JP2000039107A - Forcedly oscillated combustor - Google Patents

Forcedly oscillated combustor

Info

Publication number
JP2000039107A
JP2000039107A JP10206272A JP20627298A JP2000039107A JP 2000039107 A JP2000039107 A JP 2000039107A JP 10206272 A JP10206272 A JP 10206272A JP 20627298 A JP20627298 A JP 20627298A JP 2000039107 A JP2000039107 A JP 2000039107A
Authority
JP
Japan
Prior art keywords
combustion
fuel
state
fluid
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10206272A
Other languages
Japanese (ja)
Inventor
Akishi Kegasa
明志 毛笠
Eiji Nakanishi
英治 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10206272A priority Critical patent/JP2000039107A/en
Publication of JP2000039107A publication Critical patent/JP2000039107A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the serviceability of a forcedly oscillated combustor and, at the same time, to reduce the cost of the combustor, by installing a fluid element which pulsates the flow rate of a fluid flowing out from the output port of the element by causing oscillation when the fluid flows in the element through its supply port to a fuel supply path, an oxygen-containing gas supply path for combustion, or a mixer supply path. SOLUTION: A fluid element 5 is installed to a fuel supply path 2 as a pulsation generating means which pulsates the flow rate of fuel (g) sent to a burner 1 at a prescribed frequency. Then the difference corresponding to the half of the pulsating wavelength of a liquid g' passing a first output duct 7a side is given to the lengths of the first output duct 7a and a second output duct 7b, so that the pulsating waveform of the liquid g' may be superimposed upon that of another liquid g" passing on the second duct 7b side at the junction of the ducts 7a and 7b. Therefore, the forced oscillation combustion of a forcedly oscillation combustor can be stabilized by pulsative combustion of the burner 1 in which the state of combustion of the burner 1 is pulsatively changed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば工業炉用やボ
イラ用などに用いる強制振動燃焼器に関し、詳しくは、
燃焼部に送る燃料の流量、又は、燃焼部に送る燃焼用酸
素含有ガスの流量、又は、燃焼部に送る燃料と酸素含有
ガスとの混合気の流量を脈動発生手段により脈動させて
燃焼状態を脈動的に変化させる強制振動燃焼器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forced vibration combustor for use in, for example, an industrial furnace or a boiler.
The pulsation generating means pulsates the flow rate of the fuel sent to the combustion section, or the flow rate of the oxygen-containing gas for combustion sent to the combustion section, or the flow rate of the mixture of the fuel and the oxygen-containing gas sent to the combustion section, to change the combustion state. The present invention relates to a pulsatingly changing forced vibration combustor.

【0002】[0002]

【従来の技術】強制振動燃焼器は、上記脈動の周波数に
適当値を採れば、燃焼が時系列的に濃淡燃焼になること
や、あるいは脈動的な燃料過剰な状態の発生によりNO
x還元作用が生じること、もしくは、炉内雰囲気で希釈
された状態で燃焼すること(EGR)で、効果的なNO
x低減効果を得ることができ、また、燃焼の脈動により
伝熱面での境界膜を破壊して燃焼ガス熱交換部での伝熱
性を効果的に向上できることが知られている(例えば米
国特許4,846,665参照)が、従来、この種の強
制振動燃焼器では脈動発生手段として弁やダイヤフラム
を用い、弁の開閉やダイヤフラムの振動により上記脈動
を生じさせている。
2. Description of the Related Art In a forced oscillation combustor, if an appropriate value is set for the frequency of the above-mentioned pulsation, NOx may be generated due to time-series combustion of light and shade combustion or occurrence of a pulsating excess fuel state.
x reduction effect or combustion in a diluted state in the furnace atmosphere (EGR) to provide effective NO
It is known that the effect of reducing x can be obtained, and that the boundary film on the heat transfer surface is destroyed by the pulsation of combustion, so that the heat transfer property in the combustion gas heat exchange section can be effectively improved (for example, US Pat. Conventionally, in this type of forced vibration combustor, a valve or a diaphragm is used as a pulsation generating means, and the pulsation is generated by opening / closing of the valve or vibration of the diaphragm.

【0003】[0003]

【発明が解決しようとする課題】しかし、このように弁
やダイヤフラムなど機械的な可動部を有する手段によっ
て有効な周波数の脈動(例えば数Hz〜数十Hz)を生
じさせるのでは、可動部の疲労や摩耗あるいは焼き付き
などの問題があって実用上十分な耐用性を得ることが難
しく、また、弁を短い周期で開閉動作させたりダイヤフ
ラムを振動させる駆動機構が必要になることで装置コス
トも高く付く問題があった。
However, if pulsation of an effective frequency (for example, several Hz to several tens of Hz) is generated by means having a mechanically movable part such as a valve or a diaphragm, the movable part cannot be used. Due to problems such as fatigue, abrasion, and seizure, it is difficult to obtain sufficient durability for practical use.In addition, a drive mechanism that opens and closes the valve in a short cycle and vibrates the diaphragm requires high equipment costs. There was a sticking problem.

【0004】この実情に鑑み、本発明の主たる課題は、
合理的な脈動発生方式を採ることで上記問題を効果的に
解消する点にある。
[0004] In view of this situation, the main problems of the present invention are:
The problem is to solve the above problem effectively by adopting a rational pulsation generation method.

【0005】[0005]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、燃焼部に送る燃料の流量、又は、燃焼部に送る
燃焼用酸素含有ガスの流量、又は、燃焼部に送る燃料と
酸素含有ガスとの混合気の流量を脈動発生手段により脈
動させて燃焼状態を脈動的に変化させるのに、供給口か
らの流体流入に伴い発振を生じて出力口からの流出流体
の流量に脈動が生じる流体素子を、前記の脈動発生手段
として、燃焼部に対する燃料供給路又は燃焼用酸素含有
ガス供給路又は混合気供給路に介装する。
Means for Solving the Problems [1] In the invention according to claim 1, the flow rate of the fuel sent to the combustion section, the flow rate of the oxygen-containing gas for combustion sent to the combustion section, or the fuel sent to the combustion section is determined. In order to change the combustion state pulsatingly by pulsating the flow rate of the air-fuel mixture with the pulsation generating means by the pulsation generating means, pulsation occurs in the flow rate of the outflow fluid from the output port due to oscillation caused by the inflow of the fluid from the supply port. The fluid element that causes the above is interposed as a pulsation generating means in a fuel supply path to the combustion section, a combustion oxygen-containing gas supply path, or a mixture supply path.

【0006】つまり、この構成では、燃料又は燃焼用酸
素含有ガス又はそれらの混合気を上記流体素子を通じて
燃焼部に供給することにより、その流体素子の発振作用
による流出流体流量の脈動をもって、燃焼部に送る燃料
又は燃焼用酸素含有ガス又は混合気の流量を脈動させ、
これにより、燃焼部において燃焼状態を脈動的に変化さ
せる振動燃焼を行わせる。
In other words, in this configuration, the fuel or the oxygen-containing gas for combustion or a mixture thereof is supplied to the combustion section through the fluid element, so that the pulsation of the outflow fluid flow rate due to the oscillating action of the fluid element causes the combustion section to pulsate. Pulsating the flow rate of the fuel or combustion oxygen-containing gas or air-fuel mixture sent to the
This causes the combustion section to perform oscillating combustion that pulsates the combustion state.

【0007】そして、このように流体素子の発振作用を
利用する方式を採れば、機械的可動部及び駆動機構を要
することなく所要周波数の脈動を的確かつ安定的に生じ
させて所望の振動燃焼を良好に実現でき、これにより、
弁やダイヤフラムを用いて脈動を生じさせる従来装置に
比べ、耐用性を大幅に向上でき、また装置コストも大き
く低減できる。
[0007] If a system utilizing the oscillating action of the fluidic element is employed, pulsation of a required frequency can be generated accurately and stably without the need for a mechanically movable part and a driving mechanism, and desired oscillating combustion is performed. It works well,
Compared with a conventional device that generates pulsation using a valve or a diaphragm, the durability can be greatly improved and the device cost can be greatly reduced.

【0008】〔2〕請求項2に係る発明では、前記流体
素子として、供給口からの流体流入に伴いその流入流体
の主流が第1出力口から流出する状態と第2出力口から
流出する状態とに発振状態で交互に切り換わる素子を用
い、この流体素子を、燃焼部の2部位に対し分岐接続す
る燃料供給路の分岐部又は燃焼用酸素含有ガス供給路の
分岐部又は混合気供給路の分岐部に介装して、これら燃
焼部の2部位に対し燃料又は燃焼用酸素含有ガス又は混
合気を交互供給する構成にする。
[2] In the invention according to claim 2, as the fluid element, a state in which a main flow of the inflowing fluid flows out of the first output port and a state of flowing out of the second output port as the fluid flows in from the supply port. The fluid element is alternately switched in an oscillating state. This fluid element is connected to two parts of the combustion part by branching a fuel supply path or a combustion oxygen-containing gas supply path or a mixture supply path. And a fuel or an oxygen-containing gas for combustion or an air-fuel mixture are alternately supplied to two portions of these combustion portions.

【0009】つまり、この構成では、上記の如く流体素
子の発振作用を用いて燃料又は燃焼用酸素含有ガス又は
混合気を燃焼部の2部位に対し交互供給することで、こ
れら燃焼部の2部位に送る燃料又は燃焼用酸素含有ガス
又は混合気の流量を、互いの脈動位相が反転した状態で
脈動させ、これにより、これら燃焼部の2部位におい
て、互いの脈動位相を反転させた状態で燃焼状態を脈動
的に変化させる交番燃焼的な振動燃焼を行わせる。
That is, in this configuration, the fuel or the oxygen-containing gas for combustion or the air-fuel mixture is alternately supplied to the two portions of the combustion portion by using the oscillation action of the fluid element as described above, so that the two portions of the combustion portion are provided. The fuel or the oxygen-containing gas for combustion or the flow rate of the air-fuel mixture to be sent to the combustion unit is pulsated in a state in which the pulsation phases are inverted, so that combustion is performed in the two parts of these combustion units in a state in which the pulsation phases are inverted. An alternating-combustion oscillating combustion that changes the state in a pulsating manner is performed.

【0010】そして、この構成であれば、燃焼部がその
用途面などから燃料又は燃焼用酸素含有ガス又は混合気
の個別供給が必要な2部位を有するものであることに対
し、2つの出力口を持つ上記の如き一般的形式の流体素
子を合理的に利用した状態で、構成上容易に上記の如き
交番燃焼的な振動燃焼を実現できる。
[0010] With this configuration, the combustion section has two parts that need to be individually supplied with fuel or oxygen-containing gas for combustion or an air-fuel mixture from the point of view of use or the like. In a state in which the fluid element of the general type having the above is reasonably used, the above-described alternating combustion oscillating combustion can be easily realized in terms of configuration.

【0011】なお、燃焼部が燃料又は燃焼用酸素含有ガ
ス又は混合気の個別供給が必要な2部位を有するものと
なる燃焼方式としては、燃焼用空気(燃焼用酸素含有ガ
スの一例)を燃焼領域における上流部と下流部の夫々に
供給する空気2段燃焼方式や、燃料を燃焼領域における
上流部と下流部の夫々に供給する燃料2段燃焼方式、あ
るいはまた、混合気を燃焼領域の一側部と他側部の両方
から供給する燃焼方式などを挙げることができる。
The combustion system in which the combustion section has two parts that require separate supply of fuel or combustion oxygen-containing gas or air-fuel mixture uses combustion air (an example of combustion oxygen-containing gas). A two-stage combustion system in which fuel is supplied to each of an upstream portion and a downstream portion in a region, a two-stage combustion system in which fuel is supplied to each of an upstream portion and a downstream portion in a combustion region, or a mixture is supplied to one region of a combustion region. A combustion system supplied from both the side portion and the other side portion can be used.

【0012】〔3〕請求項3に係る発明では、第1燃焼
部と第2燃焼部とを隣接状態で交互に配置して並設し、
前記流体素子として、供給口からの流体流入に伴いその
流入流体の主流が第1出力口から流出する状態と第2出
力口から流出する状態とに発振状態で交互に切り換わる
素子を用い、この流体素子を、第1燃焼部と第2燃焼部
との並設群中における第1燃焼部の群と第2燃焼部の群
とに分岐接続する燃料供給路の分岐部又は燃焼用酸素含
有ガス供給路の分岐部又は混合気供給路の分岐部に介装
して、これら第1燃焼部群と第2燃焼部群とに対し燃料
又は燃焼用酸素含有ガス又は混合気を交互供給する構成
にする。
[3] In the invention according to claim 3, the first combustion section and the second combustion section are alternately arranged adjacent to each other in an adjacent state,
As the fluid element, an element is used which is alternately switched in an oscillating state between a state in which the main flow of the inflowing fluid flows out of the first output port and a state in which the main flow of the inflowing fluid flows out of the second output port with the inflow of the fluid from the supply port. A branch portion of a fuel supply path or an oxygen-containing gas for combustion that branches and connects a fluid element to a group of a first combustion portion and a group of a second combustion portion in a side-by-side group of a first combustion portion and a second combustion portion. A configuration in which the fuel or the oxygen-containing gas for combustion or the air-fuel mixture is alternately supplied to the first combustion unit group and the second combustion unit group by being interposed at the branch of the supply path or the branch of the air-fuel mixture supply path. I do.

【0013】つまり、この構成では、上記の如く流体素
子の発振作用を用いて燃料又は燃焼用酸素含有ガス又は
混合気を、第1燃焼部と第2燃焼部との並設群中におけ
る第1燃焼部群と第2燃焼部群とに対し交互供給するこ
とで、これら第1燃焼部群と第2燃焼部群とに送る燃料
又は燃焼用酸素含有ガス又は混合気の流量を互いの脈動
位相が反転した状態で脈動させ、これにより、隣接状態
で交互に位置する第1燃焼部と第2燃焼部とにおいて、
互いの脈動位相を反転させた状態で燃焼状態を脈動的に
変化させる交番燃焼的な振動燃焼を行わせる。
That is, in this configuration, the fuel or the oxygen-containing gas for combustion or the air-fuel mixture is supplied to the first combustion unit and the second combustion unit in the side-by-side group by using the oscillation action of the fluid element as described above. By alternately supplying the combustion unit group and the second combustion unit group, the flow rates of the fuel or the oxygen-containing gas for combustion or the air-fuel mixture to be sent to the first combustion unit group and the second combustion unit group are mutually pulsation phases. Are pulsated in a state in which the first combustion section and the second combustion section are alternately positioned in an adjacent state.
Alternating oscillating combustion in which the combustion state pulsates is performed in a state where the pulsation phases are inverted.

【0014】そして、このように隣接状態で交互に位置
する第1燃焼部と第2燃焼部とにおいて交番燃焼的な振
動燃焼を行わせることにより、一つの燃焼部において単
純に振動燃焼させるに比べ、隣接する第1燃焼部と第2
燃焼部との間での相互の燃焼補助効果により全体として
の振動燃焼を一層安定させることができ、ひいては、強
制振動燃焼の利点である低NOx化を一層効果的に達成
できる。
By virtue of the fact that the first combustion section and the second combustion section which are alternately positioned in the adjacent state perform the oscillating combustion in an alternating combustion manner as compared with the simple combustion combustion in one combustion section, , The adjacent first combustion section and the second
Oscillation combustion as a whole can be further stabilized by the mutual combustion assisting effect between the combustion unit and the combustion section, and thus, NOx reduction, which is an advantage of forced oscillation combustion, can be more effectively achieved.

【0015】また、この構成であれば、前述した請求項
2に係る発明と同様、2つの出力口を持つ一般的形式の
流体素子を合理的に利用した状態で、上記の如き燃焼部
並設群での交番燃焼的な振動燃焼を構成上容易に実現で
きる。
[0015] With this configuration, similarly to the above-described second aspect of the present invention, the above-described combustion units are juxtaposed with the general type of fluid element having two output ports being rationally used. Oscillating combustion like alternating combustion in a group can be easily realized in configuration.

【0016】〔4〕請求項4に係る発明では、燃料又は
燃焼用酸素含有ガス又は混合気を前記流体素子を通じて
燃焼部側に導く状態と、前記流体素子を迂回させて燃焼
部側に導く状態とに流路を切り換える切換手段を設け
る。
[4] In the invention according to claim 4, a state in which fuel or oxygen-containing gas for combustion or an air-fuel mixture is guided to the combustion section through the fluid element, and a state in which the fluid element is bypassed to the combustion section. And switching means for switching the flow path.

【0017】つまり、この構成においては、燃焼運転の
開始の際は、先ず燃料又は燃焼用酸素含有ガス又は混合
気を流体素子に対し迂回させて燃焼部側に導く状態にし
て、前記の如き脈動を生じさせない連続燃焼形態で燃焼
運転を開始し、その後、この連続燃焼により燃焼領域温
度を十分に高めた上で、上記切換手段により燃料又は燃
焼用酸素含有ガス又は混合気を流体素子を通じて燃焼部
側に導く状態にすることで、燃焼運転を連続燃焼から流
体素子の発振作用を用いた強制振動燃焼に移行させるこ
とができる。
That is, in this configuration, when the combustion operation is started, first, the fuel or the oxygen-containing gas for combustion or the air-fuel mixture is bypassed to the fluid element and guided to the combustion section side, and the pulsation as described above is performed. After the combustion operation is started in a continuous combustion mode in which no combustion occurs, the combustion region temperature is sufficiently increased by the continuous combustion, and then the fuel or the oxygen-containing gas for combustion or the air-fuel mixture is supplied to the combustion section through the fluid element by the switching means. By bringing the combustion operation to the side, the combustion operation can be shifted from continuous combustion to forced oscillation combustion using the oscillation action of the fluid element.

【0018】そして、このように連続燃焼により燃焼領
域温度を十分に高めた上で強制振動燃焼に移行させるこ
とで、所期の強制振動燃焼を安定的に開始することがで
き、この点で、より一層高い装置性能を得ることができ
る。
The desired forced oscillation combustion can be stably started by shifting to the forced oscillation combustion after sufficiently increasing the temperature of the combustion region by the continuous combustion as described above. Even higher device performance can be obtained.

【0019】[0019]

【発明の実施の形態】(第1例)図1は燃料の流量を脈
動させることで強制振動燃焼を行わせる例を示し、1は
燃焼部を構成するバーナ、2はバーナ1に燃料gを送る
燃料供給路、3はバーナ1に燃焼用空気a(燃焼用酸素
含有ガスの一例)を送る燃焼用空気供給路、4はバーナ
1での発生燃焼ガスeを送出する燃焼ガス路であり、こ
の発生燃焼ガスeを炉内加熱や熱交換器による流体加熱
などの種々の加熱用途に用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Example) FIG. 1 shows an example in which forced oscillation combustion is performed by pulsating the flow rate of fuel, 1 is a burner constituting a combustion section, and 2 is a fuel g to a burner 1. A fuel supply path 3 for sending the combustion air a (an example of an oxygen-containing gas for combustion) to the burner 1 is a combustion gas supply path for sending out a combustion gas e generated in the burner 1, The generated combustion gas e is used for various heating purposes such as heating in a furnace and fluid heating by a heat exchanger.

【0020】5はバーナ1に送る燃料gの流量を所定周
波数で脈動させる脈動発生手段として燃料供給路2に介
装した流体素子であり、この流体素子5には、供給口6
からの流体流入(本例では燃料gの流入)に伴い、その
流入流体gの主流が第1出力ダクト7aへ流入する状態
と第2出力ダクト7bへ流入する状態とに発振状態で交
互に切り換わりながら1つの出力口8から流出する側壁
付着型のフルイディクス発振素子に改良を加えたものを
採用してある
Reference numeral 5 denotes a fluid element interposed in the fuel supply path 2 as pulsation generating means for pulsating the flow rate of the fuel g sent to the burner 1 at a predetermined frequency.
With the inflow of fluid (in this example, the inflow of the fuel g), the state in which the main flow of the inflow fluid g flows into the first output duct 7a and the state in which it flows into the second output duct 7b are alternately switched in an oscillating state. Instead, a fluidic oscillation element of a side wall attached type which flows out from one output port 8 and is improved is adopted.

【0021】上記素子5の改良点は、第1出力ダクト7
aと第2出力ダクト7bとの合流点において、図2に示
す如く、第1出力ダクト7aの側を通過した流体g'の
脈動波形と第2出力ダクト7bの側を通過した流体g"
の脈動波形とが重なり合うように、第1出力ダクト7a
のダクト長と第2出力ダクト7bのダクト長とに脈動波
形の半波長に相当する差を与えた点であり、これによ
り、出力口8から流出する流体g(すなわち、バーナ1
へ送る燃料)の流量を図2に破線で示す如く増幅させた
脈動波形で脈動させる。
The improvement of the element 5 is that the first output duct 7
At the confluence of a and the second output duct 7b, as shown in FIG. 2, the pulsation waveform of the fluid g 'passing through the first output duct 7a and the fluid g "passing through the second output duct 7b
So that the pulsation waveform of the first output duct 7a
Is given to the duct length of the second output duct 7b by a difference corresponding to a half wavelength of the pulsation waveform, whereby the fluid g flowing out of the output port 8 (that is, the burner 1
The flow rate of the fuel to be fed to the pulsation is pulsated with an amplified pulsation waveform as shown by the broken line in FIG.

【0022】つまり、以上の構成により、バーナ1に送
る燃料流量を上記流体素子5の発振作用をもって所定周
波数で脈動(換言すれば、バーナ1における空燃比を脈
動)させ、これにより、バーナ1においてその燃焼状態
を脈動的に変化させる振動燃焼を行わせる。
That is, with the above configuration, the flow rate of the fuel sent to the burner 1 is pulsated at a predetermined frequency by the oscillating action of the fluid element 5 (in other words, the air-fuel ratio in the burner 1 is pulsated). Oscillating combustion is performed to change the combustion state in a pulsating manner.

【0023】9は燃料gを脈動発生手段としての流体素
子5を通じてバーナ1に送る状態と、バイパス路10を
通じ流体素子5を迂回させてバーナ1に送る状態とに燃
料流路を切り換える切換弁(切換手段)であり、燃焼運
転の開始の際は、先ずこの切換弁9により燃料gを流体
素子5に対し迂回させてバーナ1に導く状態にして、前
記の如き脈動を生じさせない連続燃焼形態で燃焼運転を
開始し、その後、この連続燃焼により燃焼領域温度を十
分に高めた上で、上記切換弁9により燃料gを流体素子
5を通じてバーナ1に導く状態に切り換えることで、燃
焼を連続燃焼から強制振動燃焼に移行させる。つまり、
このように連続燃焼により燃焼領域温度を十分に高めた
上で強制振動燃焼に移行させることで強制振動燃焼を安
定的に開始する。
A switching valve 9 switches the fuel flow path between a state in which the fuel g is sent to the burner 1 through the fluid element 5 as a pulsation generating means and a state in which the fuel g is sent to the burner 1 by bypassing the fluid element 5 through the bypass passage 10. When the combustion operation is started, first, the switching valve 9 diverges the fuel g to the fluid element 5 and guides the fuel g to the burner 1 in a continuous combustion mode in which pulsation does not occur as described above. The combustion operation is started, and then, after the combustion zone temperature is sufficiently increased by the continuous combustion, the switching valve 9 switches the fuel g to the state in which the fuel g is guided to the burner 1 through the fluid element 5 to change the combustion from the continuous combustion. Shift to forced vibration combustion. That is,
As described above, the temperature in the combustion region is sufficiently increased by the continuous combustion, and then the process is shifted to the forced oscillation combustion, whereby the forced oscillation combustion is stably started.

【0024】なお、切換弁9の操作については、燃焼領
域温度が所定温度(例えば燃料の自着火温度)まで上昇
したとき、その温度検出に基づいて流体素子迂回側から
流体素子通過側へ切換弁9を自動的に切り換える温度検
出方式や、燃焼運転開始後、所定時間を経過した時点で
流体素子迂回側から流体素子通過側へ切換弁9を自動的
に切り換えるタイマー方式、あるいはまた、手動操作に
より切換弁9を切り換える方式など、種々の方式を採用
できる。
The operation of the switching valve 9 is such that when the temperature of the combustion zone rises to a predetermined temperature (for example, the self-ignition temperature of the fuel), the switching valve is switched from the fluid element bypass side to the fluid element passing side based on the detected temperature. 9 or a timer method for automatically switching the switching valve 9 from the fluid element bypass side to the fluid element passing side when a predetermined time has elapsed after the start of combustion operation, or by a manual operation. Various methods such as a method of switching the switching valve 9 can be adopted.

【0025】11は必要に応じて装備する最小流量確保
用の流路であり、この流路11を設けることにより、強
制振動燃焼状態においてバーナ1へ送る燃料gの流量を
図3に示す如く最小流量gmを確保した状態で脈動さ
せ、これにより、強制振動燃焼の安定化を図る。
Numeral 11 denotes a flow path for ensuring a minimum flow rate, which is provided as required. By providing this flow path 11, the flow rate of the fuel g sent to the burner 1 in the forced vibration combustion state is minimized as shown in FIG. Pulsation is performed with the flow rate gm secured, thereby stabilizing forced vibration combustion.

【0026】(第2例)図4は燃焼用酸素含有ガスの流
量を脈動させることで強制振動燃焼を行わせる例を示
し、この燃焼器では、脈動発生手段としての前記流体素
子5を、燃料供給路2に介装するに代えて燃焼用空気供
給路3(燃焼用酸素含有ガス供給路)に介装してあり、
この構成により、バーナ1に送る燃焼用空気aの流量を
流体素子5の発振作用により所定周波数で脈動(換言す
れば、バーナ1における空燃比を脈動)させて振動燃焼
を行わせる。
(Second Example) FIG. 4 shows an example in which forced oscillating combustion is performed by pulsating the flow rate of the oxygen-containing gas for combustion. In this combustor, the fluid element 5 as pulsation generating means is replaced with a fuel. Instead of being provided in the supply path 2, it is provided in the combustion air supply path 3 (combustion oxygen-containing gas supply path),
With this configuration, the flow rate of the combustion air a sent to the burner 1 is pulsated at a predetermined frequency by the oscillating action of the fluid element 5 (in other words, the air-fuel ratio in the burner 1 is pulsated) to perform oscillating combustion.

【0027】9'は図1に示した燃焼器における切換弁
9と同様の目的で、燃焼用空気aを脈動発生手段として
の流体素子5を通じてバーナ1に送る状態と、バイパス
路10'を通じ流体素子5を迂回させてバーナ1に送る
状態とに空気流路を切り換える切換弁である。
Reference numeral 9 'denotes a state in which the combustion air a is sent to the burner 1 through the fluid element 5 as a pulsation generating means, and a state in which the fluid flows through the bypass passage 10' for the same purpose as the switching valve 9 in the combustor shown in FIG. A switching valve for switching the air flow path between a state in which the element 5 is bypassed and the element 5 is sent to the burner 1.

【0028】また、11'は図1に示した燃焼器におけ
る流路11と同様、必要に応じて設ける最小流量確保用
の流路であり、この流路11'を設けることにより、強
制振動燃焼状態においてバーナ1へ送る燃焼用空気aの
流量を前述の図3に示す脈動形態と同様に最小流量を確
保した状態で脈動させ、これにより、強制振動燃焼の安
定化を図る。
Reference numeral 11 'is a flow passage for ensuring a minimum flow rate provided as needed, similarly to the flow passage 11 in the combustor shown in FIG. 1. By providing this flow passage 11', forced oscillation combustion is performed. In this state, the flow rate of the combustion air a sent to the burner 1 is pulsated in a state in which the minimum flow rate is secured in the same manner as in the pulsation mode shown in FIG. 3, thereby stabilizing forced oscillation combustion.

【0029】(第3例)図5は燃料と燃焼用酸素含有ガ
スとの混合気の流量を脈動させることで強制振動燃焼を
行わせる例を示し、この燃焼器では、脈動発生手段とし
ての前記流体素子5を、燃料供給路2や燃焼用空気供給
路3に介装するに代えて、燃料gと燃焼用空気aとの混
合気mをバーナ1に送る混合気供給路12に介装してあ
り、この構成により、バーナ1に送る混合気流量を流体
素子5の発振作用により所定周波数で脈動させて振動燃
焼を行わせる。
(Third Example) FIG. 5 shows an example in which forced oscillating combustion is performed by pulsating the flow rate of a mixture of fuel and oxygen-containing gas for combustion. Instead of providing the fluid element 5 in the fuel supply path 2 or the combustion air supply path 3, the fluid element 5 is provided in a mixture supply path 12 for sending a mixture m of the fuel g and the combustion air a to the burner 1. With this configuration, the flow rate of the air-fuel mixture to be sent to the burner 1 is pulsated at a predetermined frequency by the oscillating action of the fluid element 5 to cause oscillating combustion.

【0030】9"は図1や図4に示した燃焼器における
切換弁9,9'と同様の目的で、混合気mを脈動発生手
段としての流体素子5を通じてバーナ1に送る状態と、
バイパス路10"を通じ流体素子5を迂回させてバーナ
1に送る状態とに混合気流路を切り換える切換弁であ
る。
9 "is for the same purpose as the switching valves 9 and 9 'in the combustor shown in FIG. 1 and FIG.
This is a switching valve that switches the air-fuel mixture flow path between a state in which the fluid element 5 is bypassed through the bypass path 10 ″ and sent to the burner 1.

【0031】また、11"は図1や図4に示した燃焼器
における流路11,11'と同様、必要に応じて設ける
最小流量確保用の流路であり、この流路11"を設ける
ことにより、強制振動燃焼状態においてバーナ1へ送る
混合気mの流量を前述の図3に示す脈動形態と同様に最
小流量を確保した状態で脈動させ、これにより、強制振
動燃焼の安定化を図る。
Also, 11 "is a flow path for ensuring a minimum flow rate provided as necessary, similar to the flow paths 11, 11 'in the combustor shown in FIGS. 1 and 4, and this flow path 11" is provided. Thus, in the forced vibration combustion state, the flow rate of the air-fuel mixture m sent to the burner 1 is pulsated in a state in which the minimum flow rate is secured in the same manner as in the pulsation mode shown in FIG. 3, thereby stabilizing the forced vibration combustion. .

【0032】(第4例)図6は燃料2段燃焼方式の燃焼
器において強制振動燃焼を行わせる例を示し、燃焼部を
構成するバーナ1は、その燃焼領域における上流部1a
と下流部1bの2部位に燃料gを個別供給する構成にな
っている。3はこのバーナ1に燃焼用空気aを送る燃焼
用空気供給路、4はこのバーナ1での発生燃焼ガスeを
送出する燃焼ガス路である。
(Fourth Example) FIG. 6 shows an example in which a forced oscillating combustion is performed in a combustor of a two-stage fuel combustion system, and a burner 1 constituting a combustion part includes an upstream part 1a in a combustion region thereof.
And the fuel g is individually supplied to two portions of the downstream portion 1b. Reference numeral 3 denotes a combustion air supply passage for sending combustion air a to the burner 1, and reference numeral 4 denotes a combustion gas passage for sending out combustion gas e generated in the burner 1.

【0033】5'は上記の2部位1a,1bに送る燃料
流量を脈動させる脈動発生手段として、上記2部位1
a,1bに対し分岐接続する燃料供給路2の分岐部に介
装した流体素子であり、この流体素子5'には、供給口
6からの流体流入(本例では燃料gの流入)に伴い、そ
の流入流体gの主流が第1出力ダクト7aを通じて第1
出力口8aから流出する状態と、第2出力ダクト7bを
通じて第2出力口8bから流出する状態とに発振状態で
交互に切り換わる一般的な側壁付着型素子を採用してあ
る。
5 'is pulsation generating means for pulsating the flow rate of fuel sent to the two parts 1a and 1b.
a fluid element interposed at a branch portion of the fuel supply path 2 branching and connecting to the fluid elements a and 1b. This fluid element 5 'is accompanied by fluid inflow from the supply port 6 (in this example, fuel g inflow). , The main flow of the inflow fluid g flows through the first output duct 7a to the first
A general side wall-attached element that alternately switches in an oscillating state between a state of flowing out of the output port 8a and a state of flowing out of the second output port 8b through the second output duct 7b is employed.

【0034】つまり、この構成により、上記流体素子
5'の発振作用を用いてバーナ1の上記2部位1a,1
bに対し燃料gを交互供給する形態で、バーナ1の各部
位1a,1bに送る燃料g',g"の流量を図7に示す如
く互いの脈動位相を反転させた状態で脈動させ、これに
より、上記バーナ1の2部位1a,1bにおいて、互い
の脈動位相を反転させた状態で燃焼状態を脈動的に変化
させる交番燃焼的な振動燃焼を行わせる。
That is, according to this configuration, the two portions 1a, 1a of the burner 1 are made using the oscillation action of the fluid element 5 '.
In the form of alternately supplying the fuel g to the b, the flow rates of the fuels g 'and g "to be sent to the respective parts 1a and 1b of the burner 1 are pulsated with their pulsation phases reversed as shown in FIG. As a result, the two portions 1a and 1b of the burner 1 perform the alternating combustion oscillating combustion in which the combustion state is pulsated while the pulsation phases are inverted.

【0035】13は燃料gを上記流体素子5'を通じて
バーナ1の両部位1a,1bに送る状態と、バイパス路
14を通じ流体素子5'を迂回させてバーナ1の両部位
1a,1bに送る状態とに燃料流路を切り換える切換弁
(切換手段)であり、図1,図4,図5に示した燃焼器
と同様、燃焼運転の開始の際は、先ずこの切換弁13に
より燃料gを流体素子5'に対し迂回させてバーナ1の
両部位1a,1bに導く状態にして、脈動を生じさせな
い連続燃焼形態で燃焼運転を開始し、その後、この連続
燃焼により燃焼領域温度を十分に高めた上で、上記切換
弁13により燃料gを流体素子5'を通じてバーナ1の
両部位1a,1bに導く状態に切り換えることで、燃焼
を連続燃焼から交番燃焼的な強制振動燃焼に移行させ
る。
Reference numeral 13 denotes a state in which fuel g is sent to both parts 1a, 1b of the burner 1 through the fluid element 5 ', and a state in which fuel g is sent to both parts 1a, 1b of the burner 1 by bypassing the fluid element 5' through the bypass passage 14. A switching valve (switching means) for switching the fuel flow path. As in the case of the combustor shown in FIGS. The combustion operation is started in a continuous combustion mode in which pulsation is not generated with the element being in a state of being detoured to the element 5 ′ and guided to both portions 1 a and 1 b of the burner 1. Thereafter, the temperature of the combustion region is sufficiently increased by the continuous combustion. Above, by switching the fuel g to the two parts 1a and 1b of the burner 1 through the fluid element 5 'by the switching valve 13, the combustion is shifted from continuous combustion to alternating-combustion forced oscillation combustion.

【0036】15は必要に応じて装備する最小流量確保
用の流路であり、この流路15を設けることにより、交
番燃焼的な強制振動燃焼状態においてバーナ1の各部位
1a,1bに送る燃料g',g"の流量を図8に示す如く
最小流量gm',gm"を確保した状態で脈動させ、これ
により、強制振動燃焼の安定化を図る。
Reference numeral 15 denotes a flow path for ensuring a minimum flow rate, which is provided as necessary. By providing this flow path 15, the fuel to be sent to each of the parts 1a, 1b of the burner 1 in the forcedly oscillating combustion state of alternating combustion. As shown in FIG. 8, the flow rates of g 'and g "are pulsated while securing the minimum flow rates gm' and gm", thereby stabilizing forced vibration combustion.

【0037】(第5例)図9は空気2段燃焼方式の燃焼
器において強制振動燃焼を行わせる例を示し、燃焼部を
構成するバーナ1は、その燃焼領域における上流部1a
と下流部1bの2部位に燃焼用空気a(燃焼用酸素含有
ガスの一例)を個別供給する構成になっている。
(Fifth Example) FIG. 9 shows an example in which forced oscillating combustion is performed in a combustor of a two-stage air combustion system, in which a burner 1 constituting a combustion section includes an upstream portion 1a in its combustion region.
And the combustion air a (an example of an oxygen-containing gas for combustion) is separately supplied to two portions of the fuel cell and the downstream portion 1b.

【0038】そして、この燃焼器では、脈動発生手段と
しての前記流体素子5'を、燃料供給路2に介装するに
代えて、上記2部位1a,1bに対し分岐接続する燃焼
用空気供給路3(燃焼用酸素含有ガス供給路)の分岐部
に介装してあり、この構成により、流体素子5'の発振
作用を用いてバーナ1の上記2部位1a,1bに対し燃
焼用空気aを交互供給する形態で、バーナ1の各部位1
a,1bに送る燃焼用空気a',a"を前述の図7に示す
脈動形態と同様に互いの脈動位相を反転させた状態で脈
動させ、これにより、上記バーナ1の2部位1a,1b
において、互いの脈動位相を反転させた状態で燃焼状態
を脈動的に変化させる交番燃焼的な振動燃焼を行わせ
る。
In this combustor, instead of interposing the fluid element 5 'as pulsation generating means in the fuel supply path 2, a combustion air supply path branched and connected to the two parts 1a and 1b is provided. 3 (oxygen-containing gas supply passage for combustion), the combustion air a is supplied to the two portions 1a and 1b of the burner 1 by using the oscillating action of the fluid element 5 '. In the form of alternate supply, each part 1 of the burner 1
The combustion air a ′, a ″ to be sent to the burners 1 is pulsated in a state where the pulsation phases are inverted in the same manner as in the pulsation mode shown in FIG.
In the above, alternating combustion oscillating combustion for pulsatingly changing the combustion state is performed in a state where the pulsation phases are inverted.

【0039】13'は図6に示した燃焼器における切換
弁13と同様の目的で、燃焼用空気aを上記流体素子
5'を通じてバーナ1の両部位1a,1bに送る状態
と、バイパス路14'を通じ流体素子5'を迂回させてバ
ーナ1の両部位1a,1bに送る状態とに燃焼用空気流
路を切り換える切換弁である。
13 'is for the same purpose as the switching valve 13 in the combustor shown in FIG. 6, for sending combustion air a to the two parts 1a and 1b of the burner 1 through the fluid element 5', This is a switching valve for switching the combustion air flow path between a state in which the fluid element 5 'is bypassed and the state is sent to both parts 1a and 1b of the burner 1.

【0040】また、15'は図6に示した燃焼器におけ
る流路15と同様、必要に応じて設ける最小流量確保用
の流路であり、この流路15'を設けることにより、交
番燃焼的な強制振動燃焼状態においてバーナ1の各部位
1a,1bへ送る燃焼用空気a',a"の流量を前述の図
8に示す脈動形態と同様に最小流量を確保した状態で脈
動させ、これにより、強制振動燃焼の安定化を図る。
Reference numeral 15 'is a flow path for ensuring a minimum flow rate provided as necessary, similarly to the flow path 15 in the combustor shown in FIG. 6. By providing this flow path 15', an alternating combustion type is provided. In the forced forced combustion state, the flow rate of the combustion air a ', a "sent to each portion 1a, 1b of the burner 1 is pulsated in a state where the minimum flow rate is secured in the same manner as in the pulsation mode shown in FIG. To stabilize forced vibration combustion.

【0041】(第6例)図10は混合気交番燃焼方式の
燃焼器において強制振動燃焼を行わせる例を示し、燃焼
部を構成するバーナ1は、その燃焼領域における一側部
1a'と他側部1b'の2部位に燃料gと燃焼用空気aと
の混合気mを個別供給する構成になっている。
(Sixth Example) FIG. 10 shows an example in which forced-combustion combustion is performed in a combustor of an alternating-mixture combustion type. A burner 1 constituting a combustion part is composed of one side 1a 'in the combustion region and another side. A mixture m of the fuel g and the combustion air a is individually supplied to two portions of the side portion 1b '.

【0042】そして、この燃焼器では、脈動発生手段と
しての前記流体素子5'を、燃料供給路2や燃焼用空気
供給路3に介装するに代え、上記2部位1a',1b'に
対し分岐接続する混合気供給路12の分岐部に介装して
あり、この構成により、流体素子5'の発振作用を用い
てバーナ1の上記2部位1a',1b'に対し混合気mを
交互供給する形態で、バーナ1の各部位1a',1b'に
送る混合気m',m"を前述の図7に示す脈動形態と同様
に互いの脈動位相を反転させた状態で脈動させ、これに
より、上記バーナ1の2部位1a',1b'において、互
いの脈動位相を反転させた状態で燃焼状態を脈動的に変
化させる交番燃焼的な振動燃焼を行わせる。
In this combustor, the fluid element 5 'as the pulsation generating means is replaced with the fuel supply path 2 or the combustion air supply path 3 and is replaced with the two parts 1a' and 1b '. The air-fuel mixture m is interposed at a branch portion of the air-fuel mixture supply path 12 which is branched and connected. In the supply mode, the air-fuel mixture m ', m "sent to each portion 1a', 1b 'of the burner 1 is pulsated in a state in which the pulsation phases are inverted, similarly to the pulsation mode shown in FIG. As a result, in the two portions 1a 'and 1b' of the burner 1, an alternating combustion-type oscillating combustion is performed in which the combustion state is pulsated while the pulsation phases are inverted.

【0043】13"は図6や図9に示した燃焼器におけ
る切換弁13,13'と同様の目的で、混合気mを上記
流体素子5'を通じてバーナ1の両部位1a',1b'に
送る状態と、バイパス路14"を通じ流体素子5'を迂回
させてバーナ1の両部位1a',1b'に送る状態とに混
合気流路を切り換える切換弁である。
13 "is for the same purpose as the switching valves 13 and 13 'in the combustor shown in FIGS. 6 and 9, and the mixture m is supplied to both parts 1a' and 1b 'of the burner 1 through the fluid element 5'. This is a switching valve for switching the air-fuel mixture flow path between a state where the mixture is sent and a state where the mixture is sent to both parts 1a 'and 1b' of the burner 1 by bypassing the fluid element 5 'through the bypass passage 14 ".

【0044】また、15"は図6や図9に示した燃焼器
における流路15,15'と同様、必要に応じて設ける
最小流量確保用の流路であり、この流路15"を設ける
ことにより、交番燃焼的な強制振動燃焼状態においてバ
ーナ1の各部位1a',1b'へ送る混合気m',m"の流
量を前述の図8に示す脈動形態と同様に最小流量を確保
した状態で脈動させ、これにより、強制振動燃焼の安定
化を図る。
Reference numeral 15 "denotes a flow path for ensuring a minimum flow rate provided as necessary, similarly to the flow paths 15, 15 'in the combustor shown in FIGS. 6 and 9, and this flow path 15" is provided. Thus, the flow rate of the air-fuel mixture m ', m "to be sent to the respective portions 1a', 1b 'of the burner 1 in the alternating combustion forced vibration combustion state has secured the minimum flow rate in the same manner as in the pulsation mode shown in FIG. Pulsation is performed in this state, thereby stabilizing forced oscillation combustion.

【0045】(第7例)図11は燃焼部を隣接状態で多
数並設した構成において燃料流量の脈動により強制振動
燃焼を行わせる例を示し、第1燃焼部を構成する第1バ
ーナ1Aと第2燃焼部を構成する第2バーナ1Bとを並
列の隣接状態で交互に配置して並設してある。3は各バ
ーナ1A,1Bに燃焼用空気aを送る燃焼用空気供給路
である。
(Seventh Example) FIG. 11 shows an example in which a forced oscillation combustion is performed by pulsation of a fuel flow rate in a configuration in which a large number of combustion sections are arranged adjacent to each other, and a first burner 1A constituting a first combustion section is provided. The second burners 1B constituting the second combustion section are alternately arranged in parallel and adjacent to each other, and are arranged side by side. Reference numeral 3 denotes a combustion air supply passage for sending combustion air a to each of the burners 1A and 1B.

【0046】5"は各バーナ1A,1Bに送る燃料流量
を脈動させる脈動発生手段として、バーナ並設群中にお
ける第1バーナ1Aの群と第2バーナ1Bの群とに対し
分岐接続する燃料供給路2の分岐部に介装した流体素子
であり、この流体素子5"には、図6,図9,図10に
示した燃焼器と同様、供給口6からの流体流入に伴い、
その流入流体gの主流が第1出力ダクト7aを通じて第
1出力口8aから流出する状態と、第2出力ダクト7b
を通じて第2出力口8bから流出する状態とに発振状態
で交互に切り換わる一般的な側壁付着型素子を採用して
ある。
Reference numeral 5 "denotes a pulsation generating means for pulsating the flow rate of the fuel sent to each of the burners 1A and 1B. The pulsation generating means includes a fuel supply which is branched and connected to the first burner 1A group and the second burner 1B group in the burner juxtaposed group. This fluid element is interposed at the branch of the passage 2 and is connected to the fluid element 5 ″ as the fluid flows in from the supply port 6, similarly to the combustor shown in FIGS. 6, 9 and 10.
A state in which the main flow of the inflow fluid g flows out from the first output port 8a through the first output duct 7a;
A general side wall-attached type element which alternately switches in an oscillating state between a state in which the element flows out of the second output port 8b through the oscillating state is adopted.

【0047】つまり、この構成により、上記流体素子
5"の発振作用を用いてバーナ並設群中における第1バ
ーナ1A群と第2バーナ1B群とに対し燃料gを交互供
給する形態で、第1バーナ1A群と第2バーナ1B群と
に送る燃料g',g"の流量を前述の図7に示す脈動形態
と同様に互いの脈動位相を反転させた状態で脈動させ、
これにより、隣接状態で交互に位置する第1バーナ1A
と第2バーナ1Bとにおいて、互いの脈動位相を反転さ
せた状態で燃焼状態を脈動的に変化させる交番燃焼的な
振動燃焼を行わせる。
That is, with this configuration, the fuel g is alternately supplied to the first burner 1A group and the second burner 1B group in the burner side-by-side group by using the oscillating action of the fluid element 5 ″. The flow rates of the fuels g ′ and g ″ to be sent to the first burner 1A group and the second burner 1B group are pulsated in a state where the pulsation phases are inverted in the same manner as in the pulsation mode shown in FIG.
Thereby, the first burners 1A alternately positioned in the adjacent state.
And the second burner 1B perform alternating combustion-like oscillating combustion in which the combustion state is pulsated while the pulsation phases are inverted.

【0048】そして、このように隣接状態で交互に位置
する第1バーナ1Aと第2バーナ1Bとにおいて交番燃
焼的な振動燃焼を行わせることにより、隣接する第1バ
ーナ1Aと第2バーナ1Bとの間での相互の燃焼補助効
果により全体としての強制振動燃焼を安定させる。
By causing the first burner 1A and the second burner 1B alternately positioned in the adjacent state to vibrate in an alternating combustion manner, the adjacent first burner 1A and second burner 1B are connected to each other. Stabilize the forced oscillation combustion as a whole by the mutual combustion assist effect between the two.

【0049】16は燃料gを上記流体素子5"を通じて
各バーナ1A,1Bに送る状態と、バイパス路17を通
じ流体素子5"を迂回させて各バーナ1A,1Bに送る
状態とに燃料流路を切り換える切換弁(切換手段)であ
り、先の各例と同様、燃焼運転の開始の際は、先ずこの
切換弁16により燃料gを流体素子5"に対し迂回させ
て各バーナ1A,1Bに導く状態にして、脈動を生じさ
せない連続燃焼形態で燃焼運転を開始し、その後、この
連続燃焼により燃焼領域温度を十分に高めた上で、上記
切換弁16により燃料gを流体素子5"を通じて各バー
ナ1A,1Bに導く状態に切り換えることで、燃焼を連
続燃焼から交番燃焼的な強制振動燃焼に移行させる。
Numeral 16 designates a fuel flow path between a state where fuel g is sent to each burner 1A and 1B through the fluid element 5 "and a state where fuel g is sent to each burner 1A and 1B by bypassing the fluid element 5" through a bypass passage 17. This is a switching valve (switching means) for switching. Like the previous examples, when starting the combustion operation, the switching valve 16 first diverts the fuel g to the fluid element 5 "and guides the fuel g to each of the burners 1A and 1B. Then, the combustion operation is started in a continuous combustion mode in which pulsation is not generated. After that, the combustion region temperature is sufficiently increased by the continuous combustion, and then the fuel g is supplied by the switching valve 16 to each burner through the fluid element 5 ″. By switching to the state leading to 1A and 1B, the combustion is shifted from continuous combustion to alternating-combustion forced oscillation combustion.

【0050】また、18は必要に応じて装備する最小流
量確保用の流路であり、この流路18を設けることによ
り、これも先の各例と同様、交番燃焼的な強制振動燃焼
状態において第1バーナ1A群と第2バーナ1B群とに
送る燃料g',g"の流量を前述の図8に示す脈動形態と
同様に最小流量gm',gm"を確保した状態で脈動さ
せ、これにより強制振動燃焼の安定化を図る。
Numeral 18 is a flow path for ensuring a minimum flow rate, which is provided as necessary. By providing this flow path 18, the same as in the previous examples, it is also possible to obtain an alternating-combustion forced vibration combustion state. The flow rates of the fuels g 'and g "to be sent to the first burner group 1A and the second burner group 1B are pulsated in a state where the minimum flow rates gm' and gm" are secured in the same manner as in the pulsation mode shown in FIG. Stabilizes forced oscillation combustion.

【0051】(第8例)図12は燃焼部を隣接状態で多
数並設した構成において燃焼用空気流量の脈動により強
制振動燃焼を行わせる例を示し、この燃焼器では、脈動
発生手段としての上記流体素子5"を、燃料供給路2に
介装するに代えて、第1バーナ1A群と第2バーナ1B
群とに対し分岐接続する燃焼用空気供給路3(燃焼用酸
素含有ガス供給路)の分岐部に介装し、この構成によ
り、流体素子5"の発振作用を用いてバーナ並設群中に
おける第1バーナ1A群と第2バーナ1B群とに対し燃
焼用空気aを交互供給する形態で、第1バーナ1A群と
第2バーナ1B群とに送る燃焼用空気a',a"の流量を
前述の図7に示す脈動形態と同様に互いの脈動位相を反
転させた状態で脈動させ、これにより、隣接状態で交互
に位置する第1バーナ1Aと第2バーナ1Bとにおい
て、互いの脈動位相を反転させた状態で燃焼状態を脈動
的に変化させる交番燃焼的な振動燃焼を行わせる。
(Eighth Example) FIG. 12 shows an example in which pulsation of the combustion air flow rate causes forced oscillating combustion in a configuration in which a large number of combustion sections are arranged side by side. In this combustor, pulsation generation means is used. Instead of interposing the fluid element 5 ″ in the fuel supply path 2, a first burner 1A group and a second burner 1B
The combustion air supply passage 3 (combustion oxygen-containing gas supply passage) is connected to a branch of the combustion air supply passage 3 and is connected to the branch. In a form in which combustion air a is alternately supplied to the first burner 1A group and the second burner 1B group, the flow rate of the combustion air a ', a "sent to the first burner 1A group and the second burner 1B group is adjusted. Similar to the pulsation mode shown in FIG. 7 described above, pulsation is performed in a state where the pulsation phases are inverted with each other, whereby the pulsation phases of the first burner 1A and the second burner 1B that are alternately located in the adjacent state are changed. In an inverted state, an alternating combustion-like oscillating combustion that pulsates the combustion state is performed.

【0052】16'は、先の各例と同様、燃焼用空気a
を流体素子5"を通じて各バーナ1A,1Bに送る状態
と、バイパス路17'を通じ流体素子5"を迂回させて各
バーナ1A,1Bに送る状態とに空気流路を切り換える
切換弁であり、18'はこれも先の各例と同様、必要に
応じて装備する最小流量確保用の流路である。
16 'is the combustion air a as in the previous examples.
A switching valve for switching the air flow path between a state in which the fluid element 5 "is sent to each burner 1A, 1B through the fluid element 5" and a state in which the fluid element 5 "is bypassed and sent to each burner 1A, 1B through the bypass path 17 '. 'Is a flow path for ensuring the minimum flow rate that is provided as necessary, as in the previous examples.

【0053】(第9例)図13は燃焼部を隣接状態で多
数並設した構成において混合気流量の脈動により強制振
動燃焼を行わせる例を示し、この燃焼器では、脈動発生
手段としての上記流体素子5"を、燃料供給路2や燃焼
用空気供給路3に介装するに代えて、第1バーナ1A群
と第2バーナ1B群とに対し分岐接続する混合気供給路
12の分岐部に介装し、この構成により、流体素子5"
の発振作用を用いてバーナ並設群中における第1バーナ
1A群と第2バーナ1B群とに対し混合気mを交互供給
する形態で、第1バーナ1A群と第2バーナ1B群とに
送る混合気m',m"の流量を前述の図7に示す脈動形態
と同様に互いの脈動位相を反転させた状態で脈動させ、
これにより、隣接状態で交互に位置する第1バーナ1A
と第2バーナ1Bとにおいて、互いの脈動位相を反転さ
せた状態で燃焼状態を脈動的に変化させる交番燃焼的な
振動燃焼を行わせる。
(Ninth Example) FIG. 13 shows an example in which forced combustion is performed by pulsation of the air-fuel mixture in a configuration in which a large number of combustion sections are arranged adjacent to each other. Instead of interposing the fluid element 5 ″ in the fuel supply path 2 or the combustion air supply path 3, a branch portion of the mixture supply path 12 that branches and connects to the first burner 1A group and the second burner 1B group And the fluid element 5 "
The air-fuel mixture m is alternately supplied to the first burner 1A group and the second burner 1B group in the burner side-by-side group by using the oscillating action described above, and is sent to the first burner 1A group and the second burner 1B group. The flow rate of the air-fuel mixture m ', m "is pulsated in a state in which the pulsation phases are inverted in the same manner as in the pulsation mode shown in FIG.
Thereby, the first burners 1A alternately positioned in the adjacent state.
And the second burner 1B perform alternating combustion-like oscillating combustion in which the combustion state is pulsated while the pulsation phases are inverted.

【0054】16"は、先の各例と同様、混合気mを流
体素子5"を通じて各バーナ1A,1Bに送る状態と、
バイパス路17"を通じ流体素子5"を迂回させて各バー
ナ1A,1Bに送る状態とに混合気流路を切り換える切
換弁であり、18"はこれも先の各例と同様、必要に応
じて装備する最小流量確保用の流路である。
16 "indicates a state in which the air-fuel mixture m is sent to each of the burners 1A and 1B through the fluid element 5", as in the previous examples.
A switching valve for switching the air-fuel mixture flow path between a state in which the fluid element 5 "is bypassed through the bypass path 17" and sent to each of the burners 1A and 1B, and 18 "is also provided as necessary, similarly to the previous examples. This is a flow path for ensuring a minimum flow rate.

【0055】なお、図11、図12,図13の夫々で示
した燃焼器において、隣接する第1バーナ1Aと第2バ
ーナ1Bとのうち、一方の空気過剰率を他方よりも大き
く設定するいわゆる濃淡燃焼方式を採れば、その濃淡燃
焼によるNOx低減効果と強制振動燃焼によるNOx低
減効果との相乗効果をもって、一層高い低NOx化性能
を得ることができる。
In the combustor shown in each of FIGS. 11, 12, and 13, a so-called so-called one in which the air excess ratio of one of the adjacent first burner 1A and second burner 1B is set larger than the other. If the concentration combustion method is adopted, higher NOx reduction performance can be obtained by the synergistic effect of the NOx reduction effect by the concentration combustion and the NOx reduction effect by the forced vibration combustion.

【0056】〔別実施形態〕次に別の実施形態を列記す
る。脈動発生手段として用いる流体素子には、供給口か
らの流体流入に伴い発振を生じて出力口からの流出流体
の流量に脈動が生じる流体素子であれば、前述の如き側
壁付着型のものに限らず、その他種々の形式の流体素子
を適用できる。
[Another Embodiment] Next, another embodiment will be described. The fluid element used as the pulsation generating means is not limited to the side wall-attached type as described above, as long as the fluid element generates oscillation with the inflow of the fluid from the supply port and pulsates the flow rate of the outflow fluid from the output port. Instead, various other types of fluid elements can be applied.

【0057】前述の各例の如く、脈動発生手段としての
流体素子を燃料供給路、燃焼用酸素含有ガス供給路、ま
たは、混合気供給路のいずれか一つにのみ介装するに代
えて、これら供給路のうちのいずれか二つ、または、全
てに流体素子を介装するようにしてもよい。
As in each of the above-described examples, instead of providing the fluid element as the pulsation generating means only in one of the fuel supply path, the combustion oxygen-containing gas supply path, or the mixture supply path, Any two or all of these supply paths may be provided with a fluid element.

【0058】脈動発生手段として、供給口6からの流体
流入に伴いその流入流体の主流が第1出力口8aから流
出する状態と第2出力口8bから流出する状態とに発振
状態で交互に切り換わる流体素子を用いる場合、図14
に示す如く、一方の出力口8bから流出する流体の一部
を他方の出力口8aから流出する流体に合流させる分岐
合流路19を設け、これにより、各出力口8a,8bを
接続する2種の燃焼部1A,1B(又は燃焼部における
2部位1a,1b)に対し、互いに異なる流量の燃料又
は燃焼用酸素含有ガス又は混合気を脈動させて供給する
ようにしてもよい。なお、この場合、分岐合流路19の
路長は、それにより合流させる流体の脈動波形と合流先
の流体の脈動波形とが重なり合うように設定するのが望
ましい。
As the pulsation generating means, the main flow of the inflowing fluid is alternately switched in an oscillating state between a state in which the main flow of the inflowing fluid flows out from the first output port 8a and a state in which the main flow flows out from the second output port 8b as the fluid flows in from the supply port 6. When using a replacement fluid element, FIG.
As shown in the figure, a branching flow path 19 is provided for joining a part of the fluid flowing out of one output port 8b to the fluid flowing out of the other output port 8a, whereby two types of connecting the respective output ports 8a and 8b are provided. May be supplied to the combustion sections 1A and 1B (or the two sections 1a and 1b in the combustion section) by pulsating fuel or oxygen-containing gas or air-fuel mixture at different flow rates. In this case, it is desirable that the path length of the branching / joining channel 19 be set so that the pulsation waveform of the fluid to be merged therewith and the pulsation waveform of the fluid at the merging destination overlap.

【0059】脈動発生手段として、供給口からの流体流
入に伴いその流入流体の主流が第1出力口から流出する
状態と第2出力口から流出する状態とに発振状態で交互
に切り換わる流体素子を用いる場合、前述の実施形態で
は、これら出力口を接続した2種の燃焼部(又は燃焼部
における2部位)において交番燃焼的に振動燃焼させる
ようにしたが、各出力口からの流路長さの設定により、
これら出力口を接続した2種の燃焼部(又は燃焼部にお
ける2部位)において、同調的に振動燃焼させる、ない
しは、脈動波形に半波長未満あるいは半波長よりも大き
い位相差を与えた状態で振動燃焼させるようにしてもよ
い。
As the pulsation generating means, a fluid element which alternately switches in a oscillating state between a state in which the main flow of the inflowing fluid flows out from the first output port and a state in which the main flow flows out from the second output port when the fluid flows in from the supply port In the embodiment described above, in the above-described embodiment, the two types of combustion parts (or two parts in the combustion part) to which these output ports are connected are caused to vibrate in an alternating combustion manner. By setting
In the two kinds of combustion parts (or two parts in the combustion part) to which these output ports are connected, they are oscillated and oscillated synchronously or vibrated in a state where a pulsation waveform is given a phase difference of less than half wavelength or larger than half wavelength. You may make it burn.

【0060】燃焼部には、前述の実施形態で示した1段
燃焼方式や燃料2段燃焼方式のもの、また、空気2段燃
焼方式や燃焼部多数並設方式のものを初め、種々の方式
のものを適用できる。
Various types of combustion units may be used, including the one-stage combustion system and the two-stage fuel combustion system described in the above embodiment, the two-stage air combustion system and the system in which many combustion units are arranged. Can be applied.

【0061】燃料には天然ガスや都市ガスを初めとする
種々の気体燃料、あるいは液体燃料など種々のものを使
用でき、また、燃焼用酸素含有ガスにも空気に限らず、
例えば酸素富化ガス(純酸素を含む)など種々の酸素含
有ガスを使用できる。
As the fuel, various gaseous fuels such as natural gas and city gas, or various fuels such as liquid fuels can be used. The oxygen-containing gas for combustion is not limited to air.
For example, various oxygen-containing gases such as an oxygen-enriched gas (including pure oxygen) can be used.

【0062】本発明による強制振動燃焼装置は、工業炉
用やボイラ用を初めとして種々の用途に使用できる。
The forced vibration combustion apparatus according to the present invention can be used for various applications including an industrial furnace and a boiler.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1例を示す装置構成図FIG. 1 is a device configuration diagram showing a first example.

【図2】脈動形態を示すグラフFIG. 2 is a graph showing a pulsation mode.

【図3】最小流量を確保した状態での脈動形態を示すグ
ラフ
FIG. 3 is a graph showing a pulsation form in a state where a minimum flow rate is secured.

【図4】第2例を示す装置構成図FIG. 4 is a device configuration diagram showing a second example.

【図5】第3例を示す装置構成図FIG. 5 is a device configuration diagram showing a third example.

【図6】第4例を示す装置構成図FIG. 6 is a device configuration diagram showing a fourth example.

【図7】脈動形態を示すグラフFIG. 7 is a graph showing a pulsation mode.

【図8】最小流量を確保した状態での脈動形態を示すグ
ラフ
FIG. 8 is a graph showing a pulsation form in a state where a minimum flow rate is secured.

【図9】第5例を示す装置構成図FIG. 9 is a device configuration diagram showing a fifth example.

【図10】第6例を示す装置構成図FIG. 10 is a device configuration diagram showing a sixth example.

【図11】第7例を示す装置構成図FIG. 11 is a device configuration diagram showing a seventh example.

【図12】第8例を示す装置構成図FIG. 12 is an apparatus configuration diagram showing an eighth example.

【図13】第9例を示す装置構成図FIG. 13 is a device configuration diagram showing a ninth example.

【図14】別実施形態を示す装置構成図FIG. 14 is an apparatus configuration diagram showing another embodiment.

【符号の説明】[Explanation of symbols]

1 燃焼部 1a,1b 燃焼部部位 1a',1b' 燃焼部部位 1A 第1燃焼部 1B 第2燃焼部 2 燃料供給路 3 燃焼用酸素含有ガス供給路 5,5',5" 流体素子 6 供給口 8 出力口 8a 第1出力口 8b 第2出力口 9,9',9" 切換手段 12 混合気供給路 13,13',13" 切換手段 16,16',16" 切換手段 a 燃焼用酸素含有ガス g 燃料 m 混合気 DESCRIPTION OF SYMBOLS 1 Combustion part 1a, 1b Combustion part part 1a ', 1b' Combustion part part 1A First combustion part 1B Second combustion part 2 Fuel supply path 3 Oxygen-containing gas supply path for combustion 5, 5 ', 5 "Fluid element 6 supply Port 8 Output port 8a First output port 8b Second output port 9, 9 ', 9 "Switching means 12 Mixture supply path 13, 13', 13" Switching means 16, 16 ', 16 "Switching means a Combustion oxygen Contained gas g Fuel m Mixture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃焼部に送る燃料の流量、又は、燃焼部
に送る燃焼用酸素含有ガスの流量、又は、燃焼部に送る
燃料と酸素含有ガスとの混合気の流量を脈動発生手段に
より脈動させて燃焼状態を脈動的に変化させる強制振動
燃焼器であって、 供給口からの流体流入に伴い発振を生じて出力口からの
流出流体の流量に脈動が生じる流体素子を、前記の脈動
発生手段として、前記燃焼部に対する燃料供給路又は燃
焼用酸素含有ガス供給路又は混合気供給路に介装してあ
る強制振動燃焼器。
The pulsation generating means pulsates the flow rate of fuel sent to the combustion section, the flow rate of oxygen-containing gas for combustion sent to the combustion section, or the flow rate of a mixture of fuel and oxygen-containing gas sent to the combustion section. A forced oscillation combustor that changes the combustion state in a pulsating manner by pulsating the fluid element that oscillates with the inflow of fluid from the supply port and causes pulsation in the flow rate of the outflow fluid from the output port. As a means, a forced vibration combustor interposed in a fuel supply path, a combustion oxygen-containing gas supply path, or a mixture supply path to the combustion section.
【請求項2】 前記流体素子として、供給口からの流体
流入に伴いその流入流体の主流が第1出力口から流出す
る状態と第2出力口から流出する状態とに発振状態で交
互に切り換わる素子を用い、 この流体素子を、前記燃焼部の2部位に対し分岐接続す
る燃料供給路の分岐部又は燃焼用酸素含有ガス供給路の
分岐部又は混合気供給路の分岐部に介装して、これら燃
焼部の2部位に対し燃料又は燃焼用酸素含有ガス又は混
合気を交互供給する構成にしてある請求項1記載の強制
振動燃焼器。
2. The fluid element alternately switches between a state in which a main flow of the inflowing fluid flows out of a first output port and a state in which the main flow of the inflowing fluid flows out of a second output port as the fluid flows in from a supply port in an oscillation state. An element is used, and the fluid element is interposed at a branch of a fuel supply path, a branch of an oxygen-containing gas supply path for combustion, or a branch of an air-fuel mixture supply path branched and connected to two portions of the combustion section. 2. A forced vibration combustor according to claim 1, wherein fuel or an oxygen-containing gas for combustion or an air-fuel mixture is alternately supplied to two portions of said combustion portion.
【請求項3】 第1燃焼部と第2燃焼部とを隣接状態で
交互に配置して並設し、 前記流体素子として、供給口からの流体流入に伴いその
流入流体の主流が第1出力口から流出する状態と第2出
力口から流出する状態とに発振状態で交互に切り換わる
素子を用い、 この流体素子を、前記第1燃焼部と第2燃焼部との並設
群中における第1燃焼部の群と第2燃焼部の群とに分岐
接続する燃料供給路の分岐部又は燃焼用酸素含有ガス供
給路の分岐部又は混合気供給路の分岐部に介装して、こ
れら第1燃焼部群と第2燃焼部群とに対し燃料又は燃焼
用酸素含有ガス又は混合気を交互供給する構成にしてあ
る請求項1記載の強制振動燃焼器。
3. A first combustion section and a second combustion section are alternately arranged adjacent to each other and arranged side by side. As the fluid element, a main flow of the inflowing fluid is supplied to a first output as the fluid flows in from a supply port. An element that alternately switches in an oscillating state between a state in which the fluid flows out of the mouth and a state in which the fluid flows out of the second output port. The fuel supply passage, the combustion oxygen-containing gas supply passage, or the air-fuel mixture supply passage, which is branched and connected to the first combustion unit group and the second combustion unit group, is interposed. The forced vibration combustor according to claim 1, wherein fuel or a gas containing oxygen for combustion or an air-fuel mixture is alternately supplied to the first combustion unit group and the second combustion unit group.
【請求項4】 燃料又は燃焼用酸素含有ガス又は混合気
を前記流体素子を通じて燃焼部側に導く状態と、前記流
体素子を迂回させて燃焼部側に導く状態とに流路を切り
換える切換手段を設けてある請求項1〜3のいずれか1
項に記載の強制振動燃焼器。
4. A switching means for switching a flow path between a state in which fuel or an oxygen-containing gas for combustion or an air-fuel mixture is guided to the combustion section through the fluid element and a state in which the fluid element is bypassed and guided to the combustion section. 4. Any one of claims 1 to 3 provided.
A forced vibration combustor according to the paragraph.
JP10206272A 1998-07-22 1998-07-22 Forcedly oscillated combustor Pending JP2000039107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10206272A JP2000039107A (en) 1998-07-22 1998-07-22 Forcedly oscillated combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10206272A JP2000039107A (en) 1998-07-22 1998-07-22 Forcedly oscillated combustor

Publications (1)

Publication Number Publication Date
JP2000039107A true JP2000039107A (en) 2000-02-08

Family

ID=16520588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10206272A Pending JP2000039107A (en) 1998-07-22 1998-07-22 Forcedly oscillated combustor

Country Status (1)

Country Link
JP (1) JP2000039107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096368A (en) * 2008-10-14 2010-04-30 Japan Aerospace Exploration Agency Combustor equipped with air flow rate distribution control mechanism using fluid element
JP2010261699A (en) * 2009-04-28 2010-11-18 General Electric Co <Ge> System and method for controlling combustion dynamics
JP2011033331A (en) * 2009-07-29 2011-02-17 General Electric Co <Ge> Fuel nozzle for turbine combustor, and method for forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096368A (en) * 2008-10-14 2010-04-30 Japan Aerospace Exploration Agency Combustor equipped with air flow rate distribution control mechanism using fluid element
US8951039B2 (en) 2008-10-14 2015-02-10 Japan Aerospace Exploration Agency Combustor equipped with air flow rate distribution control mechanism using fluidic element
JP2010261699A (en) * 2009-04-28 2010-11-18 General Electric Co <Ge> System and method for controlling combustion dynamics
JP2011033331A (en) * 2009-07-29 2011-02-17 General Electric Co <Ge> Fuel nozzle for turbine combustor, and method for forming the same

Similar Documents

Publication Publication Date Title
JP2014502719A (en) Channel separation type gas-air mixing device
US8951039B2 (en) Combustor equipped with air flow rate distribution control mechanism using fluidic element
DE60306219D1 (en) Intercooler for an internal combustion engine
US8959888B2 (en) Device to lower NOx in a gas turbine engine combustion system
JP5615024B2 (en) System and method for controlling combustion dynamics
JP2000039107A (en) Forcedly oscillated combustor
JP5112053B2 (en) Heat exchangers, especially for exhaust gas coolers of internal combustion engines
EP3098511A1 (en) A method for reducing nitrogen oxide(s) and carbon monoxide from flue gases and flue gas composition
DE60333319D1 (en) Fluidic fuel control
WO2013058210A1 (en) Low-concentration methane gas oxidation system using gas turbine engine waste heat
JP2008527303A (en) Industrial furnace heating method and apparatus suitable for carrying out the method
JP3592092B2 (en) Combustor
CA2686614A1 (en) Heat pump or heat exchange device with periodic positive and reverse pumping
JPH11248150A (en) Combustor
JP3072286B2 (en) Concentration combustion device
JPH10288315A (en) Combustion device
JP6066813B2 (en) Mixture supply system, method of operating mixture supply system, and mixture supply apparatus used for mixture supply system
JP6329688B1 (en) Gas supply device
JPH0650300A (en) Fluid transfer method utilizing change of phase in fluid transfer network
JP6391960B2 (en) System and method for generating nitrogen from a gas turbine
JPWO2018096785A1 (en) Simulated gas generator, evaluation apparatus, and simulated gas generation method
JP2001050533A (en) Alternate combustion device
JP3530220B2 (en) Startup device by steam turbine of combined plant
JP2001082110A (en) Combined cycle plant
JPH0244117A (en) Combustion device