010740B1 (en) Temperature control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151027

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees