JP2000037010A - Ground detection method of gas-insulated switchgear - Google Patents

Ground detection method of gas-insulated switchgear

Info

Publication number
JP2000037010A
JP2000037010A JP10199377A JP19937798A JP2000037010A JP 2000037010 A JP2000037010 A JP 2000037010A JP 10199377 A JP10199377 A JP 10199377A JP 19937798 A JP19937798 A JP 19937798A JP 2000037010 A JP2000037010 A JP 2000037010A
Authority
JP
Japan
Prior art keywords
voltage
ground
gis
dividing capacitor
voltage dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10199377A
Other languages
Japanese (ja)
Inventor
Terumichi Cho
長  輝通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10199377A priority Critical patent/JP2000037010A/en
Publication of JP2000037010A publication Critical patent/JP2000037010A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect the ground by utilizing the shielding case of a current transformer and eliminate the gas ground transformer(GPT) of a gas-insulated switchgear(GIS). SOLUTION: The shielding cases 22 of the main circuit current detecting CTs of the respective phases of a GIS have capacitances C1 between the main circuit conductors 21 of the GIS and themselves respectively. The shield cases 22 of the respective phases are connected to each other with conductors 24. A voltage dividing capacitor C2 is connected between the conductors 24 and the ground and monitored. When the ground does not exist, voltage vectors generated by the capacitances C1 of the respective phases cancel each other and hence a voltage is not applied to the voltage dividing capacitor C2. If the one-line ground exists, the relations between the voltage vectors generated by the capacitors C1 of the respective phases collapse and hence a voltage is applied to the voltage dividing capacitor C2. Therefore, the ground can be detected by monitoring the voltage of the voltage dividing capacitor C2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ガス絶縁開閉装
置の地絡故障検出方法、詳しくは、ガス絶縁開閉装置の
接地変圧器ユニットを省略できる地絡故障検出方法に関
する。
The present invention relates to a method for detecting a ground fault in a gas insulated switchgear, and more particularly to a method for detecting a ground fault in a gas insulated switchgear which can omit a grounding transformer unit.

【0002】[0002]

【従来の技術】ガス絶縁開閉装置(GIS)は、母線遮
断器,断路器,避雷器など、開閉装置の構成機器の充電
部を円筒状の接地金属タンクのほぼ中央に配置し、絶縁
スペーサなどで支持し、内部にSF6などの絶縁ガスを
満たした構造となっている。
2. Description of the Related Art In a gas insulated switchgear (GIS), a charging part of a switchgear component such as a bus breaker, a disconnector, a lightning arrestor, etc. is arranged almost at the center of a cylindrical grounded metal tank, and an insulating spacer or the like is used. supporting, it has a structure filled with an insulating gas such as SF 6 therein.

【0003】図5及び図6に複母線式送配電用変電所に
おけるGISの単線接続図及びGISタンク接続状況を
示す。GISは受電線/送電線ユニット1,変圧器回路
ユニット2,母線連絡回路ユニット3,接地変圧器ユニ
ット4等にユニット化されており、各ユニットを構成す
る金属タンク31は母線管路32で連結されている。
FIGS. 5 and 6 show a GIS single-wire connection diagram and a GIS tank connection status in a double-bus transmission and distribution substation. The GIS is unitized into a receiving line / transmission line unit 1, a transformer circuit unit 2, a bus connecting circuit unit 3, a grounding transformer unit 4, etc., and a metal tank 31 constituting each unit is connected by a bus line 32. Have been.

【0004】一般にGISは上記のようにガス接地変圧
器(GIS)ユニット4を有し、GPTは母線に接続さ
れた一次巻線と計器用二次巻線及び零相電圧検出用三次
巻線を有する。
Generally, the GIS has the gas ground transformer (GIS) unit 4 as described above, and the GPT has a primary winding connected to a bus, a secondary winding for an instrument, and a tertiary winding for zero-phase voltage detection. Have.

【0005】図7に示すようにGPTの一次巻線の中性
点を接地し、三次巻線をブロークンデルタ結線で両端に
制限抵抗R1を挿入することで、地絡時に発生する零相
電圧V0を検出することで地絡を検出している。このG
PTで検出した零相電圧は方向性地絡継電器67G1又
は67G2を動作させ、遮断器CB1又はCB2により
事故回路を解放し地絡事故を除去する。
[0005] As shown in FIG. 7, the neutral point of the primary winding of the GPT is grounded, and the tertiary winding is connected with broken delta connection and limiting resistors R 1 at both ends, thereby generating a zero-phase voltage V generated at the time of ground fault. Ground fault is detected by detecting 0 . This G
The zero-phase voltage detected by the PT activates the directional ground fault relay 67G1 or 67G2, and the fault circuit is released by the circuit breaker CB1 or CB2 to eliminate the ground fault.

【0006】[0006]

【発明が解決しようとする課題】上記のようにGISに
はGPTユニット4がGISの一部として接続されるた
め、GIS全体に占める割合も大きくなり、GISの縮
小化を図ることができない。
As described above, since the GPT unit 4 is connected to the GIS as a part of the GIS, the ratio of the GIS to the entire GIS increases, and the GIS cannot be reduced in size.

【0007】また、GPTの内部は変圧器と同様に巻線
により構成されているため、巻線の断線、絶縁劣化等に
より、GISそのものの信頼性を低下させる場合があ
る。
[0007] Further, since the inside of the GPT is formed by windings like a transformer, the reliability of the GIS itself may be reduced due to disconnection of the windings, deterioration of insulation, and the like.

【0008】この発明は、上記課題に鑑みてなされたも
のであり、その目的とするところは、装置の縮小化がで
きると共に信頼性が向上するガス絶縁開閉装置の地絡検
出方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for detecting a ground fault of a gas insulated switchgear capable of reducing the size of a device and improving reliability. It is in.

【0009】[0009]

【課題を解決するための手段】この発明のガス絶縁開閉
装置の地絡検出方法は、主回路電流を検出する各相の変
流器のシールドケースを導体で接続し、この導体とアー
ス間に主回路とシールドケース間の静電容量とにより分
圧回路を成形する分圧コンデンサを接続し、この分圧コ
ンデンサに発生する電圧を検出することで地絡を検出す
ることを特徴とするものである。
According to a method of detecting a ground fault in a gas insulated switchgear of the present invention, a shield case of a current transformer of each phase for detecting a main circuit current is connected by a conductor, and between the conductor and ground. It is characterized by connecting a voltage dividing capacitor that forms a voltage dividing circuit by the capacitance between the main circuit and the shield case, and detecting a ground fault by detecting the voltage generated in this voltage dividing capacitor. is there.

【0010】[0010]

【発明の実施の形態】図1はGISの受電線/送電線ユ
ニットを示したもので、11はケーブル接続部、12は
遮断器部、13は遮断器操作部、14は断路部、15は
ユニット監視盤である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a GIS receiving / transmitting line unit, 11 is a cable connecting section, 12 is a breaker section, 13 is a breaker operating section, 14 is a disconnecting section, and 15 is a disconnecting section. It is a unit monitoring panel.

【0011】図2は図1の矢印アで示す遮断部12の変
流器(CT)設置部分の拡大図で、21は主回路導体、
22は主回路電流を検出するCTのシールドケース、2
3は遮断器部のタンク壁、24はR,S,T相の各CT
のシールドケース22を接続する導体、25はこの導体
24をタンク壁23から引き出すための絶縁スペーサ、
C1は主回路導体21とCTのシールドケース間に存在
する静電容量、C2は導体34とアース間に接続され静
電容量C1と直列回路を形成する分圧用コンデンサであ
る。
FIG. 2 is an enlarged view of a current transformer (CT) installation portion of the interrupting section 12 indicated by an arrow a in FIG.
22 is a CT shield case for detecting the main circuit current, 2
3 is a tank wall of a circuit breaker part, 24 is each CT of R, S, T phase.
A conductor 25 for connecting the shield case 22 to the shield case 22; an insulating spacer 25 for extracting the conductor 24 from the tank wall 23;
C1 is a capacitance existing between the main circuit conductor 21 and the shield case of the CT, and C2 is a voltage dividing capacitor connected between the conductor 34 and the ground to form a series circuit with the capacitance C1.

【0012】図3は地絡検出(零相電圧検出)回路で、
C1R,C1S,C1Tは主回路各相導体と各相CTのシ
ールドケース間に存在する間の静電容量、C2は各相シ
ールドケース22を接続する導体24とアース間に接続
された分圧コンデンサ、TRは分圧コンデンサC2と並
列に接続されたトランス、ZDはトランスTRの一次電
圧を制限するツエナーダイオード、RFはトランスTR
の二次電圧を整流する整流器、Aは整流電圧を増幅する
増幅器、CPは増幅器Aの出力を設定値と比較し、零相
電圧検出信号を出力するコンパーレータである。
FIG. 3 shows a ground fault detection (zero-phase voltage detection) circuit.
C1 R , C1 S , and C1 T are capacitances between the main circuit phase conductors and the shield case of each phase CT, and C2 is connected between the conductor 24 connecting each phase shield case 22 and ground. A voltage dividing capacitor, TR is a transformer connected in parallel with the voltage dividing capacitor C2, ZD is a Zener diode for limiting the primary voltage of the transformer TR, and RF is a transformer TR.
A is an amplifier that amplifies the rectified voltage, and CP is a comparator that compares the output of the amplifier A with a set value and outputs a zero-phase voltage detection signal.

【0013】上記零相電圧検出回路の動作を説明する。
静電容量C1R,C1S,C1Rは等しいので、図4
(a)のように、主回路の三相電圧が平衡している場合
は、各相の電圧ベクトルはキャンセル方向に働くため、
零相電圧が発生しない。このため分圧コンデンサC2に
は電圧V2が発生しない。
The operation of the zero-phase voltage detection circuit will be described.
Since the capacitances C1 R , C1 S and C1 R are equal, FIG.
As shown in (a), when the three-phase voltages of the main circuit are balanced, the voltage vector of each phase acts in the cancel direction.
No zero-phase voltage is generated. Therefore, no voltage V2 is generated in the voltage dividing capacitor C2.

【0014】一線地絡、例えばR相が完全地絡した場合
はR相電圧が0となり静電容量C1R,C1S,C1R
発生する電圧のベクトル関係がくずれ、図4(b)に示
すように零相電圧VOが発生し、分圧コンデンサC2に
電圧V2が生ずる。
When a single-line ground fault occurs, for example, when the R-phase is completely grounded, the R-phase voltage becomes 0 and the vector relationship of the voltages generated in the capacitances C1 R , C1 S , and C1 R is lost, and FIG. As shown, a zero-phase voltage V O is generated, and a voltage V2 is generated in the voltage dividing capacitor C2.

【0015】この電圧V2はトランスTRで昇圧され整
流器RFで整流され、さらに増幅器Aにより増幅された
後、コンパレータCPにより設定値と比較される。しか
して、コンパレータCPは増幅器Aの出力が設定値より
大きい場合零相電圧検出信号を出力する。したがって、
GPTを使用することなく地絡を検出することができ
る。
This voltage V2 is boosted by the transformer TR, rectified by the rectifier RF, further amplified by the amplifier A, and compared with the set value by the comparator CP. Thus, the comparator CP outputs a zero-phase voltage detection signal when the output of the amplifier A is larger than the set value. Therefore,
A ground fault can be detected without using a GPT.

【0016】上記実施の形態は受電線/送電線ユニット
主回路のCTを利用して零相電圧を検出しているが、他
のユニットの主回路CTを利用してもよい。
In the above embodiment, the zero-sequence voltage is detected by using the CT of the main circuit of the receiving / transmission line unit. However, the main circuit CT of another unit may be used.

【0017】[0017]

【発明の効果】この発明は、上述のとおり構成されてい
るので、以下に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0018】(1)GISのGPTユニットを省略でき
るので、GISの全体の縮小化ができる。
(1) Since the GPT unit of the GIS can be omitted, the entire GIS can be reduced in size.

【0019】(2)上記(1)によりGISのコストダ
ウンとなる。
(2) The cost of the GIS is reduced by the above (1).

【0020】(3)地絡検出したGPTのような巻線が
なくなるので、GISの信頼性が向上する。
(3) The reliability of the GIS is improved because there is no winding such as the GPT detected by the ground fault.

【0021】(4)GPTユニットの接続作業がなくな
るので、GISの据え付け期間の短縮を図ることができ
る。
(4) Since the connection work of the GPT unit is eliminated, the installation period of the GIS can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1にかかるGISの受電圧/送電線
ユニットの構成図。
FIG. 1 is a configuration diagram of a GIS receiving / transmission line unit according to a first embodiment.

【図2】図1のア部の構成説明図。FIG. 2 is an explanatory diagram of a configuration of a part in FIG. 1;

【図3】地絡検出回路図。FIG. 3 is a ground fault detection circuit diagram.

【図4】各相の電圧ベクトル図。FIG. 4 is a voltage vector diagram of each phase.

【図5】複母線式送配電用変電所のGISの接続例を示
す単線接続図。
FIG. 5 is a single-line connection diagram showing a connection example of a GIS of a double-bus transmission and distribution substation.

【図6】同GISのGPT接続状況を示すGISの平面
図及び正面図。
FIG. 6 is a plan view and a front view of the GIS showing a GPT connection state of the GIS.

【図7】従来GPTによる零相電圧検出方法を説明する
回路図。
FIG. 7 is a circuit diagram illustrating a zero-phase voltage detection method using a conventional GPT.

【符号の説明】 1…GISの受電線/送電線ユニット 2…GISの変圧器回路ユニット 3…GISの母線連絡ユニット 4…GISのGPTユニット 11…ケーブル接続部 12…遮断器部 13…遮断器操作部 14…断路部 15…ユニット監視部 21…主回路導体 22…CTのシールドケース 23…タンク壁 24…接続電線 25…絶縁スペーサ 31…金属タンク 32…母線管路 C1…主回路導体とCTシールドケース間の静電容量 C2…分圧コンデンサ RF…整流器 CP…コンパレータ GCB…ガス遮断器 GPT…ガス接地変圧器 DS…断路器 ES…接地開閉器 LA…避雷器 CT,BCT…変流器 CH…ケーブルヘッド。[Description of Signs] 1 ... GIS receiving / transmission line unit 2 ... GIS transformer circuit unit 3 ... GIS busbar communication unit 4 ... GIS GPT unit 11 ... Cable connection unit 12 ... Circuit breaker unit 13 ... Circuit breaker Operation part 14 disconnecting part 15 unit monitoring part 21 main circuit conductor 22 CT shield case 23 tank wall 24 connection wire 25 insulating spacer 31 metal tank 32 bus line C1 main circuit conductor and CT Capacitance between shield cases C2: Voltage dividing capacitor RF: Rectifier CP: Comparator GCB: Gas circuit breaker GPT: Gas ground transformer DS: Disconnector ES: Ground switch LA: Lightning arrester CT, BCT: Current transformer CH: Cable head.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主回路電流を検出する各相の変流器のシ
ールドケースを導体で接続し、この導体とアース間に主
回路とシールドケース間の静電容量とにより分圧回路を
成形する分圧コンデンサを接続し、この分圧コンデンサ
に発生する電圧を検出することで地絡を検出することを
特徴とするガス絶縁開閉装置の地絡検出方法。
1. A shield case of a current transformer of each phase for detecting a main circuit current is connected by a conductor, and a voltage dividing circuit is formed between the conductor and the ground by a capacitance between the main circuit and the shield case. A method for detecting a ground fault in a gas insulated switchgear, comprising connecting a voltage dividing capacitor and detecting a voltage generated in the voltage dividing capacitor to detect a ground fault.
JP10199377A 1998-07-15 1998-07-15 Ground detection method of gas-insulated switchgear Pending JP2000037010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10199377A JP2000037010A (en) 1998-07-15 1998-07-15 Ground detection method of gas-insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10199377A JP2000037010A (en) 1998-07-15 1998-07-15 Ground detection method of gas-insulated switchgear

Publications (1)

Publication Number Publication Date
JP2000037010A true JP2000037010A (en) 2000-02-02

Family

ID=16406757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10199377A Pending JP2000037010A (en) 1998-07-15 1998-07-15 Ground detection method of gas-insulated switchgear

Country Status (1)

Country Link
JP (1) JP2000037010A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172085A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Zero-phase reference input device, and ground fault protection relay
CN110609201A (en) * 2019-09-25 2019-12-24 特变电工南京智能电气有限公司 Line breakage judging method
CN111562468A (en) * 2020-04-02 2020-08-21 中国电力科学研究院有限公司 GIS partial discharge signal measurement system and GIS partial discharge fault diagnosis method
CN113078578A (en) * 2021-04-02 2021-07-06 长江勘测规划设计研究有限责任公司 High-voltage equipment connecting structure of offshore booster station and mounting method thereof
CN113985271A (en) * 2021-11-04 2022-01-28 中铁武汉电气化局集团有限公司 Subway GIS high-voltage switch cabinet system detection device and method
JP7465034B1 (en) 2023-05-08 2024-04-10 株式会社SoBrain Measurement device, measurement method, and measurement program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172085A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Zero-phase reference input device, and ground fault protection relay
CN110609201A (en) * 2019-09-25 2019-12-24 特变电工南京智能电气有限公司 Line breakage judging method
CN110609201B (en) * 2019-09-25 2022-02-08 特变电工南京智能电气有限公司 Line breakage judging method
CN111562468A (en) * 2020-04-02 2020-08-21 中国电力科学研究院有限公司 GIS partial discharge signal measurement system and GIS partial discharge fault diagnosis method
CN111562468B (en) * 2020-04-02 2023-03-14 中国电力科学研究院有限公司 GIS partial discharge signal measurement system and GIS partial discharge fault diagnosis method
CN113078578A (en) * 2021-04-02 2021-07-06 长江勘测规划设计研究有限责任公司 High-voltage equipment connecting structure of offshore booster station and mounting method thereof
CN113985271A (en) * 2021-11-04 2022-01-28 中铁武汉电气化局集团有限公司 Subway GIS high-voltage switch cabinet system detection device and method
JP7465034B1 (en) 2023-05-08 2024-04-10 株式会社SoBrain Measurement device, measurement method, and measurement program

Similar Documents

Publication Publication Date Title
US4130850A (en) High speed fault diverter switch for gas-insulated systems
JP2000037010A (en) Ground detection method of gas-insulated switchgear
US3624450A (en) Metal enclosed gas insulated lightning arrester
US5126917A (en) Gas insulated switchgear
Rashkes et al. Very high frequency overvoltages at open air EHV substations during disconnect switch operations
KR101338254B1 (en) Distributing panel for very high voltage
JP2000277363A (en) Capacitance divider voltage transformer
JPH0742174Y2 (en) Gas insulated switchgear
JP2000253520A (en) Gas-insulated switch device
JP2000069624A (en) Control circuit for gas insulation switchgear
JPH1056709A (en) Cubicle gas insulation switchgear
JPH1172532A (en) Insulation degradation detector and voltage detector
JP2000298144A (en) Current measuring device
JP3410780B2 (en) Gas insulated switchgear
JPS622887Y2 (en)
JPS5816008B2 (en) gas
JPH0946887A (en) Zero-phase voltage detector
JPS61254011A (en) Gas insulated switchgear
JPS6243411B2 (en)
JP3490537B2 (en) Gas insulated switchgear
JPH0898350A (en) Faulty point orientating equipment of gas insulating switchgear
JP2000021275A (en) Gas insulated appliance
JP3321479B2 (en) Fault location system
JPH0210770Y2 (en)
CN114899805A (en) Overvoltage protector installation method