JP2000038355A - Recovery of chlorinated saturated hydrocarbon - Google Patents

Recovery of chlorinated saturated hydrocarbon

Info

Publication number
JP2000038355A
JP2000038355A JP10205383A JP20538398A JP2000038355A JP 2000038355 A JP2000038355 A JP 2000038355A JP 10205383 A JP10205383 A JP 10205383A JP 20538398 A JP20538398 A JP 20538398A JP 2000038355 A JP2000038355 A JP 2000038355A
Authority
JP
Japan
Prior art keywords
saturated hydrocarbon
chlorinated saturated
gas
chlorinated
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10205383A
Other languages
Japanese (ja)
Inventor
Kiyobumi Kida
清文 貴田
Hidetake Nakamura
英武 中村
Yoshio Koga
義男 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10205383A priority Critical patent/JP2000038355A/en
Publication of JP2000038355A publication Critical patent/JP2000038355A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To safely and efficiently recover a chlorinated saturated hydrocarbon by bringing a gas containing chlorinated saturated hydrocarbon into contact with a specific absorbing liquid to the chlorinated saturated hydrocarbon be absorbed in the absorbing liquid. SOLUTION: This method for recovering a chlorinated saturated hydrocarbon is performed by bringing (A) mixed gas containing (i) a vapor or a gas of preferably a 1-4C chlorinated saturated hydrocarbon (e.g. chloromethane) and (ii) at least one kind of gas selected from a vapor, a steam, a nitrogen gas and an oxygen gas into contact with (B) an absorption liquid at least one kind of (iii) a compound selected from an aromatic compound (e.g. dodecylbenzene) and a naphthene-based hydrocarbon and having >=180 deg.C, preferably >=200 deg.C, more preferably >=400 deg.C boiling point to absorb the component (i) into the component B. Preferably, a content of the component (i) in the component A is preferably >=20 vol.%. Preferably, a content of the component (iii) in the component B is preferably >=20 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素化飽和炭化水
素を含む気体から塩素化飽和炭化水素を安全に、かつ効
率よく回収しうる方法に関する。
The present invention relates to a method for safely and efficiently recovering chlorinated saturated hydrocarbons from a gas containing chlorinated saturated hydrocarbons.

【0002】[0002]

【従来の技術】塩素化飽和炭化水素を含む気体から塩素
化飽和炭化水素を回収する方法として、吸着法、吸収
法、凝縮法等が知られている。吸着法は、通常、低濃度
の塩素化飽和炭化水素を含む気体を活性炭に接触させ
て、これを吸着させた後、圧力変化、温度変化等により
塩素化飽和炭化水素を脱着させ、これを濃縮し、冷却し
て塩素化飽和炭化水素を回収する方法である。凝縮法
は、塩素化飽和炭化水素を含む気体を沸点以下に冷却し
て、気体に含まれる塩素化飽和炭化水素を凝縮する深冷
分離等である。吸収法は、例えば充填塔に吸収液とし
て、水を塔頂部より流下させ、塔下部より、塩素化飽和
炭化水素を含む気体を供給する方法である。
2. Description of the Related Art As a method for recovering a chlorinated saturated hydrocarbon from a gas containing a chlorinated saturated hydrocarbon, an adsorption method, an absorption method, a condensation method and the like are known. In the adsorption method, usually, a gas containing a low concentration of chlorinated saturated hydrocarbon is brought into contact with activated carbon, and after adsorbing this, the chlorinated saturated hydrocarbon is desorbed by pressure change, temperature change, etc., and this is concentrated. Then, the chlorinated saturated hydrocarbon is recovered by cooling. The condensation method is cryogenic separation or the like in which a gas containing a chlorinated saturated hydrocarbon is cooled to a boiling point or lower to condense the chlorinated saturated hydrocarbon contained in the gas. The absorption method is a method in which, for example, water is allowed to flow down from the top of a tower as an absorbing liquid to a packed tower, and a gas containing chlorinated saturated hydrocarbon is supplied from the bottom of the tower.

【0003】吸着法においては、大型設備を必要とし、
操作が煩雑化し、また多量のエネルギーを必要とするた
め経済性を欠くという欠点を有する。また、凝縮法にお
いては、多量のエネルギーを必要とするため経済性を欠
き、塩素化飽和化合物の含量が低い場合には、効率が悪
くなるという欠点を有する。一方、吸収法においては、
吸収液として水が用いられてきたが、塩素化飽和炭化水
素は水への溶解度が非常に低いため、吸収効率が低く、
十分に吸収させるために設備を大型にせざるを得ない場
合がある。また、特開昭52−65206号公報には、
特定のエステル化合物、ケトン化合物、エーテル化合
物、芳香族化合物等を吸収液として用い、ハロゲン化ビ
ニルを含む気体と該吸収液とを接触させることによりハ
ロゲン化ビニルを回収する方法が開示されている。しか
しながらこれらの吸収液は沸点が低く、蒸発し易く、ま
た臭気が強いなどの問題があり、環境上有害となる場合
がある。これらの吸収液の蒸気飛散を防止するには、さ
らなる吸収設備が必要になり、煩雑化し、コストも高く
なる場合がある。
[0003] The adsorption method requires large equipment,
There is a disadvantage that the operation is complicated and a large amount of energy is required, and thus economical efficiency is lacking. In addition, the condensation method has a disadvantage that it requires a large amount of energy and thus lacks economy, and when the content of the chlorinated saturated compound is low, the efficiency becomes poor. On the other hand, in the absorption method,
Water has been used as an absorbing solution, but chlorinated saturated hydrocarbons have very low solubility in water, so absorption efficiency is low,
In some cases, the equipment must be large in order to be sufficiently absorbed. Also, JP-A-52-65206 discloses that
A method is disclosed in which a specific ester compound, ketone compound, ether compound, aromatic compound, or the like is used as an absorbing solution, and a vinyl halide-containing gas is brought into contact with the absorbing solution to recover vinyl halide. However, these absorbents have problems such as low boiling point, easy evaporation, and strong odor, which may be harmful to the environment. In order to prevent vapor scattering of these absorbing liquids, additional absorbing equipment is required, which may complicate and increase the cost.

【0004】[0004]

【発明が解決しようとする課題】本発明は、安全に、か
つ効率よく塩素化飽和化合物を回収しうる方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for safely and efficiently recovering a chlorinated saturated compound.

【0005】[0005]

【課題を解決するための手段】即ち、本発明の要旨は、
塩素化飽和炭化水素を含む気体と、芳香族化合物及びナ
フテン系炭化水素からなる群より選ばれた沸点が180
℃以上の化合物の1種以上を含有する吸収液とを接触さ
せることにより、該塩素化飽和炭化水素を吸収液に吸収
させる塩素化飽和炭化水素の回収方法、に関する。
That is, the gist of the present invention is as follows.
A gas containing a chlorinated saturated hydrocarbon, and a boiling point selected from the group consisting of an aromatic compound and a naphthenic hydrocarbon having a boiling point of 180.
The present invention relates to a method for recovering a chlorinated saturated hydrocarbon, wherein the chlorinated saturated hydrocarbon is absorbed into the absorbing solution by bringing the absorbing solution into contact with an absorbing solution containing at least one compound having a temperature of not less than ° C.

【0006】[0006]

【発明の実施の形態】本発明の塩素化飽和炭化水素の回
収方法において、「塩素化飽和炭化水素を含む気体」と
は、塩素化飽和炭化水素の蒸気又はガスと共に、さらに
その他の有機化合物の蒸気、水蒸気、窒素ガス、酸素ガ
スからなる群より選ばれた1種以上を含む混合物をい
う。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for recovering a chlorinated saturated hydrocarbon according to the present invention, the term “gas containing a chlorinated saturated hydrocarbon” refers to the vapor or gas of the chlorinated saturated hydrocarbon and the other organic compounds. A mixture containing at least one selected from the group consisting of steam, water vapor, nitrogen gas, and oxygen gas.

【0007】前記塩素化飽和炭化水素を含む気体におけ
る塩素化飽和炭化水素の含有量は、吸収効率の観点か
ら、20体積%以上であることが好ましく、50体積%
以上であることがさらに好ましく、安定運転の観点か
ら、90体積%以下であることが好ましい。
The content of the chlorinated saturated hydrocarbon in the gas containing the chlorinated saturated hydrocarbon is preferably 20% by volume or more, and more preferably 50% by volume, from the viewpoint of absorption efficiency.
More preferably, the content is 90% by volume or less from the viewpoint of stable operation.

【0008】前記塩素化飽和炭化水素としては、特に限
定されないが、炭素数が1〜4の塩素化飽和炭化水素が
好適である。例えば、クロロメタン、ジクロロメタン、
クロロホルム、テトラクロロメタン、クロロエタン、
1,1,1−トリクロロエタン、1,1,2−トリクロ
ロエタン、1,2,3−トリクロロプロパン、クロロブ
タン等が挙げられる。
The chlorinated saturated hydrocarbon is not particularly limited, but is preferably a chlorinated saturated hydrocarbon having 1 to 4 carbon atoms. For example, chloromethane, dichloromethane,
Chloroform, tetrachloromethane, chloroethane,
1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane, chlorobutane and the like can be mentioned.

【0009】本発明の塩素化飽和炭化水素の回収方法に
おいては、塩素化飽和炭化水素の吸収液として、芳香族
化合物及びナフテン系炭化水素からなる群より選ばれた
沸点が180℃以上の化合物の1種以上を含有する溶液
を用いることに1つの大きな特徴がある。前記吸収液を
用いることにより、効率よく塩素化飽和炭化水素を回収
することができ、設備費等に要するコストを低減させる
ことができるという優れた効果を発揮する。
In the method for recovering a chlorinated saturated hydrocarbon according to the present invention, a compound having a boiling point of 180 ° C. or higher selected from the group consisting of an aromatic compound and a naphthenic hydrocarbon is used as the chlorinated saturated hydrocarbon absorbing solution. There is one major feature in using solutions containing one or more. By using the absorbing liquid, it is possible to efficiently recover chlorinated saturated hydrocarbons, and to exhibit an excellent effect that costs required for equipment costs and the like can be reduced.

【0010】前記芳香族化合物及びナフテン系炭化水素
の沸点は、吸収液の蒸発を抑える観点から180℃以上
であり、好ましくは200℃以上であり、吸収液の流動
性の観点から、好ましくは400℃以下である。
The boiling point of the aromatic compound and the naphthenic hydrocarbon is 180 ° C. or higher, preferably 200 ° C. or higher, from the viewpoint of suppressing the evaporation of the absorbing solution, and preferably 400 ° C., from the viewpoint of the fluidity of the absorbing solution. It is below ° C.

【0011】前記芳香族化合物としては、アルキルベン
ゼン(炭素数が13〜20)、フタル酸、o−、m−及
びp−テレフタル酸、トリメリット酸等から得られるエ
ステル類又はエーテル類等の誘導体;アルキルナフタリ
ン、アルキルビフェニル、ジフェニル、ジフェニルエー
テル、水素化トリフェニル、ベンジルトルエン、ジベン
ジルトルエン等の化合物で沸点が180℃以上の化合物
が挙げられる。前記芳香族化合物は、単独で又は2種以
上を混合して用いてもよい。前記芳香族化合物のなかで
は、炭素数13〜20のアルキルベンゼン、アルキルナ
フタリン、アルキルビフェニル、ジフェニル、ジフェニ
ルエーテル、水素化トリフェニル、ベンジルトルエン及
びジベンジルトルエンが好ましく、とりわけ炭素数16
〜20のアルキルベンゼンがより好ましく、ドデシルベ
ンゼンが特に好ましい。
As the aromatic compound, derivatives such as esters or ethers obtained from alkylbenzene (having 13 to 20 carbon atoms), phthalic acid, o-, m- and p-terephthalic acid, trimellitic acid, and the like; Compounds having a boiling point of 180 ° C. or higher, such as alkylnaphthalene, alkylbiphenyl, diphenyl, diphenylether, hydrogenated triphenyl, benzyltoluene, and dibenzyltoluene, may be mentioned. The aromatic compounds may be used alone or in combination of two or more. Among the aromatic compounds, alkylbenzene having 13 to 20 carbon atoms, alkylnaphthalene, alkylbiphenyl, diphenyl, diphenylether, triphenyl hydride, benzyltoluene, and dibenzyltoluene are preferable, and particularly, carbon atoms having 16 to 20 carbon atoms.
-20 alkylbenzenes are more preferred, and dodecylbenzene is particularly preferred.

【0012】前記ナフテン系炭化水素としては、例え
ば、炭素数4以上のシクロアルカンに炭素数4以上の直
鎖又は分岐鎖アルキル基を1個以上有し、沸点が180
℃以上の化合物等が挙げられる。前記シクロアルカンの
炭素数は、沸点の観点から、好ましくは4以上であり、
さらに好ましくは6以上であり、流動性の観点から、好
ましくは10以下である。また、直鎖又は分岐鎖アルキ
ル基の炭素数は、沸点の観点から、好ましくは4以上で
あり、流動性の観点から、好ましくは20以下である。
As the naphthenic hydrocarbon, for example, a cycloalkane having 4 or more carbon atoms has one or more linear or branched alkyl groups having 4 or more carbon atoms and a boiling point of 180.
Compounds at a temperature of at least ℃ are mentioned. The number of carbon atoms of the cycloalkane is preferably 4 or more from the viewpoint of the boiling point,
It is more preferably 6 or more, and preferably 10 or less from the viewpoint of fluidity. In addition, the number of carbon atoms of the linear or branched alkyl group is preferably 4 or more from the viewpoint of boiling point, and preferably 20 or less from the viewpoint of fluidity.

【0013】前記芳香族化合物及びナフテン系炭化水素
は、単独で又は2種以上を混合して用いてもよい。
The aromatic compound and the naphthenic hydrocarbon may be used alone or in combination of two or more.

【0014】前記吸収液において、前記芳香族化合物及
びナフテン系炭化水素からなる群より選ばれた沸点が1
80℃以上の化合物の1種以上の含有量は、吸収効率の
観点から、好ましくは20重量%以上であり、より好ま
しくは40重量%以上である。
[0014] In the absorbing solution, the boiling point selected from the group consisting of the aromatic compound and the naphthenic hydrocarbon is 1
The content of one or more compounds at 80 ° C. or higher is preferably 20% by weight or more, more preferably 40% by weight or more, from the viewpoint of absorption efficiency.

【0015】前記吸収液は、均一に溶解した溶液又は不
均一な混合液でもよい。また、前記吸収液においては、
前記芳香族化合物及びナフテン系炭化水素からなる群よ
り選ばれた少なくとも1種以外に、任意に水、パラフィ
ン系炭化水素、高級アルコール、脂肪酸、無機物等が含
まれてもよい。
The absorbing solution may be a uniformly dissolved solution or a heterogeneous mixed solution. Further, in the absorbing liquid,
In addition to at least one selected from the group consisting of the aromatic compounds and naphthenic hydrocarbons, water, paraffinic hydrocarbons, higher alcohols, fatty acids, inorganic substances, and the like may be optionally included.

【0016】本発明の塩素化飽和炭化水素の回収方法に
用いられる吸収設備としては、例えば、吸収塔、槽式等
が挙げられる。
The absorption equipment used in the method for recovering chlorinated saturated hydrocarbons of the present invention includes, for example, an absorption tower, a tank type and the like.

【0017】吸収設備内の温度条件は、塩素化飽和炭化
水素を含む気体の吸収液への溶解度の観点から、低温条
件であることが好ましく、0℃〜30℃がより好まし
い。また、吸収を行なう時の吸収設備内の圧力条件は、
塩素化飽和炭化水素を含む気体の溶解度の観点から、
0.1MPa〜0.5MPaがより好ましい。
From the viewpoint of the solubility of the gas containing the chlorinated saturated hydrocarbon in the absorbing solution, the temperature condition in the absorption facility is preferably a low temperature condition, more preferably 0 ° C to 30 ° C. In addition, the pressure conditions in the absorption facility when performing absorption,
From the viewpoint of solubility of gas containing chlorinated saturated hydrocarbon,
0.1 MPa-0.5 MPa is more preferable.

【0018】吸収液に塩素化飽和炭化水素を含む気体を
吸収させたのち、塩素化飽和炭化水素を回収する際、吸
収液を加熱又は圧力を調節することにより吸収液から塩
素化飽和炭化水素を吸収したガスを分離し、回収するこ
とができる。
When the chlorinated saturated hydrocarbon is recovered after absorbing the gas containing the chlorinated saturated hydrocarbon into the absorbing solution, the chlorinated saturated hydrocarbon is removed from the absorbing solution by heating or adjusting the pressure of the absorbing solution. The absorbed gas can be separated and recovered.

【0019】[0019]

【実施例】実施例1 吸収塔〔内径25φ充填塔、スルザーパッキン(住友重
機械工業(株)製)を25mmφ×0.5mh 充填〕上
部より、吸収液として、25℃のドデシルベンゼン(直
鎖、沸点271℃、平均分子量246)を1kg/時間
の速度で連続的に注入し、吸収塔下部より、塩素化飽和
炭化水素を含む気体として、クロロメタンと窒素の混合
ガス〔クロロメタン:窒素ガス=1:1(体積比)、ガ
スクロマトグロフィー(以下、GCという)で測定〕を
8L/時間の速度で連続的に供給した。吸収塔内部の圧
力は常圧で運転した。30分後に、吸収塔出口の排ガス
をサンプリングして、GCを用いて、排ガス中に含まれ
る塩素化飽和炭化水素濃度(ppm)及び排ガス中に含
まれる吸収液由来のガス濃度としてドデシルベンゼン濃
度(ppm)を測定した。
EXAMPLE 1 absorption tower [inner diameter 25φ packed column, Sulzer packing (Sumitomo Heavy Industries Co., Ltd.) 25 mm × 0.5 m h filled] than the top, as absorption liquid, of 25 ° C. dodecylbenzene (linear Chains, a boiling point of 271 ° C. and an average molecular weight of 246) are continuously injected at a rate of 1 kg / hour, and a mixed gas of chloromethane and nitrogen [chloromethane: nitrogen] is supplied from the lower part of the absorption tower as a gas containing chlorinated saturated hydrocarbons. Gas = 1: 1 (volume ratio), measured by gas chromatography (hereinafter referred to as GC)] at a rate of 8 L / hour. The pressure inside the absorption tower was operated at normal pressure. After 30 minutes, the exhaust gas at the outlet of the absorption tower was sampled, and the concentration of chlorinated saturated hydrocarbons contained in the exhaust gas (ppm) and the concentration of dodecylbenzene as the gas concentration derived from the absorbing solution contained in the exhaust gas (GC) were measured using GC. ppm).

【0020】実施例2 実施例1の吸収液を、エッソサーム500〔(エッソ石
油(株)製、沸点400℃、組成:芳香族炭化水素4重
量%、ナフテン系炭化水素24重量%及びパラフィン系
炭化水素72重量%〕に代え、他は実施例1と同様に行
なった。GCを用いて、排ガス中に含まれる塩素化飽和
炭化水素濃度(ppm)及び排ガス中に含まれる吸収液
由来のガス濃度として吸収液由来の炭化水素類の濃度
(ppm)を測定した。
Example 2 The absorption liquid of Example 1 was prepared by using Essotherm 500 (manufactured by Esso Oil Co., Ltd., boiling point: 400 ° C., composition: 4% by weight of aromatic hydrocarbon, 24% by weight of naphthenic hydrocarbon, and paraffinic carbon Hydrogen 72% by weight], and the other conditions were the same as in Example 1. Using GC, the concentration (ppm) of chlorinated saturated hydrocarbons contained in the exhaust gas and the concentration of the gas derived from the absorbing solution contained in the exhaust gas The concentration (ppm) of hydrocarbons derived from the absorbing solution was measured.

【0021】実施例3 実施例1の塩素化飽和炭化水素を含む気体をジクロロメ
タンと窒素の混合ガス〔ジクロロメタン:窒素=3:7
(体積比)〕に代え、他は実施例1と同様に行なった。
Example 3 A gas containing the chlorinated saturated hydrocarbon of Example 1 was mixed with a mixed gas of dichloromethane and nitrogen [dichloromethane: nitrogen = 3: 7].
(Volume ratio)], and the other steps were the same as in Example 1.

【0022】実施例4 実施例1の圧力を常圧から0.2MPaに代え、他は実
施例1と同様に行なった。
Example 4 The procedure of Example 1 was repeated, except that the pressure in Example 1 was changed from normal pressure to 0.2 MPa.

【0023】実施例5 1Lのガラス製反応器(フラスコ)に、実施例1で用い
たのと同様のドデシルベンゼンを500g注入し、1k
Paまで減圧脱気した後、温度25℃でクロロメタンと
窒素の混合ガス〔クロロメタン:窒素=4:1(体積
比)〕を5Lを注入して、気相部のガスを分析した。
Example 5 500 g of the same dodecylbenzene used in Example 1 was injected into a 1 L glass reactor (flask), and 1 k
After deaeration under reduced pressure to Pa, 5 L of a mixed gas of chloromethane and nitrogen [chloromethane: nitrogen = 4: 1 (volume ratio)] was injected at a temperature of 25 ° C., and the gas in the gas phase was analyzed.

【0024】実施例6 実施例1の温度を5℃に代え、他は実施例1と同様に行
なった。
Example 6 The procedure of Example 1 was repeated except that the temperature of Example 1 was changed to 5 ° C.

【0025】実施例7 実施例1の吸収液をナフテン系炭化水素〔昭和シェル
(株)製、商品名:シェルクラバスオイル32(沸点3
20℃)、ナフテン成分含有量44.5重量%、残部パ
ラフィン系炭化水素〕に代え、他は実施例1同様に行な
った。GCを用いて、排ガス中に含まれる塩素化飽和炭
化水素濃度(ppm)及び排ガス中に含まれる吸収液由
来のガス濃度として吸収液由来の炭化水素類の濃度(p
pm)を測定した。
Example 7 A naphthenic hydrocarbon [manufactured by Showa Shell Co., Ltd., trade name: Shell Clavus Oil 32 (boiling point: 3)
20 ° C.), the content of the naphthene component being 44.5% by weight, and the balance being a paraffinic hydrocarbon]. Using GC, the concentration of chlorinated saturated hydrocarbons (ppm) contained in the exhaust gas and the concentration of hydrocarbons derived from the absorbing solution (p
pm).

【0026】比較例1 実施例1の実験器具を用いて、吸収液をn−パラフィン
(沸点300℃)に代え、他は実施例1と同様に行なっ
た。GCを用いて、排ガス中に含まれる塩素化飽和炭化
水素濃度(ppm)及び排ガス中に含まれる吸収液由来
のガス濃度として吸収液由来の炭化水素類の濃度(pp
m)を測定した。
Comparative Example 1 The procedure of Example 1 was repeated, except that the absorbent was replaced with n-paraffin (boiling point: 300 ° C.) using the experimental apparatus of Example 1. Using GC, the concentration of chlorinated saturated hydrocarbons (ppm) contained in the exhaust gas and the concentration of hydrocarbons derived from the absorbing solution (pp
m) was measured.

【0027】比較例2 実施例1で用いた吸収塔の上部より、0.2MPaの圧
力条件下、25℃のトルエン(沸点110℃)を1kg
/時間の速度で連続的に注入し、塔下部より塩素化飽和
炭化水素と窒素の混合ガス〔クロロメタン:窒素=1:
1(体積比)〕を8L/時間の速度で連続的に供給し
た。実施例1と同様にして、排ガス中に含まれる塩素化
飽和炭化水素濃度(ppm)及び排ガス中にトルエン濃
度(ppm)を測定した。
Comparative Example 2 1 kg of 25 ° C. toluene (boiling point: 110 ° C.) was introduced from the upper part of the absorption tower used in Example 1 under a pressure of 0.2 MPa.
/ Hr continuously, and a mixed gas of chlorinated saturated hydrocarbon and nitrogen [chloromethane: nitrogen = 1:
1 (volume ratio)] was continuously supplied at a rate of 8 L / hour. In the same manner as in Example 1, the chlorinated saturated hydrocarbon concentration (ppm) contained in the exhaust gas and the toluene concentration (ppm) contained in the exhaust gas were measured.

【0028】表1に、実施例1〜7、比較例1及び2に
より生じた排ガス中の塩素化飽和炭化水素濃度を示す。
Table 1 shows the concentrations of chlorinated saturated hydrocarbons in the exhaust gas produced in Examples 1 to 7 and Comparative Examples 1 and 2.

【0029】[0029]

【表1】 [Table 1]

【0030】 GC測定条件 使用カラム :Glass ID3φ×2m DOP、30% Uniport 60/80 カラム温度条件 :60℃で5分間保持し、昇温速度10℃/分で250 ℃まで昇温し、250℃で5分間保持した。GC measurement conditions Column used: Glass ID 3φ × 2 m DOP, 30% Uniport 60/80 Column temperature conditions: Hold at 60 ° C. for 5 minutes, heat up to 250 ° C. at a rate of 10 ° C./min, 250 ° C. For 5 minutes.

【0031】 インジェクション温度:150℃ 検出器 :FIDInjection temperature: 150 ° C. Detector: FID

【0032】表1に示すように、実施例1〜7の回収方
法によれば、比較例1及び2の回収方法に比べ、塩素化
飽和炭化水素の回収後に生じる排ガスに含まれる塩素化
飽和炭化水素の量を低濃度に減少させることができるこ
とを示す。また、比較例2の回収方法によれば、吸収液
由来の蒸発したガスが排ガスに含まれるが、実施例1〜
7の回収方法によれば、排ガス中に吸収液由来の蒸発し
たガスを検出することができないことを示す。以上の結
果により、実施例1〜7の塩素化飽和炭化水素の回収方
法は塩素化飽和炭化水素の回収に優れ、吸収液の蒸発に
よる回収効率の低下並びに設備費及び運転費の増加を防
止できる方法であることが示される。
As shown in Table 1, according to the recovery methods of Examples 1 to 7, compared with the recovery methods of Comparative Examples 1 and 2, the chlorinated saturated carbon contained in the exhaust gas generated after the recovery of the chlorinated saturated hydrocarbon was used. It shows that the amount of hydrogen can be reduced to low concentrations. Further, according to the recovery method of Comparative Example 2, although the evaporated gas derived from the absorbing solution is included in the exhaust gas,
According to the recovery method of No. 7, it is impossible to detect the vaporized gas derived from the absorption liquid in the exhaust gas. From the above results, the methods for recovering chlorinated saturated hydrocarbons of Examples 1 to 7 are excellent in recovering chlorinated saturated hydrocarbons, and can prevent a reduction in recovery efficiency due to evaporation of the absorbing solution and an increase in equipment costs and operating costs. The method is shown.

【0033】[0033]

【発明の効果】本発明の方法によれば、塩素化飽和炭化
水素の回収が安全に、かつ効率よく行われ、設備費及び
運転費を低減させることができるという優れた効果を奏
する。
According to the method of the present invention, there is an excellent effect that the chlorinated saturated hydrocarbon can be safely and efficiently recovered, and the equipment cost and the operating cost can be reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古賀 義男 和歌山市湊1334番地 花王株式会社研究所 内 Fターム(参考) 4H006 AA02 AD18 BB11 BB49  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshio Koga 1334 Minato, Wakayama-shi Kao Corporation Research Laboratory F-term (reference) 4H006 AA02 AD18 BB11 BB49

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩素化飽和炭化水素を含む気体と、芳香
族化合物及びナフテン系炭化水素からなる群より選ばれ
た沸点が180℃以上の化合物の1種以上を含有する吸
収液とを接触させることにより、該塩素化飽和炭化水素
を吸収液に吸収させる塩素化飽和炭化水素の回収方法。
1. A gas containing a chlorinated saturated hydrocarbon is brought into contact with an absorbing solution containing at least one compound having a boiling point of 180 ° C. or higher selected from the group consisting of aromatic compounds and naphthenic hydrocarbons. A method for recovering a chlorinated saturated hydrocarbon, wherein the chlorinated saturated hydrocarbon is absorbed in an absorbing solution.
【請求項2】 吸収液が、芳香族化合物及びナフテン系
炭化水素からなる群より選ばれた沸点が180℃以上の
化合物の1種以上を20重量%以上含有するものである
請求項1記載の回収方法。
2. The absorption liquid according to claim 1, wherein the absorbing liquid contains at least 20% by weight of one or more compounds having a boiling point of 180 ° C. or higher selected from the group consisting of aromatic compounds and naphthenic hydrocarbons. Collection method.
【請求項3】 吸収液が、炭素数13〜20のアルキル
ベンゼン、アルキルナフタリン、アルキルビフェニル、
ビフェニル、ジフェニルエーテル、水素化トリフェニ
ル、ベンジルトルエン及びジベンジルトルエンからなる
群より選ばれた1種以上の化合物を含有するものである
請求項1又は2記載の回収方法。
3. An absorbent comprising an alkylbenzene having 13 to 20 carbon atoms, an alkylnaphthalene, an alkylbiphenyl,
3. The recovery method according to claim 1, wherein the method comprises one or more compounds selected from the group consisting of biphenyl, diphenyl ether, hydrogenated triphenyl, benzyltoluene and dibenzyltoluene.
【請求項4】 塩素化飽和炭化水素が、炭素数1〜4の
塩素化飽和炭化水素である請求項1〜3いずれか記載の
回収方法。
4. The recovery method according to claim 1, wherein the chlorinated saturated hydrocarbon is a chlorinated saturated hydrocarbon having 1 to 4 carbon atoms.
JP10205383A 1998-07-21 1998-07-21 Recovery of chlorinated saturated hydrocarbon Pending JP2000038355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10205383A JP2000038355A (en) 1998-07-21 1998-07-21 Recovery of chlorinated saturated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10205383A JP2000038355A (en) 1998-07-21 1998-07-21 Recovery of chlorinated saturated hydrocarbon

Publications (1)

Publication Number Publication Date
JP2000038355A true JP2000038355A (en) 2000-02-08

Family

ID=16505925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10205383A Pending JP2000038355A (en) 1998-07-21 1998-07-21 Recovery of chlorinated saturated hydrocarbon

Country Status (1)

Country Link
JP (1) JP2000038355A (en)

Similar Documents

Publication Publication Date Title
CN101342439B (en) Hydrocarbons recovery method
Ji et al. Adsorption of methyl tert-butyl ether (MTBE) from aqueous solution by porous polymeric adsorbents
JPS6232971B2 (en)
Chen et al. Hydrophobic deep eutectic solvents as green absorbents for hydrophilic VOC elimination
WO2000053971A1 (en) Method for storing natural gas by adsorption and adsorbing agent for use therein
JP4493824B2 (en) Purification method and cleaning agent for harmful gas
JP5010807B2 (en) Activation method of hydrogen adsorbent
Yang et al. The purification of hydrogen isotopes expelled from nuclear fusion reactors by a combined process
US5300468A (en) Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases
JP2000038355A (en) Recovery of chlorinated saturated hydrocarbon
Pełech et al. Desorption of chloroorganic compounds from a bed of activated carbon
KR101167207B1 (en) The apparatus for volatile organic compoundsand and method for recovery of volatile organic compounds
JP2001505128A (en) Material processing
CN113680172B (en) Trapping agent for hydrocarbon gas and separation method for near-boiling-point gas
US2992540A (en) Storage of liquid ozone
BR112014021670B1 (en) METHODS FOR REMOVING CONTAMINANT FROM AN EXTRACTIVE DISTILLATION, TRANS-1,1,1-TRIFLUORO-3-CHLORINE-2-PROPENE (1233ZD (E)) PURIFIED AND DISTILLATION PROCESS
RU2371229C2 (en) Method of purifying hexafluorobutadiene
JP2000037612A (en) Method for recovery of organic compound
RU2355465C2 (en) Method of waste gases purification of methyl chloride
WO2023248669A1 (en) Acidic gas absorbent production method and acidic gas recovery method
JP4095820B2 (en) Exhaust gas purification method and operation method of hardly decomposable halogen compound decomposition treatment facility
JPH03223219A (en) Purification of tetrafluroethylene
JP2003170021A (en) Method for cleaning exhaust ags and decomposition treatment facility of hardly decomposable halogen compound
JP3847106B2 (en) Recycling method of perfluoro compound by low temperature purification
Sazonov et al. Interaction of tritium with oils and tritiated waste oil decontamination