JP2000038631A - Aluminum alloy material for heat exchanger, composite material for heat exchanger using the aluminum alloy material and production of the aluminum alloy material or the composite material - Google Patents

Aluminum alloy material for heat exchanger, composite material for heat exchanger using the aluminum alloy material and production of the aluminum alloy material or the composite material

Info

Publication number
JP2000038631A
JP2000038631A JP20701498A JP20701498A JP2000038631A JP 2000038631 A JP2000038631 A JP 2000038631A JP 20701498 A JP20701498 A JP 20701498A JP 20701498 A JP20701498 A JP 20701498A JP 2000038631 A JP2000038631 A JP 2000038631A
Authority
JP
Japan
Prior art keywords
heat exchanger
alloy
finish
aluminum alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20701498A
Other languages
Japanese (ja)
Inventor
Hiroaki Takeuchi
宏明 竹内
Hiroshi Kano
浩 鹿野
Koji Okada
光司 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20701498A priority Critical patent/JP2000038631A/en
Publication of JP2000038631A publication Critical patent/JP2000038631A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy material for a heat exchanger that the erosion of a brazer is suppressed at the time of brazing heating to have excellent corrosion-resistance and required strength. SOLUTION: This invention relates to a finish annealing material after the cold rolling of an Al alloy contg., by weight, 0.4 to 2.0% Fe, 0.3 to 2.0% Cu, 0.5 to 2.0% Mn, <0.03% (including 0%) Ti, and the balance Al with inevitable impurities, and the average grain size in the face rectangular to the rolling direction of the finish annealing material is <=40 μm. Since Fe, Cu and Mn are contained in suitable amount, strength required for a heat exchanger core can be obtd., and, furthermore, by controlling the recrystallized grain size in the face rectangular to the rolling direction of the Al alloy to <=40 μm, the Al alloy material is perfectly recrystallized at the time of brazing heating after its working into a refrigerant passage shaped body 1, and the erosion of a brazer can be suppressed. Moreover, by the incorporation of a suitable amt. of Ti, its corrosion resistance can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ろう付けにより組
付けられる自動車用熱交換器の冷媒を通す冷媒通路管ま
たは冷媒通路形状体などに適した熱交換器用アルミニウ
ム合金材、前記アルミニウム合金材を用いた熱交換器用
アルミニウム合金複合材、および前記アルミニウム合金
材または複合材の製造方法に関する。
The present invention relates to an aluminum alloy material for a heat exchanger, which is suitable for a refrigerant passage tube or a refrigerant passage shape body through which a refrigerant of an automotive heat exchanger is assembled by brazing, and the aluminum alloy material. The present invention relates to an aluminum alloy composite material for a heat exchanger used and a method for producing the aluminum alloy material or the composite material.

【0002】[0002]

【従来の技術】従来、エバポレータ、コンデンサなどの
熱交換器のコアは、例えば、図1に示すように、冷媒を
長さ方向に通す冷媒通路形状体1にフィン2をろう付け
して組付けたものである。図1で3は上下方向の冷媒通
路である。前記冷媒通路形状体1は、例えば、芯材(A
l合金材)の片面にろう材を被覆した複合材(ブレージ
ングシート)4を凹凸状にプレス成形加工し、この凹凸
状の成形体の2枚をろう材被覆側を外側にして長さ方向
の冷媒通路5が形成されるように重ね合わせ、接合部
(平坦部)6の内面をろう(置きろう)付けして作製さ
れる。冷媒通路4には前記冷媒通路形状体1の他、複合
材を円管状にロール成形し端部を電縫加工した冷媒通路
管(チューブ)やAl合金材の押出多穴管などが用いら
れる。ところで、ろう付けにより組付けるタイプの熱交
換器ではコストダウンおよび軽量化を目的に各部材の薄
肉化が進められており、このため前記Al合金材や複合
材などには強度および耐食性の向上が強く求められ、従
来よりSi、Cu、Mgなどの合金元素による強度向
上、Ti添加による耐食性向上が図られている。
2. Description of the Related Art Conventionally, a core of a heat exchanger such as an evaporator or a condenser is assembled by brazing a fin 2 to a refrigerant passage-shaped body 1 through which a refrigerant passes in a longitudinal direction as shown in FIG. It is a thing. In FIG. 1, reference numeral 3 denotes a vertical refrigerant passage. The coolant passage-shaped body 1 is, for example, a core material (A
1 (alloy material) is coated with a brazing material on one side, and a composite material (brazing sheet) 4 is press-formed into an uneven shape. It is manufactured by overlapping the refrigerant passages 5 so as to form them and brazing (placing) the inner surface of the joint portion (flat portion) 6. As the coolant passage 4, in addition to the coolant passage shaped body 1, a coolant passage tube (tube) in which a composite material is roll-formed into a tubular shape and an end portion is subjected to an electric resistance welding, or an extruded multi-hole tube of an Al alloy material is used. By the way, in the heat exchanger of the type to be assembled by brazing, the thickness of each member is being reduced for the purpose of cost reduction and weight reduction. Therefore, the Al alloy material and the composite material have improved strength and corrosion resistance. It has been strongly demanded, and conventionally, improvement in strength by alloy elements such as Si, Cu, and Mg, and improvement in corrosion resistance by addition of Ti have been attempted.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記Al合
金材や芯材にはろう付け時の加熱でろうがAl合金材ま
たは芯材を侵食してAl合金材または芯材の耐食性およ
び強度を低下させるという問題があり、この問題は前記
Al合金材または芯材の薄肉化に伴ってより深刻化して
いる。そこで、本発明者等は芯材などへのろうの侵食防
止について鋭意研究を行い、ろう付け加熱時に芯材が完
全再結晶せずに微細な亜結晶粒組織が残ると芯材にろう
が侵食し易くなること、Cuは侵食を促進させるがFe
を適量共存させることによりその促進作用が緩和される
ことなどを知見し、これら知見を基に研究を進めて本発
明を完成させるに至った。本発明は、ろう付け加熱時に
ろうの侵食が抑制されて優れた耐食性と所要の高強度が
得られる熱交換器用Al合金材または前記Al合金材を
用いた熱交換器用複合材、および前記Al合金材または
前記複合材の製造方法の提供を目的とする。
By the way, the Al alloy material or the core material is eroded by the heating at the time of brazing, and the corrosion resistance and strength of the Al alloy material or the core material are reduced. This problem has become more serious with the thinning of the Al alloy material or the core material. Accordingly, the present inventors have conducted intensive studies on the prevention of brazing of the core material and the like, and if the core material does not completely recrystallize during brazing and a fine subcrystal grain structure remains, the brazing material will erode. Cu promotes erosion, but Fe
It was found that co-presence of a suitable amount mitigates the promoting action thereof, and based on these findings, the research was advanced to complete the present invention. The present invention relates to an Al alloy material for a heat exchanger or a composite material for a heat exchanger using the Al alloy material, in which erosion of the brazing is suppressed during brazing and excellent corrosion resistance and required high strength are obtained, and the Al alloy It is an object of the present invention to provide a method for producing a material or the composite material.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Feを0.4〜2.0重量%(以下%と略記する)、C
uを0.3〜2.0%、Mnを0.5〜2.0%、Ti
を0.03%未満(0%を含む)含有し、残部がAlと
不可避不純物からなるAl合金の冷間圧延後の仕上焼鈍
材であって、前記仕上焼鈍材の圧延方向に直角な面の平
均結晶粒径が40μm以下であることを特徴とする熱交
換器用アルミニウム合金材である。
According to the first aspect of the present invention,
0.4 to 2.0% by weight of Fe (hereinafter abbreviated as%), C
u is 0.3 to 2.0%, Mn is 0.5 to 2.0%, Ti
Is less than 0.03% (including 0%), and the balance is a finish-annealed material after cold-rolling of an Al alloy composed of Al and inevitable impurities, the surface being perpendicular to the rolling direction of the finish-annealed material. An aluminum alloy material for a heat exchanger, having an average crystal grain size of 40 μm or less.

【0005】請求項2記載の発明は、Feを0.4〜
2.0%、Cuを0.3〜2.0%、Mnを0.5〜
2.0%、Znを0.005〜0.2%、Tiを0.0
3%未満(0%を含む)含有し、残部がAlと不可避不
純物からなるAl合金の冷間圧延後の仕上焼鈍材であっ
て、前記仕上焼鈍材の圧延方向に直角な面の平均結晶粒
径が40μm以下であることを特徴とする熱交換器用ア
ルミニウム合金材である。
The invention according to claim 2 is characterized in that Fe is set to 0.4 to 0.4.
2.0%, Cu 0.3-2.0%, Mn 0.5-
2.0%, Zn 0.005 to 0.2%, Ti 0.02%
An average crystal grain of a surface of the Al alloy containing less than 3% (including 0%) and the balance being Al and unavoidable impurities after cold rolling, the plane being perpendicular to the rolling direction of the finish annealed material. An aluminum alloy material for a heat exchanger having a diameter of 40 μm or less.

【0006】請求項3記載の発明は、Feを0.4〜
2.0%、Cuを0.3〜2.0%、Mnを0.5〜
2.0%、Tiを0.03%未満(0%を含む)含有
し、さらにMg0.03〜1.0%、Cr0.03〜
0.3%、Zr0.03〜0.3%のうちの1種または
2種以上を含有し、残部がAlと不可避不純物からなる
Al合金の冷間圧延後の仕上焼鈍材であって、前記仕上
焼鈍材の圧延方向に直角な面の平均結晶粒径が40μm
以下であることを特徴とする熱交換器用アルミニウム合
金材である。
According to a third aspect of the present invention, the content of Fe is set to 0.4 to
2.0%, Cu 0.3-2.0%, Mn 0.5-
2.0%, contains less than 0.03% (including 0%) of Ti, and further contains 0.03% to 1.0% of Mg, 0.03%
A finish-annealed material after cold rolling of an Al alloy containing one or more of 0.3% and Zr of 0.03 to 0.3%, with the balance being Al and unavoidable impurities, The average grain size of the surface perpendicular to the rolling direction of the finish-annealed material is 40 μm
An aluminum alloy material for a heat exchanger, characterized in that:

【0007】請求項4記載の発明は、Feを0.4〜
2.0%、Cuを0.3〜2.0%、Mnを0.5〜
2.0%、Znを0.005〜0.2%、Tiを0.0
3%未満(0%を含む)含有し、さらにMg0.03〜
1.0%、Cr0.03〜0.3%、Zr0.03〜
0.3%のうちの1種または2種以上を含有し、残部が
Alと不可避不純物からなるAl合金の冷間圧延後の仕
上焼鈍材であって、前記仕上焼鈍材の圧延方向に直角な
面の平均結晶粒径が40μm以下であることを特徴とす
る熱交換器用アルミニウム合金材である。
According to a fourth aspect of the present invention, when Fe is set to 0.4 to
2.0%, Cu 0.3-2.0%, Mn 0.5-
2.0%, Zn 0.005 to 0.2%, Ti 0.02%
Less than 3% (including 0%)
1.0%, Cr 0.03-0.3%, Zr 0.03-
A finish-annealed material after cold rolling of an Al alloy containing one or more of 0.3% and the balance being Al and unavoidable impurities, wherein the finish is perpendicular to the rolling direction of the finish-annealed material. An aluminum alloy material for a heat exchanger, wherein the average crystal grain size of the surface is 40 μm or less.

【0008】請求項5記載の発明は、請求項1〜4記載
のAl合金を芯材とし、その片面または両面にAl−S
i系ろう合金がクラッドされた複合素材の冷間圧延後の
仕上焼鈍材であって、前記仕上焼鈍材の芯材部分の圧延
方向に直角な面の平均結晶粒径が40μm以下であるこ
とを特徴とする熱交換器用複合材である。
According to a fifth aspect of the present invention, there is provided an Al alloy according to any one of the first to fourth aspects as a core material, and Al-S
It is a finish-annealed material after cold rolling of a composite material clad with an i-type brazing alloy, wherein an average crystal grain size of a surface perpendicular to a rolling direction of a core portion of the finish-annealed material is 40 μm or less. A composite material for a heat exchanger.

【0009】請求項6記載の発明は、請求項1〜4記載
のいずれかのAl合金の冷間圧延材を、30℃/分以上
の昇温速度で昇温し、300〜550℃の温度で1〜6
0秒間保持し、その後30℃/分以上の降温速度で降温
する条件で仕上焼鈍することを特徴とする熱交換器用ア
ルミニウム合金材の製造方法である。
According to a sixth aspect of the present invention, there is provided an Al alloy cold-rolled material according to any one of the first to fourth aspects, wherein the cold-rolled material is heated at a temperature rising rate of 30 ° C./min or more. 1-6
This is a method for producing an aluminum alloy material for a heat exchanger, wherein the aluminum alloy material is held for 0 second and then subjected to finish annealing under conditions of lowering the temperature at a rate of 30 ° C./min or more.

【0010】請求項7記載の発明は、請求項1〜4記載
のAl合金の冷間圧延材を、30℃/分以上の昇温速度
で昇温し、300〜550℃の温度で1〜60秒間保持
し、その後30℃/分以上の降温速度で降温する条件で
仕上焼鈍し、次いで1〜5%の予歪みを付与することを
特徴とする熱交換器用アルミニウム合金材の製造方法で
ある。
According to a seventh aspect of the present invention, the cold-rolled material of the Al alloy according to the first to fourth aspects is heated at a rate of 30 ° C./min or more, and is heated at a temperature of 300 to 550 ° C. A method for producing an aluminum alloy material for a heat exchanger, comprising: holding for 60 seconds, performing finish annealing under a condition of lowering the temperature at a rate of 30 ° C./min or more, and then applying a prestrain of 1 to 5%. .

【0011】請求項8記載の発明は、請求項5記載の複
合素材の冷間圧延材を、30℃/分以上の昇温速度で昇
温し、300〜550℃の温度で1〜60秒間保持し、
その後30℃/分以上の降温速度で降温する条件で仕上
焼鈍することを特徴とする熱交換器用アルミニウム合金
複合材の製造方法である。
[0011] According to an eighth aspect of the present invention, a cold-rolled material of the composite material according to the fifth aspect is heated at a heating rate of 30 ° C / min or more, and at a temperature of 300 to 550 ° C for 1 to 60 seconds. Hold and
A method for producing an aluminum alloy composite material for a heat exchanger, comprising: performing finish annealing under a condition of lowering the temperature at a rate of 30 ° C./min or more.

【0012】請求項9記載の発明は、請求項5記載の複
合素材の冷間圧延材を、30℃/分以上の昇温速度で昇
温し、300〜550℃の温度で1〜60秒間保持し、
その後30℃/分以上の降温速度で降温する条件で仕上
焼鈍し、次いで1〜5%の予歪みを付与することを特徴
とする熱交換器用アルミニウム合金複合材の製造方法で
ある。
According to a ninth aspect of the present invention, the cold-rolled material of the composite material according to the fifth aspect is heated at a rate of 30 ° C./min or more at a temperature of 300 to 550 ° C. for 1 to 60 seconds. Hold and
A method for producing an aluminum alloy composite material for a heat exchanger, comprising: performing finish annealing under a condition of lowering the temperature at a rate of 30 ° C./min or more, and then applying a prestrain of 1 to 5%.

【0013】[0013]

【発明の実施の形態】以下に請求項1に記載したAl合
金の合金元素について説明する。FeおよびCuは強度
向上と再結晶促進に効果があり、前記再結晶促進効果に
より、複合材の芯材にろう付け時の加熱で適正に再結晶
し、ろうの侵食が抑制される。Feの含有量を0.4〜
2.0%に規定する理由は、下限値未満ではその効果が
十分に得られず、上限値を超えると耐食性が低下するた
めである。Feの望ましい含有量は0.5〜1.5%、
さらには0.7〜1.1%である。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy elements of the Al alloy described in claim 1 will be described below. Fe and Cu are effective in improving the strength and accelerating the recrystallization. Due to the recrystallization accelerating effect, the recrystallization is appropriately performed by heating at the time of brazing to the core material of the composite material, and the erosion of the wax is suppressed. Fe content of 0.4 to
The reason for setting the content to 2.0% is that if the content is less than the lower limit, the effect cannot be sufficiently obtained, and if the content exceeds the upper limit, the corrosion resistance is reduced. Desirable content of Fe is 0.5-1.5%,
Furthermore, it is 0.7 to 1.1%.

【0014】Cuの含有量を0.3〜2.0%に規定す
る理由は、下限値未満ではその効果が十分に得られず、
上限値を超えると母材(マトリックス)が溶融する恐れ
があるためである。Cuの望ましい含有量は0.5〜
1.5%、さらには0.7〜1.3%である。Cuに
は、ろうの侵食を促進させる作用があるが、Feを適量
(0.4〜2.0%)共存させることによりその侵食作
用が抑制される。
The reason why the content of Cu is limited to 0.3 to 2.0% is that if the Cu content is less than the lower limit, the effect cannot be sufficiently obtained.
If the upper limit is exceeded, the base material (matrix) may be melted. Desirable content of Cu is 0.5 to
1.5%, and further 0.7 to 1.3%. Although Cu has an action of accelerating the erosion of the wax, the erosion action is suppressed by coexisting an appropriate amount of Fe (0.4 to 2.0%).

【0015】Mnは、ろう付け時にAlマトリックスに
固溶して強度向上に寄与する。その含有量を0.5〜
2.0%に規定する理由は、0.5%未満ではその効果
が十分に得られず、2.0%を超えると圧延加工性や成
形加工性などが低下するためである。Mnの特に望まし
い含有量は0.9〜1.6%である。Tiは耐食性向上
に寄与する。その含有量を0.03%未満(0%を含
む)に規定する理由は、0.03%以上になるとろう付
け時の芯材(Al合金)の再結晶が抑制されるためであ
る。
Mn contributes to the improvement of strength by forming a solid solution in the Al matrix during brazing. 0.5-
The reason for setting the content to 2.0% is that if the content is less than 0.5%, the effect cannot be sufficiently obtained, and if the content exceeds 2.0%, the rolling workability and the formability are reduced. A particularly desirable content of Mn is 0.9 to 1.6%. Ti contributes to improvement of corrosion resistance. The reason for defining the content to be less than 0.03% (including 0%) is that if the content is 0.03% or more, recrystallization of the core material (Al alloy) during brazing is suppressed.

【0016】請求項1記載の発明では、前記Al合金の
冷間圧延後の仕上焼鈍材の圧延方向に直角な面の平均結
晶粒径を40μm以下に規定する。その理由は40μm
を超えると、ろう付け時の加熱で芯材(Al合金)が完
全再結晶組織にならずに微細な亜結晶粒組織が残りろう
が侵食し易くなるためである。
In the first aspect of the present invention, the average grain size of the plane perpendicular to the rolling direction of the finish-annealed material after the cold rolling of the Al alloy is specified to be 40 μm or less. The reason is 40 μm
Is exceeded, the core material (Al alloy) is not completely recrystallized by heating at the time of brazing, and a fine sub-crystal grain structure remains.

【0017】請求項2記載の発明は、請求項1記載のA
l合金にZnを適量含有させたもので、Znは結晶粒界
のCuの偏析箇所に取り込まれて、結晶粒界近傍の電位
を低くして、粒界腐食を抑制し耐食性向上に寄与する。
この発明でZnの含有量を0.005〜0.2%に規定
する理由は、0.005%未満ではその効果が十分に得
られず、0.2%を超えると耐食性が急激に低下するた
めである。Znの含有量は0.02〜0.13%が特に
望ましい。
According to the second aspect of the present invention, there is provided the first aspect of the present invention.
1 alloy contains Zn in an appropriate amount. Zn is taken into the segregated portion of Cu at the crystal grain boundary, lowers the potential near the crystal grain boundary, suppresses intergranular corrosion, and contributes to improvement of corrosion resistance.
The reason why the content of Zn is defined to be 0.005 to 0.2% in the present invention is that if the content is less than 0.005%, the effect is not sufficiently obtained, and if it exceeds 0.2%, the corrosion resistance is rapidly reduced. That's why. The content of Zn is particularly preferably 0.02 to 0.13%.

【0018】請求項3記載の発明は、請求項1記載のA
l合金にMg、Cr、Zrのうちの1種または2種以上
を含有させてさらなる強度向上を図ったものである。M
gの含有量を0.03〜1.0%に規定する理由は、
0.03%未満ではその効果が十分に得られず、1.0
%を超えるとろう付け性が低下するためである。またC
r、Zrの含有量をそれぞれ0.03〜0.3%に規定
する理由は、0.03%では、いずれもその効果が十分
に得られず、0.3%を超えると鋳造時に鋳塊割れが生
じるためである。
The invention according to claim 3 is the invention according to claim 1,
One of the alloys contains one or more of Mg, Cr, and Zr to further improve the strength. M
The reason for defining the content of g to be 0.03 to 1.0% is as follows.
If it is less than 0.03%, the effect cannot be obtained sufficiently, and
%, The brazing property is reduced. Also C
The reason that the content of each of r and Zr is specified to be 0.03 to 0.3% is that, when the content is 0.03%, the effect is not sufficiently obtained. This is because cracks occur.

【0019】請求項4記載の発明は、請求項2記載のA
l合金にMg、Cr、Zrのうちの1種または2種以上
を含有させてさらなる強度向上を図ったもので、前記M
g、Cr、Zrの効果およびその含有量の規定理由は請
求項3記載の発明の場合と同じである。
The invention according to claim 4 is the invention according to claim 2,
1 alloy containing one or more of Mg, Cr, and Zr to further improve the strength.
The effects of g, Cr, and Zr and the reasons for defining their contents are the same as those of the third aspect of the invention.

【0020】請求項5記載の複合材は、請求項1〜4記
載のAl合金を芯材とし、その片面または両面にAl−
Si系合金のろう材をクラッドした2層または3層クラ
ッド材である。
According to a fifth aspect of the present invention, there is provided a composite material comprising the Al alloy according to the first to fourth aspects as a core material, and an Al-based alloy on one or both surfaces thereof.
It is a two-layer or three-layer clad material in which a brazing material of a Si-based alloy is clad.

【0021】請求項1〜4記載のAl合金材または請求
項5記載の複合材の芯材には、諸特性を低下させない範
囲であれば、不純物元素などの他元素が含有されていて
も差し支えない。具体的には、Si0.4%以下、Ni
0.3%以下、Ge0.2%以下、Ga0.2%以下、
Li0.1%以下であれば差し支えない。
The Al alloy material according to claims 1 to 4 or the core material of the composite material according to claim 5 may contain other elements such as impurity elements as long as various properties are not reduced. Absent. Specifically, Si 0.4% or less, Ni
0.3% or less, Ge 0.2% or less, Ga 0.2% or less,
If the Li is 0.1% or less, there is no problem.

【0022】請求項1〜4記載の発明のAl合金材は、
例えば、請求項1〜4記載のAl合金を、DC鋳造法、
キャスター(双ロール鋳造機)などの常法により鋳造さ
れた鋳塊に均質化処理、熱間圧延、冷間圧延、仕上焼鈍
して製造される。請求項6記載の発明は、前記仕上焼鈍
を30℃/分以上の昇温速度で昇温し、300〜550
℃の温度で1〜60秒間保持し、その後30℃/分以上
の降温速度で降温する条件で行うが、このように条件を
規定する理由は、昇温速度と降温速度のいずれが30℃
/分未満でも、また保持温度が550℃を超えても、ま
た保持時間が60秒を超えてもAl合金材の結晶粒径が
40μmを超え、また保持温度が300℃未満でも保持
時間が1秒未満でも再結晶が不完全となり、いずれの場
合もろう付け加熱時の芯材(Al合金)へのろうの侵食
が十分抑制されなくなるためである。
The Al alloy material according to the first to fourth aspects of the present invention
For example, a DC casting method of the Al alloy according to claims 1 to 4,
It is manufactured by homogenization, hot rolling, cold rolling and finish annealing of an ingot cast by a conventional method such as a caster (twin-roll caster). The invention according to claim 6 is that the finish annealing is heated at a heating rate of 30 ° C./min or more, and the finish annealing is performed at 300 to 550.
The temperature is maintained for 1 to 60 seconds, and then the temperature is reduced at a rate of 30 ° C./min or more. The reason for defining the conditions in this way is that either the rate of temperature increase or the rate of temperature decrease is 30 ° C.
/ Minute, the holding temperature exceeds 550 ° C., and the holding time exceeds 60 seconds, the crystal grain size of the Al alloy material exceeds 40 μm. This is because recrystallization is incomplete even in less than a second, and in any case, the erosion of the brazing material into the core material (Al alloy) during the heating by brazing is not sufficiently suppressed.

【0023】請求項7記載の発明は、請求項6記載の発
明で行う仕上焼鈍後に1〜5%の予歪みを付与して再結
晶が起き易くした製造方法である。このように予歪みを
付与することにより、プレス成形加工では歪みが殆ど導
入されない冷媒通路形状体の平坦部(図1参照)のよう
な箇所においても、ろう付け時に再結晶がより確実に進
行してろう侵食が抑制される。予歪みは、テンションレ
ベラー、ストレッチャーなどを用いる通常の方法により
付与される。
According to a seventh aspect of the present invention, there is provided a manufacturing method in which a pre-strain of 1 to 5% is imparted after the finish annealing performed in the sixth aspect of the invention to facilitate recrystallization. By applying the pre-strain in this way, recrystallization proceeds more reliably during brazing even in a portion such as a flat portion (see FIG. 1) of the coolant passage shape where almost no strain is introduced by press forming. Wax erosion is suppressed. The pre-strain is given by an ordinary method using a tension leveler, a stretcher, or the like.

【0024】請求項8記載の発明は、請求項1〜4記載
のAl合金を芯材とし、その片面または両面にAl−S
i系ろう合金がクラッドされた複合素材の冷間圧延材後
の仕上焼鈍を30℃/分以上の昇温速度で昇温し、30
0〜550℃の温度で1〜60秒間保持し、その後30
℃/分以上の降温速度で降温する条件で行う熱交換器用
アルミニウム合金複合材の製造方法で、前記仕上焼鈍条
件の規定理由は請求項6記載の発明の場合と同じであ
る。
[0024] According to an eighth aspect of the present invention, there is provided an Al alloy according to any one of the first to fourth aspects as a core material, and Al-S
The finish annealing after the cold-rolled material of the composite material clad with the i-type brazing alloy is raised at a rate of 30 ° C./min or more.
Hold at a temperature of 0 to 550 ° C. for 1 to 60 seconds, then 30
In the method for producing an aluminum alloy composite for a heat exchanger performed at a temperature lowering rate of not less than ° C./min, the reason for specifying the finish annealing conditions is the same as that of the invention according to claim 6.

【0025】請求項9記載の発明は、請求項8記載の発
明で行う仕上焼鈍後に1〜5%の歪みを付与する製造方
法で、歪み付与による効果、歪み付与の方法などは請求
項7記載の発明の場合と同じである。
According to a ninth aspect of the present invention, there is provided a manufacturing method for imparting 1 to 5% of strain after the finish annealing performed in the eighth aspect of the present invention. This is the same as the case of the invention of the above.

【0026】本発明のAl合金材または複合材を熱交換
器コアに組付けるときのろう材には、Al−Si系のJ
IS4343合金、JIS4045合金、またはJIS
4004合金などが使用できる。前記Al−Si系合金
に、Cuを0.1〜5%、Znを0.5〜10%程度添
加してろう材の融点を下げても良い。また、ろう付け性
を低下させない範囲であれば、他の元素を添加しても差
し支えない。
When the Al alloy material or the composite material of the present invention is assembled to a heat exchanger core, the brazing material includes Al-Si based J
IS4343 alloy, JIS4045 alloy, or JIS
4004 alloy or the like can be used. The melting point of the brazing material may be lowered by adding about 0.1 to 5% of Cu and about 0.5 to 10% of Zn to the Al-Si alloy. In addition, other elements may be added as long as the brazing property is not reduced.

【0027】請求項8または9記載の発明において、芯
材にろう材をクラッドするには、圧延法、ろう材粉
末とバインダーの混合物を塗布する方法、溶射法など
の任意の方法が適用できる。前記の方法では、芯材
に歪みを付与したのちろう材を塗布または溶射する方法
が望ましい。
In the invention according to claim 8 or 9, any method such as a rolling method, a method of applying a mixture of a brazing material powder and a binder, and a thermal spraying method can be applied to clad the brazing material on the core material. In the above-mentioned method, it is desirable to apply or braze a brazing material after the core material is strained.

【0028】本発明のAl合金材および複合材は、エバ
ポレーター、ラジエーターなどの熱交換器の冷媒通路管
などの他、ヘッダープレートやタンクなどにも使用でき
る。この他、ヒーターチューブやコンデンサーチューブ
など、熱交換器以外で、強度、耐食性、耐ろう侵食性が
要求される任意の部材に使用できる。
The Al alloy material and the composite material of the present invention can be used not only for a refrigerant passage tube of a heat exchanger such as an evaporator and a radiator, but also for a header plate and a tank. In addition, it can be used for any member that requires strength, corrosion resistance, and wax erosion resistance other than the heat exchanger, such as a heater tube and a condenser tube.

【0029】[0029]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す本発明規定組成(No.1〜10)の
芯材用Al合金の金型鋳造鋳塊を厚さ40mmに両面面
削し、次いで600℃で8時間均質化処理して芯材を作
製した。またJIS4343合金(Al−Si系合金)
の金型鋳造鋳塊を両面面削し、その後熱間圧延と冷間圧
延を順に施して厚さ5mmのろう材を作製した。次に、
前記ろう材、芯材、ろう材をこの順に重ね、これを開始
温度520℃で熱間圧延して厚さ3.5mmの3層クラ
ッド材とし、これを厚さ0.6mmに冷間圧延し、次い
でこの冷間圧延材を360℃で2時間中間焼鈍し、さら
に厚さ0.35mmまで冷間圧延し、その後、昇温速度
80℃/分、480℃の温度で10秒間保持したのち8
0℃/分の降温速度で冷却する仕上焼鈍を施して調質O
材とした。
The present invention will be described below in detail with reference to examples. (Example 1) Both sides of a die casting ingot of an Al alloy for a core material having the specified composition of the present invention (No. 1 to 10) shown in Table 1 were cut to a thickness of 40 mm and then homogenized at 600 ° C. for 8 hours. This was processed to produce a core material. JIS4343 alloy (Al-Si alloy)
Was cast on both sides, and then hot-rolled and cold-rolled in this order to produce a brazing material having a thickness of 5 mm. next,
The brazing material, the core material, and the brazing material are stacked in this order and hot-rolled at a starting temperature of 520 ° C. to form a three-layer clad material having a thickness of 3.5 mm, which is cold-rolled to a thickness of 0.6 mm. Then, the cold-rolled material is intermediately annealed at 360 ° C. for 2 hours, further cold-rolled to a thickness of 0.35 mm, and then maintained at a temperature rising rate of 80 ° C./min at a temperature of 480 ° C. for 10 seconds.
Finish annealing by cooling at a cooling rate of 0 ° C / min.
Material.

【0030】(実施例2)実施例1で得られた調質O材
にテンションレベラにより2%の歪を付与して、予歪み
材を作製した。
Example 2 A 2% strain was applied to the tempered O material obtained in Example 1 using a tension leveler to produce a pre-strained material.

【0031】(比較例1)表2に示す本発明規定外組成
(No.11〜13) のAl合金を用いた他は、実施例1または
実施例2と同じ方法により調質O材または予歪み材を作
製した。
(Comparative Example 1) Non-specified composition of the present invention shown in Table 2
A tempered O material or a pre-strained material was produced in the same manner as in Example 1 or Example 2 except that the Al alloys (Nos. 11 to 13) were used.

【0032】(比較例2)表2に示す本発明規定組成
(No.5)のAl合金を用い、仕上焼鈍での保持を550
℃で100秒とした他は、実施例1または実施例2と同
じ方法により調質O材または予歪み材を作製した。
(Comparative Example 2) An aluminum alloy having the composition specified in the present invention (No. 5) shown in Table 2 was used, and retained during finish annealing at 550.
A tempered O material or a pre-strained material was produced in the same manner as in Example 1 or Example 2 except that the temperature was changed to 100 ° C. for 100 seconds.

【0033】実施例1、2、比較例1、2で得られた各
々の調質O材を用いて冷媒通路管または冷媒通路形状体
Aを作製し、また予歪み材を用いて冷媒通路形状体Bを
作製し、さらに前記冷媒通路管または冷媒通路形状体
A、Bを用いて熱交換器コア部をろう付けにより組付け
た。前記熱交換器コア部の組付けには厚さ0.1mmの
Al−0.5%Si−0.2%Cu−1.0%Mn−
2.0%Zn合金条をコルゲート加工したフィンを用い
た。
A refrigerant passage tube or a refrigerant passage shape A was prepared using each of the tempered O materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2, and a refrigerant passage shape was formed using a pre-strained material. A body B was prepared, and a heat exchanger core was assembled by brazing using the refrigerant passage tubes or the refrigerant passage shaped bodies A and B. For the assembly of the heat exchanger core, a 0.1 mm thick Al-0.5% Si-0.2% Cu-1.0% Mn-
A fin obtained by corrugating a 2.0% Zn alloy strip was used.

【0034】前記各々の熱交換器コア部から冷媒通路管
または冷媒通路形状体A、Bを切り出して、芯材の圧
延方向に直角な面の結晶粒径、ろうの侵食程度を調べ
た。結晶粒径は、電解研磨法(バーカー法)により結
晶組織を顕出させ、ASTM法により平均結晶粒径を測
定した。ろうの侵食程度は、冷媒通路管または冷媒通
路形状体の断面を観察して調べた。さらに、前記熱交換
器コア部の耐食性を調べた。耐食性は下記条件にて腐食
試験し、腐食試験後の冷媒通路管または冷媒通路形状体
の外表面に発生した最大孔食深さを測定して評価した。
前記腐食試験は、5%食塩水を4hr噴霧(40℃、9
8%RH)→4hr乾燥(55℃、30%RH)→4h
r湿潤(50℃、98%RH)のサイクルを1箇月間繰
り返して行った。結果を表3、4に示す。
From each of the heat exchanger cores, the refrigerant passage tubes or the refrigerant passage shapes A and B were cut out, and the crystal grain size of the surface perpendicular to the rolling direction of the core material and the degree of erosion of the wax were examined. Regarding the crystal grain size, a crystal structure was revealed by an electrolytic polishing method (Barker method), and the average crystal grain size was measured by an ASTM method. The degree of wax erosion was examined by observing a cross section of the refrigerant passage tube or the refrigerant passage shape body. Further, the corrosion resistance of the heat exchanger core was examined. The corrosion resistance was evaluated by performing a corrosion test under the following conditions, and measuring a maximum pit depth generated on the outer surface of the refrigerant passage tube or the refrigerant passage-shaped body after the corrosion test.
The corrosion test was performed by spraying 5% saline for 4 hours (40 ° C., 9
8% RH) → 4hr drying (55 ° C, 30% RH) → 4h
The cycle of r-wet (50 ° C., 98% RH) was repeated for one month. The results are shown in Tables 3 and 4.

【0035】[0035]

【表1】 (注)単位wt%。[Table 1] (Note) Unit wt%.

【0036】[0036]

【表2】 (注)単位wt%。[Table 2] (Note) Unit wt%.

【0037】[0037]

【表3】 (注)侵食:ろうの侵食、◎侵食なし、○侵食僅かにあり。孔食深さ:腐食試験 後の孔食深さ。冷媒通路形状体A:予歪みなし、B:予歪みあり。[Table 3] (Note) Erosion: wax erosion, ◎ no erosion, ○ slight erosion. Pitting depth: Pitting depth after corrosion test. Refrigerant passage shape body A: no pre-strain, B: pre-strain.

【0038】[0038]

【表4】 (注)侵食:ろうの侵食、◎侵食なし、○侵食僅かにあり、×侵食あり。孔食深 さ:腐食試験後の孔食深さ。冷媒通路形状体A:予歪みなし、B:予歪みあり。[Table 4] (Note) Erosion: wax erosion, ◎ no erosion, ○ slight erosion, × erosion. Pitting depth: Pitting depth after corrosion test. Refrigerant passage shape body A: no pre-strain, B: pre-strain.

【0039】表3、4より明らかなように、本発明例の
合金 No.1〜10は、いずれも、ろうの侵食が少なかっ
た。これはFeとCuが適量含有され、また芯材の結晶
粒が40μm以下と小さかったため、ろう付け加熱で芯
材は完全再結晶組織になったためである。予歪みなしの
冷媒通路形状体Aは侵食が僅かながら認められたが、実
用上差し支えない程度であった。またZnを適量含有さ
せたNo. 4、5、6、9はCuによる粒界の高電位が緩
和されて耐食性(孔食)が大幅に改善された。なお、強
度については、別途測定し、いずれも熱交換器コアに必
要な強度を有することが確認された。これに対し、比較
例の No.11はFeが少なかったため、No. 12はTi
が多かったため、No. 13はFeとCuが少ないうえ、
Tiが多かったため、No. 14は芯材の再結晶粒が大き
かったため、いずれもろう付け時の加熱で芯材が完全再
結晶組織にならず、そのため芯材にろうが侵食した。ま
たろうの侵食に伴って耐食性(孔食深さ)も低下した。
No. 13ではZnが多いことも耐食性低下に影響してい
る。
As is clear from Tables 3 and 4, all of the alloys Nos. 1 to 10 of the present invention exhibited little wax erosion. This is because Fe and Cu were contained in appropriate amounts, and the crystal grains of the core material were as small as 40 μm or less, so that the core material had a completely recrystallized structure by heating with brazing. Erosion was slightly observed in the refrigerant passage-shaped body A without pre-strain, but it was practically acceptable. In Nos. 4, 5, 6, and 9 containing an appropriate amount of Zn, the high potential of the grain boundary due to Cu was relaxed, and the corrosion resistance (pitting corrosion) was significantly improved. The strength was separately measured, and it was confirmed that each had the necessary strength for the heat exchanger core. On the other hand, No. 11 of the comparative example had less Fe, and
No. 13 has less Fe and Cu,
Because of the large amount of Ti, No. 14 had large recrystallized grains of the core material, so that the core material did not have a completely recrystallized structure by heating during brazing, so that the core material was eroded by the wax. Corrosion resistance (pitting depth) also decreased with the erosion of the wax.
In No. 13, the large amount of Zn also affects the reduction in corrosion resistance.

【0040】[0040]

【発明の効果】以上に述べたように、本発明のAl合金
材、または複合材の芯材には、Fe、Cu、Mnが適量
含有されているため熱交換器コアに必要な強度が得ら
れ、また前記FeとCuの作用、および前記Al合金材
または芯材の圧延方向に直角な面の再結晶粒径を40μ
m以下にすることにより、前記Al合金材または複合材
を冷媒通路管または冷媒通路形状体に加工したあとのろ
う付け加熱時にAl合金材または複合材の芯材は完全再
結晶組織となってろうの侵食が抑制される。またTiを
適量含有させることにより耐食性が改善される。またZ
nを適量含有させることにより前記Cuによる耐食性の
低下が改善される。またMg、Cr、Zrのうちの1種
または2種以上を適量含有させることにより強度が一層
向上する。本発明のAl合金材または複合材は冷間圧延
と仕上焼鈍を含む常法により製造でき、前記仕上焼鈍条
件を規定することにより、前記Al合金材または複合材
の芯材の圧延方向に直角な面の再結晶粒径をより確実に
40μm以下にすることができる。また前記仕上焼鈍後
に予歪みを付与することにより、ろう付け時に、より確
実に完全再結晶組織にすることができる。依って、工業
上顕著な効果を奏する。
As described above, since the Al alloy material or the core material of the composite material of the present invention contains an appropriate amount of Fe, Cu and Mn, the strength required for the heat exchanger core can be obtained. In addition, the action of the Fe and Cu, and the recrystallized grain size of a plane perpendicular to the rolling direction of the Al alloy material or the core material is 40 μm.
m or less, the core material of the Al alloy material or the composite material will have a completely recrystallized structure at the time of brazing and heating after processing the Al alloy material or the composite material into the refrigerant passage tube or the refrigerant passage shape body. Erosion is suppressed. In addition, by adding an appropriate amount of Ti, the corrosion resistance is improved. Also Z
By containing n in an appropriate amount, the decrease in corrosion resistance due to Cu is improved. The strength is further improved by adding one or more of Mg, Cr and Zr in an appropriate amount. The Al alloy material or the composite material of the present invention can be manufactured by a conventional method including cold rolling and finish annealing, and by defining the finish annealing conditions, the Al alloy material or the composite material is perpendicular to the rolling direction of the core material. The recrystallized grain size of the surface can be more reliably reduced to 40 μm or less. By applying a pre-strain after the finish annealing, a complete recrystallized structure can be more reliably obtained during brazing. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】自動車用熱交換器(ラジエーター)の部分斜視
説明図である。
FIG. 1 is a partial perspective explanatory view of a heat exchanger (radiator) for an automobile.

【符号の説明】[Explanation of symbols]

1 冷媒を長さ方向に通す冷媒通路形状体 2 フィン 3 上下方向の冷媒通路 4 複合材(ブレージングシート) 5 長さ方向の冷媒通路 6 接合部(平坦部) DESCRIPTION OF SYMBOLS 1 Refrigerant-passage-shaped body through which a refrigerant passes in the longitudinal direction 2 Fin 3 Vertical refrigerant passage 4 Composite material (brazing sheet) 5 Longitudinal refrigerant passage 6 Joint (flat part)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22F 1/00 601 C22F 1/00 601 604 604 623 623 627 627 630 630M 651 651A 685 685Z 691 691A 691B 691C 692 692A 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (reference) // C22F 1/00 601 C22F 1/00 601 604 604 623 623 623 627 627 630 630M 651 651A 685 685Z 691 691A 691B 691C 692 692A 694 694A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Feを0.4〜2.0重量%(以下%と
略記する)、Cuを0.3〜2.0%、Mnを0.5〜
2.0%、Tiを0.03%未満(0%を含む)含有
し、残部がAlと不可避不純物からなるAl合金の冷間
圧延後の仕上焼鈍材であって、前記仕上焼鈍材の圧延方
向に直角な面の平均結晶粒径が40μm以下であること
を特徴とする熱交換器用アルミニウム合金材。
1. Fe is 0.4 to 2.0% by weight (hereinafter abbreviated as%), Cu is 0.3 to 2.0%, and Mn is 0.5 to 2.0% by weight.
A finish-annealed material after cold rolling of an Al alloy containing 2.0% and less than 0.03% (including 0%) of Ti and the balance being Al and unavoidable impurities, wherein the finish-annealed material is rolled. An aluminum alloy material for a heat exchanger, wherein an average crystal grain size of a plane perpendicular to the direction is 40 μm or less.
【請求項2】 Feを0.4〜2.0%、Cuを0.3
〜2.0%、Mnを0.5〜2.0%、Znを0.00
5〜0.2%、Tiを0.03%未満(0%を含む)含
有し、残部がAlと不可避不純物からなるAl合金の冷
間圧延後の仕上焼鈍材であって、前記仕上焼鈍材の圧延
方向に直角な面の平均結晶粒径が40μm以下であるこ
とを特徴とする熱交換器用アルミニウム合金材。
2. An alloy containing 0.4 to 2.0% of Fe and 0.3% of Cu.
~ 2.0%, Mn is 0.5 ~ 2.0%, Zn is 0.00
A finish-annealed material after cold rolling of an Al alloy containing 5 to 0.2% and less than 0.03% (including 0%) of Ti, with the balance being Al and unavoidable impurities, wherein the finish-annealed material is An aluminum alloy material for a heat exchanger, wherein the average crystal grain size of a plane perpendicular to the rolling direction is 40 μm or less.
【請求項3】 Feを0.4〜2.0%、Cuを0.3
〜2.0%、Mnを0.5〜2.0%、Tiを0.03
%未満(0%を含む)含有し、さらにMg0.03〜
1.0%、Cr0.03〜0.3%、Zr0.03〜
0.3%のうちの1種または2種以上を含有し、残部が
Alと不可避不純物からなるAl合金の冷間圧延後の仕
上焼鈍材であって、前記仕上焼鈍材の圧延方向に直角な
面の平均結晶粒径が40μm以下であることを特徴とす
る熱交換器用アルミニウム合金材。
3. An alloy containing 0.4 to 2.0% of Fe and 0.3% of Cu.
~ 2.0%, Mn 0.5 ~ 2.0%, Ti 0.03%
% (Including 0%).
1.0%, Cr 0.03-0.3%, Zr 0.03-
A finish-annealed material after cold rolling of an Al alloy containing one or more of 0.3% and the balance being Al and unavoidable impurities, wherein the finish is perpendicular to the rolling direction of the finish-annealed material. An aluminum alloy material for a heat exchanger, wherein the average crystal grain size of the surface is 40 μm or less.
【請求項4】 Feを0.4〜2.0%、Cuを0.3
〜2.0%、Mnを0.5〜2.0%、Znを0.00
5〜0.2%、Tiを0.03%未満(0%を含む)含
有し、さらにMg0.03〜1.0%、Cr0.03〜
0.3%、Zr0.03〜0.3%のうちの1種または
2種以上を含有し、残部がAlと不可避不純物からなる
Al合金の冷間圧延後の仕上焼鈍材であって、前記仕上
焼鈍材の圧延方向に直角な面の平均結晶粒径が40μm
以下であることを特徴とする熱交換器用アルミニウム合
金材。
4. An alloy containing 0.4 to 2.0% of Fe and 0.3% of Cu.
~ 2.0%, Mn is 0.5 ~ 2.0%, Zn is 0.00
5 to 0.2%, contains less than 0.03% (including 0%) of Ti, and further contains 0.03 to 1.0% of Mg, 0.03 to
A finish-annealed material after cold rolling of an Al alloy containing one or more of 0.3% and Zr of 0.03 to 0.3%, with the balance being Al and unavoidable impurities, The average grain size of the surface perpendicular to the rolling direction of the finish-annealed material is 40 μm
An aluminum alloy material for a heat exchanger, comprising:
【請求項5】 請求項1〜4記載のAl合金を芯材と
し、その片面または両面にAl−Si系ろう合金がクラ
ッドされた複合素材の冷間圧延後の仕上焼鈍材であっ
て、前記仕上焼鈍材の芯材部分の圧延方向に直角な面の
平均結晶粒径が40μm以下であることを特徴とする熱
交換器用複合材。
5. A finish-annealed material after cold rolling of a composite material comprising the Al alloy according to claim 1 as a core material and an Al—Si-based brazing alloy clad on one or both surfaces thereof, A composite material for a heat exchanger, wherein the average crystal grain size of a surface of a core portion of a finish annealing material perpendicular to a rolling direction is 40 μm or less.
【請求項6】 請求項1〜4記載のいずれかのAl合金
の冷間圧延材を、30℃/分以上の昇温速度で昇温し、
300〜550℃の温度で1〜60秒間保持し、その後
30℃/分以上の降温速度で降温する条件で仕上焼鈍す
ることを特徴とする熱交換器用アルミニウム合金材の製
造方法。
6. The cold-rolled material of any one of claims 1 to 4 is heated at a heating rate of 30 ° C./min or more,
A method for producing an aluminum alloy material for a heat exchanger, comprising: holding at a temperature of 300 to 550 ° C. for 1 to 60 seconds, and thereafter performing finish annealing under a condition of lowering the temperature at a rate of 30 ° C./min or more.
【請求項7】 請求項1〜4記載のAl合金の冷間圧延
材を、30℃/分以上の昇温速度で昇温し、300〜5
50℃の温度で1〜60秒間保持し、その後30℃/分
以上の降温速度で降温する条件で仕上焼鈍し、次いで1
〜5%の予歪みを付与することを特徴とする熱交換器用
アルミニウム合金材の製造方法。
7. The cold-rolled material of the Al alloy according to claim 1 is heated at a heating rate of 30 ° C./min or more to obtain a temperature of 300-5.
Hold at a temperature of 50 ° C. for 1 to 60 seconds, then finish annealing at a temperature lowering rate of 30 ° C./min or more,
A method for producing an aluminum alloy material for a heat exchanger, wherein a prestrain of up to 5% is provided.
【請求項8】 請求項5記載の複合素材の冷間圧延材
を、30℃/分以上の昇温速度で昇温し、300〜55
0℃の温度で1〜60秒間保持し、その後30℃/分以
上の降温速度で降温する条件で仕上焼鈍することを特徴
とする熱交換器用アルミニウム合金複合材の製造方法。
8. The cold-rolled material of the composite material according to claim 5, which is heated at a heating rate of 30 ° C./min or more, and is heated to 300 to 55 ° C.
A method for producing an aluminum alloy composite material for a heat exchanger, comprising: holding at a temperature of 0 ° C. for 1 to 60 seconds; and thereafter, performing finish annealing under conditions of lowering the temperature at a rate of 30 ° C./min or more.
【請求項9】 請求項5記載の複合素材の冷間圧延材
を、30℃/分以上の昇温速度で昇温し、300〜55
0℃の温度で1〜60秒間保持し、その後30℃/分以
上の降温速度で降温する条件で仕上焼鈍し、次いで1〜
5%の予歪みを付与することを特徴とする熱交換器用ア
ルミニウム合金複合材の製造方法。
9. The cold-rolled material of the composite material according to claim 5, which is heated at a heating rate of 30 ° C./min or more to 300 to 55.
Hold at a temperature of 0 ° C. for 1 to 60 seconds, then finish annealing at a temperature lowering rate of 30 ° C./min or more,
A method for producing an aluminum alloy composite for a heat exchanger, wherein a prestrain of 5% is imparted.
JP20701498A 1998-07-23 1998-07-23 Aluminum alloy material for heat exchanger, composite material for heat exchanger using the aluminum alloy material and production of the aluminum alloy material or the composite material Pending JP2000038631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20701498A JP2000038631A (en) 1998-07-23 1998-07-23 Aluminum alloy material for heat exchanger, composite material for heat exchanger using the aluminum alloy material and production of the aluminum alloy material or the composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20701498A JP2000038631A (en) 1998-07-23 1998-07-23 Aluminum alloy material for heat exchanger, composite material for heat exchanger using the aluminum alloy material and production of the aluminum alloy material or the composite material

Publications (1)

Publication Number Publication Date
JP2000038631A true JP2000038631A (en) 2000-02-08

Family

ID=16532775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20701498A Pending JP2000038631A (en) 1998-07-23 1998-07-23 Aluminum alloy material for heat exchanger, composite material for heat exchanger using the aluminum alloy material and production of the aluminum alloy material or the composite material

Country Status (1)

Country Link
JP (1) JP2000038631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321217C (en) * 2002-03-08 2007-06-13 古河Sky株式会社 Method for producing aluminum alloy composite material for heat exchanger and aluminum alloy composite material
CN109720036A (en) * 2019-01-03 2019-05-07 常熟理工学院 High Alcoa brazing sheet and its heat treatment process
CN114318066A (en) * 2021-09-29 2022-04-12 江苏鼎胜新能源材料股份有限公司 High-efficiency low-cost antibacterial foil for food packaging and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321217C (en) * 2002-03-08 2007-06-13 古河Sky株式会社 Method for producing aluminum alloy composite material for heat exchanger and aluminum alloy composite material
CN100425726C (en) * 2002-03-08 2008-10-15 古河Sky株式会社 Method for producing aluminum alloy composite material for heat exchanger and aluminum alloy composite material
CN109720036A (en) * 2019-01-03 2019-05-07 常熟理工学院 High Alcoa brazing sheet and its heat treatment process
CN114318066A (en) * 2021-09-29 2022-04-12 江苏鼎胜新能源材料股份有限公司 High-efficiency low-cost antibacterial foil for food packaging and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JPH08134574A (en) Aluminum alloy brazing sheet, production of the brazing sheet, heat exchanger using the brazing sheet, and production of the heat exchanger
JPH0755373B2 (en) Aluminum alloy clad material and heat exchanger
JP2003268512A (en) Method of producing aluminum alloy composite material for heat exchanger and aluminum alloy composite material
JP2011202285A (en) Brazing sheet
US20050211345A1 (en) High conductivity bare aluminum finstock and related process
JPH10298686A (en) Aluminum alloy multilayer brazing sheet excellent in corrosion resistance and its production
JP5214899B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and method for producing the same
JP3533434B2 (en) Brazing sheet for aluminum alloy heat exchanger
JPH05104287A (en) Production of aluminum brazing sheet having excellent moldability
JP2003138356A (en) Method for manufacturing high-strength aluminum-alloy brazing sheet for heat exchanger, having excellent brazability, formability and erosion resistance
JPH07252566A (en) Heat resistant al alloy fin material having high strength
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP2000038631A (en) Aluminum alloy material for heat exchanger, composite material for heat exchanger using the aluminum alloy material and production of the aluminum alloy material or the composite material
JP3345850B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JPH058087A (en) Production of high-strength aluminum brazing sheet
JP4352457B2 (en) Method for producing brazing sheet excellent in strength and wax erosion resistance
JPH08291353A (en) Aluminum alloy brazing sheet bar excellent in resistance weldability
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP4326907B2 (en) Manufacturing method of brazing sheet
JP4326906B2 (en) Manufacturing method of brazing sheet
JPS6358217B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213