JP2000034111A - Continuous graphitizing treatment apparatus - Google Patents

Continuous graphitizing treatment apparatus

Info

Publication number
JP2000034111A
JP2000034111A JP10200123A JP20012398A JP2000034111A JP 2000034111 A JP2000034111 A JP 2000034111A JP 10200123 A JP10200123 A JP 10200123A JP 20012398 A JP20012398 A JP 20012398A JP 2000034111 A JP2000034111 A JP 2000034111A
Authority
JP
Japan
Prior art keywords
powder
processed
treated
electrodes
discharge duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10200123A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nehashi
清 根橋
Shiko Matsuda
至康 松田
Kunio Matsui
邦雄 松井
Tomotoshi Mochizuki
智俊 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10200123A priority Critical patent/JP2000034111A/en
Publication of JP2000034111A publication Critical patent/JP2000034111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous graphitizing treatment apparatus for enabling a continuous graphitizing production process, capable of shortening a time from the feed of raw material powder to the recovery of graphite powder, readily dealing with mechanization and automatization, improving productivity, reducing a manufacturing cost, saving labor, cleaning an operation environment, uniforming qualities of graphite powder and compacting the whole apparatus. SOLUTION: This apparatus is equipped with a furnace main body 1 charged with powder 1 to be treated in the inside, a pair of electrodes 2 opposingly arranged in the furnace main body 1 so as to send an electric current to the powder 7 to be treated, a powder feed apparatus 10 and a powder recovery apparatus 24 which are arranged opposingly in the furnace main body 1 with sandwiching the powder 7 to be electrically treated by the electrodes 2. A flow of the powder 7 to be treated continuously flowing in the furnace main body 1 by the powder feed apparatus 10 and the powder recovery apparatus 24 is formed an electric current is applied between the electrodes 2 to electrically heat the powder 7 to be treated and the powder 7 to be treated in this zone is partially graphitized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原料粉末から黒鉛
粉末を連続的に製造する連続黒鉛化処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous graphitization apparatus for continuously producing graphite powder from raw material powder.

【0002】[0002]

【従来の技術】一般に、黒鉛粉末を工業的に製造するに
は、カーボン粉末等の原料粉末を例えば不活性雰囲気下
において約3000℃に加熱処理し、原料粉末を黒鉛化
することにより行う。かかる加熱処理に用いられる装置
としては、従来、特開平7−252726号、特公平3
−330号、特許第2579561号等に記載のアチソ
ン炉が用いられている。
2. Description of the Related Art Generally, in order to produce graphite powder industrially, a raw material powder such as a carbon powder is heated to about 3000 ° C. in an inert atmosphere, for example, to graphitize the raw material powder. As a device used for such a heat treatment, a conventional device is disclosed in JP-A-7-252726,
No.-330, Patent No. 2579561 and the like are used.

【0003】図6は、いわゆるアチソン炉の模式的平面
図である。炉体aは、細長い耐火レンガの箱で、両端か
らターミナル黒鉛電極bを差し込み、炉体の底部と両側
には粗製炭化ケイ素cの内張りを施したものである。炉
詰めの際には適当な厚さにコークス粉を敷き、その上に
一定間隔で炭素焼成品dを整然と並べ、その後その空隙
部及び上部の一定の厚さまでコークスを充填する。更
に、その上に断熱と燃焼防止のため炭化ケイ素をかぶせ
る。送電には大型炉の場合、変圧器eと蓄電器fを使用
し、ブスバーgで二次側の極と両ターミナル電極bを接
続し、100〜200V、3万〜8万Aの電流を2〜3
日流す。電流はコークス粉、炭素焼成品を貫通して流れ
るが、コークス粉の比抵抗が炭素焼成品の数十倍あるの
で、主としてコークス粉が発熱し、焼成品を前後から約
3000℃に加熱して無定形炭素を黒鉛の結晶に変化さ
せる。次いで、炉の冷却は、燃えない程度に徐々に炭素
ケイ素を取り除き、約10〜15日かけて自然放冷す
る。
FIG. 6 is a schematic plan view of a so-called Acheson furnace. The furnace body a is a slender refractory brick box in which terminal graphite electrodes b are inserted from both ends, and the bottom and both sides of the furnace body are lined with coarse silicon carbide c. At the time of filling in the furnace, coke powder is spread to an appropriate thickness, and carbon fired articles d are arranged regularly on the coke powder, and then the coke is filled to a certain thickness in the void portion and the upper portion. Further, silicon carbide is put thereon for heat insulation and combustion prevention. In the case of a large furnace for power transmission, a transformer e and a battery f are used, and the secondary pole and both terminal electrodes b are connected by a bus bar g, and a current of 100 to 200 V and 30,000 to 80,000 A is supplied to 3
Run off the sun. The electric current flows through the coke powder and the carbon fired product, but since the specific resistance of the coke powder is several tens times that of the carbon fired product, the coke powder mainly generates heat, and the fired product is heated to about 3000 ° C. from before and after. Transforms amorphous carbon into graphite crystals. Next, the furnace is cooled by gradually removing carbon silicon so as not to burn and allowing to cool naturally for about 10 to 15 days.

【0004】[0004]

【発明が解決しようとする課題】上述したように、黒鉛
粉末を製造する装置として、従来からアチソン炉が知ら
れていたが、この装置は、バッチ炉であり、以下の問題
点があった。 バッチ式の製造プロセスを行うため、電力の原単位が
大きいだけでなく、電源設備も大がかりとなってコスト
が高い。 黒鉛粉末を取り出せる温度まで冷却するのに長時間を
要し、生産性が悪い。 アチソン炉は大型の炉であって少量生産には適さず、
ある程度の量をまとめた処理が必要となり面倒であるだ
けでなく、一旦操業を開始した後に不具合により操業を
中止すると損害が多大なものとなる。 原料粉末の配合変更が主として人手により行われるた
め、充填量が多いと大変な作業となり、時間・手間がか
かってコストの増加を招き、しかも作業中に発生する粉
塵等により作業環境が悪い。 アチソン炉は、原料粉末を充填したケースに例えば加
熱材料を別途充填し、通電時に加熱材料を電気抵抗加熱
してその熱伝導で間接的に原料粉末を加熱する構成のた
め、原料粉末への加熱効率が悪く、さらにはケースから
原料粉末への汚染の問題があった。
As described above, an Acheson furnace has been conventionally known as an apparatus for producing graphite powder, but this apparatus is a batch furnace and has the following problems. Since a batch-type manufacturing process is performed, not only is the basic unit of electric power large, but also the power supply equipment is large and the cost is high. It takes a long time to cool to a temperature at which the graphite powder can be taken out, resulting in poor productivity. The Acheson furnace is a large furnace and not suitable for small-scale production.
Not only is it necessary to perform a process of collecting a certain amount, but it is not only troublesome, but if the operation is once stopped and then stopped due to a problem, the damage is enormous. Since the mixing of the raw material powders is mainly changed by hand, a large amount of filling requires a large amount of work, which takes time and labor, increases the cost, and has a poor working environment due to dust generated during the work. The Acheson furnace has a configuration in which a heating material is separately charged into a case filled with the raw material powder, and the raw material powder is heated indirectly by heat conduction by heating the heated material with electric resistance when energized. The efficiency was poor, and there was a problem of contamination of the raw material powder from the case.

【0005】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、アチ
ソン炉のようなバッチ式ではなく、連続式の黒鉛化製造
プロセスを可能にして原料粉末投入から黒鉛粉末回収ま
での時間を短縮するとともに、機械化、自動化に容易に
対応でき、生産性の向上、製造コストの低減、省力化、
作業環境のクリーン化、黒鉛粉末の品質均一化が図れ、
装置全体のコンパクト化ができる連続黒鉛化処理装置を
提供することにある。
The present invention has been made to solve such a problem. In other words, the object of the present invention is not a batch type such as the Acheson furnace, but a continuous type graphitization manufacturing process to shorten the time from raw material powder input to graphite powder recovery, and to facilitate mechanization and automation. Capable of improving productivity, reducing manufacturing costs, saving labor,
Clean working environment and uniform quality of graphite powder.
An object of the present invention is to provide a continuous graphitization apparatus capable of reducing the size of the entire apparatus.

【0006】[0006]

【課題を解決するための手段】本発明によれば、内部に
被処理粉末(7)が充填された炉本体(1)と、被処理
粉末に通電するように炉本体に対向配置された少なくと
も1対の電極(2)と、前記電極により通電処理される
被処理粉末(7)を挟んで炉本体に対向配置された粉末
供給装置(10)及び粉末回収装置(24)と、を備
え、粉末供給装置と粉末回収装置により炉本体(1)内
を連続的に流れる被処理粉末の流れを形成し、電極間に
通電して被処理粉末(7)を通電加熱してこの領域の被
処理粉末の一部を黒鉛化する、ことを特徴とする連続黒
鉛化処理装置が提供される。
According to the present invention, a furnace body (1) having a powder to be treated (7) filled therein, and at least a furnace body disposed opposite to the furnace body so as to energize the powder to be treated. A pair of electrodes (2), a powder supply device (10) and a powder recovery device (24) disposed opposite to the furnace body with the powder to be processed (7) energized by the electrodes being interposed therebetween; The powder supply device and the powder recovery device form a flow of the powder to be processed continuously flowing in the furnace body (1), and the current is applied between the electrodes to heat and heat the powder (7) to be processed in this region. A continuous graphitization apparatus is provided, wherein part of the powder is graphitized.

【0007】本発明の構成により、粉末供給装置(1
0)と粉末回収装置(24)により、黒鉛化領域(8)
を連続的に流れる被処理粉末(7)の流れを形成するこ
とができる。また、この被処理粉末に通電するように対
向配置された少なくとも1対の電極(2)の間に通電す
ることにより、被処理粉末を通電加熱して黒鉛化可能な
高温(例えば約3000℃)まで加熱すると、この領域
の被処理粉末を黒鉛化することができ、黒鉛化した粉末
(黒鉛粉末)を、被処理粉末の流れと共に粉末回収装置
(24)で回収することができる。従って、連続式の黒
鉛化製造プロセスが可能となり、被処理粉末の投入から
黒鉛粉末の回収までの時間を短縮できるとともに、機械
化、自動化に容易に対応でき、生産性の向上、製造コス
トの低減、省力化、作業環境のクリーン化、黒鉛粉末の
品質均一化が図れ、装置全体のコンパクト化が可能とな
る。
According to the structure of the present invention, the powder supply device (1)
0) and the powder recovery device (24), the graphitized area (8)
Can be formed continuously. Further, by energizing at least one pair of electrodes (2) disposed to face each other so as to energize the powder to be processed, the powder to be processed can be heated and graphitized at a high temperature (for example, about 3000 ° C.). When heated, the powder to be treated in this region can be graphitized, and the graphitized powder (graphite powder) can be recovered by the powder recovery device (24) together with the flow of the powder to be processed. Therefore, a continuous graphitization manufacturing process becomes possible, shortening the time from the input of the powder to be treated to the collection of the graphite powder, and being able to easily respond to mechanization and automation, improving productivity, reducing manufacturing costs, Labor saving, clean working environment, and uniform quality of graphite powder can be achieved, and the whole apparatus can be made compact.

【0008】本発明の好ましい実施形態によれば、複数
対の電極(2)が被処理粉末を囲んで配置され、更に該
複数対の電極に順次切り替えて通電するスイッチング機
構(6)を備える。この構成により、複数対の電極
(2)の中央部を高温に加熱して、黒鉛化領域(8)を
炉本体(1)の中心部に形成することができる。また、
黒鉛化領域(8)の周囲に加熱温度の低い低温領域
(9)ができるので、黒鉛化領域(8)からの放熱量を
低減し、かつ炉本体(1)の過熱を防止することができ
る。
According to a preferred embodiment of the present invention, a plurality of pairs of electrodes (2) are arranged so as to surround the powder to be treated, and a switching mechanism (6) for sequentially switching and energizing the plurality of pairs of electrodes is provided. With this configuration, the central portion of the plurality of pairs of electrodes (2) can be heated to a high temperature, and the graphitized region (8) can be formed in the central portion of the furnace body (1). Also,
Since a low-temperature region (9) having a low heating temperature is formed around the graphitized region (8), the amount of heat radiation from the graphitized region (8) can be reduced, and the furnace body (1) can be prevented from overheating. .

【0009】前記粉末供給装置(10)は、被処理粉末
をほぼ水平に供給しかつ供給量を独立して制御できる1
個もしくは複数のフィーダ(12)からなり、前記粉末
回収装置(24)は1個もしくは複数からなるほぼ水平
な排出ダクト(14)とこれに続くほぼ垂直なホッパ
(17)とからなる。この構成により、フィーダ(1
2)による供給量により、黒鉛化領域(8)を流れる被
処理粉末(7)の流量を制御することができる。また、
フィーダ(12)と粉末回収装置(24)は、黒鉛化領
域を挟んで炉本体に対向配置されているので、黒鉛化領
域(8)を通過した被処理粉末はそのまま排出ダクト
(14)を通ってホッパ(17)内に回収される。
The powder supply device (10) supplies the powder to be processed substantially horizontally and can control the supply amount independently.
It comprises one or more feeders (12), said powder recovery device (24) comprising one or more substantially horizontal discharge ducts (14) followed by a substantially vertical hopper (17). With this configuration, the feeder (1)
The flow rate of the powder to be processed (7) flowing through the graphitized region (8) can be controlled by the supply amount according to 2). Also,
Since the feeder (12) and the powder recovery device (24) are arranged opposite to the furnace body with the graphitization region interposed therebetween, the powder to be processed that has passed through the graphitization region (8) passes through the discharge duct (14) as it is. And is collected in the hopper (17).

【0010】前記排出ダクトには冷却装置(15)が設
けられ、排出ダクトとホッパの接続部には粉末流に抵抗
を付加する抵抗付加装置(16)が設けられ、ホッパの
下端部には切出装置(18)が設けられている。この構
成により、冷却装置(15)により排出ダクト内の被処
理物を冷却することができ、抵抗付加装置(16)によ
り粉末流に抵抗を付加して被処理粉末(7)が勝手に流
れることがなく、フィーダ(12)の送り量に対応して
切り出されるよう流量の制御ができる。排出ダクトから
抵抗付加装置を介してホッパ(17)に貯蔵された被処
理粉末は、切出装置(18)によりホッパから排出され
る。
A cooling device (15) is provided in the discharge duct, a resistance adding device (16) for adding resistance to the powder flow is provided at a connection portion between the discharge duct and the hopper, and a cutting device is provided at a lower end of the hopper. An output device (18) is provided. With this configuration, the object to be processed in the discharge duct can be cooled by the cooling device (15), and the resistance to the powder flow is added by the resistance adding device (16), whereby the powder to be processed (7) flows freely. And the flow rate can be controlled so as to be cut out in accordance with the feed amount of the feeder (12). The powder to be processed stored in the hopper (17) from the discharge duct via the resistance adding device is discharged from the hopper by the cutting device (18).

【0011】炉本体内にガスを吹き込むガス吹込みノズ
ル(20)を更に備えることが好ましい。この構成によ
り、例えば不活性ガスを吹き込むことにより、被処理物
の酸化等の防止や、発生ガスの希釈ができ、或いは逆に
反応ガスを供給して被処理物と反応させることができ
る。
It is preferable that a gas injection nozzle (20) for injecting gas into the furnace body is further provided. With this configuration, for example, by blowing an inert gas, it is possible to prevent oxidation of the object to be processed and to dilute the generated gas, or conversely, to supply a reaction gas to react with the object to be processed.

【0012】[0012]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し重複した説明を省略する。
図1は、本発明の連続黒鉛化処理装置の第1実施形態を
示す平面断面図であり、図2は図1のA−A線における
断面図である。図1及び図2に示すように、本発明の連
続黒鉛化処理装置は、内部に被処理粉末7が充填されそ
の中心部に黒鉛化領域8を形成する炉本体1と、黒鉛化
領域8を挟んで炉本体1に対向配置された粉末供給装置
10及び粉末回収装置24と、黒鉛化領域8の被処理粉
末に通電するように炉本体1に対向配置された少なくと
も1対の電極2とを備える。すなわち本発明の連続黒鉛
化処理装置は、横型構造であり、炉本体1、粉末供給装
置10、粉末回収装置24、及び電極2とからなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a plan sectional view showing a first embodiment of the continuous graphitization apparatus of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. As shown in FIGS. 1 and 2, the continuous graphitization apparatus of the present invention comprises a furnace body 1 in which a powder to be treated 7 is filled and a graphitized region 8 is formed in the center thereof, and a graphitized region 8. The powder supply device 10 and the powder recovery device 24 disposed opposite to the furnace main body 1 with the interposition therebetween, and at least one pair of electrodes 2 disposed opposite to the furnace main body 1 so as to energize the powder to be treated in the graphitized region 8. Prepare. That is, the continuous graphitization apparatus of the present invention has a horizontal structure, and includes a furnace body 1, a powder supply apparatus 10, a powder recovery apparatus 24, and an electrode 2.

【0013】図3は図1のB−B線における断面図であ
る。この図に示すように、電極2は、炉本体1に取り付
けられており、電極間に通電して炉本体1に充填された
被処理粉末7を通電加熱するようになっている。また図
1の実施形態では、複数対の電極2が黒鉛化領域8を囲
んで配置されている。すなわちこの例で、2対の電極2
が互いにほぼ直交するように配置されている。更に複数
対の電極2に順次切り替えて通電するスイッチング機構
6を備え、電源5を交互に切り替えて通電するようにな
っている。この構成により、複数対の電極2の中央部を
高温に加熱して、黒鉛化領域8を炉本体1の中心部に形
成することができる。また、黒鉛化領域8の周囲に加熱
温度の低い低温領域9ができるので、黒鉛化領域8から
の放熱量を低減し、かつ炉本体1の過熱を防止すること
ができる。
FIG. 3 is a sectional view taken along line BB of FIG. As shown in this figure, the electrode 2 is attached to the furnace body 1, and electricity is applied between the electrodes to heat the powder 7 to be processed filled in the furnace body 1. In the embodiment of FIG. 1, a plurality of pairs of electrodes 2 are arranged so as to surround the graphitized region 8. That is, in this example, two pairs of electrodes 2
Are arranged so as to be substantially orthogonal to each other. Further, a switching mechanism 6 for sequentially switching and energizing a plurality of pairs of electrodes 2 is provided, and the power source 5 is alternately switched to energize. With this configuration, the central portion of the plurality of pairs of electrodes 2 can be heated to a high temperature, and the graphitized region 8 can be formed in the central portion of the furnace body 1. Further, since a low-temperature region 9 having a low heating temperature is formed around the graphitized region 8, the amount of heat radiation from the graphitized region 8 can be reduced and the furnace body 1 can be prevented from overheating.

【0014】粉末供給装置10は、この例では、被処理
粉末7を水平に供給するフィーダ12である。また粉末
回収装置24は、ほぼ水平な排出ダクト14とこれに続
くほぼ垂直なホッパ17とからなる。また、排出ダクト
14には冷却装置15が設けられている。更に、排出ダ
クト14とホッパ17の接続部には粉末流に抵抗を付加
する抵抗付加装置16が設けられている。また、ホッパ
17の下端部には切り出し用のロータリーフィーダ等の
切出装置18が設けられている。この構成により、フィ
ーダ12による供給量により、黒鉛化領域8を流れる被
処理粉末7の流量を制御することができる。また、フィ
ーダ12と粉末回収装置24は、黒鉛化領域を挟んで炉
本体に対向配置されているので、黒鉛化領域8を通過し
た被処理粉末はそのまま排出ダクト14を通ってホッパ
17内に回収される。また、冷却装置15により排出ダ
クト内の被処理物を冷却することができ、抵抗付加装置
16により粉末流に抵抗を付加して被処理粉末7が勝手
に流れることがなく、フィーダ12の送り量に対応して
切り出されるよう流量の制御ができる。排出ダクトから
抵抗付加装置を介してホッパ17に貯蔵された被処理粉
末は、切出装置18によりホッパから排出される。
In this example, the powder supply device 10 is a feeder 12 that supplies the powder 7 to be processed horizontally. The powder recovery device 24 includes a substantially horizontal discharge duct 14 and a substantially vertical hopper 17 following the discharge duct 14. Further, a cooling device 15 is provided in the discharge duct 14. Further, at the connection between the discharge duct 14 and the hopper 17, a resistance adding device 16 for adding resistance to the powder flow is provided. At the lower end of the hopper 17, a cutting device 18 such as a rotary feeder for cutting is provided. With this configuration, the flow rate of the powder 7 to be processed flowing in the graphitized region 8 can be controlled by the supply amount of the feeder 12. Further, since the feeder 12 and the powder recovery device 24 are disposed opposite to the furnace body with the graphitized region interposed therebetween, the powder to be processed that has passed through the graphitized region 8 is directly recovered into the hopper 17 through the discharge duct 14. Is done. Further, the object to be processed in the discharge duct can be cooled by the cooling device 15, the resistance is added to the powder flow by the resistance adding device 16, and the powder to be processed 7 does not flow on its own, and the feed amount of the feeder 12 is reduced. The flow rate can be controlled so as to be cut out in accordance with. The powder to be processed stored in the hopper 17 from the discharge duct via the resistance adding device is discharged from the hopper by the cutting device 18.

【0015】図4は、本発明の連続黒鉛化処理装置の第
2実施形態を示す平面断面図(A)と側面断面図(B)
である。また、図5は、本発明の連続黒鉛化処理装置の
第3実施形態を示す側面断面図である。図1及び図2の
実施形態では、5基のフィーダ12と5列の粉末回収装
置24が互いに水平に対向して並列に配置されている
が、本発明はこれに限定されない。すなわち、例えば図
4に示すように、フィーダ12を1基のみとしてもよ
い。また、図5に示すように、複数のフィーダ12と粉
末回収装置24を上下方向に配列してもよい。複数のホ
ッパー17に貯蔵された加熱済み被処理粉末7のうち、
低温領域のものは、搬送装置25により、供給口11に
戻すこともできる。
FIG. 4 is a plan sectional view (A) and a side sectional view (B) showing a second embodiment of the continuous graphitization apparatus of the present invention.
It is. FIG. 5 is a side sectional view showing a third embodiment of the continuous graphitization apparatus of the present invention. In the embodiment shown in FIGS. 1 and 2, the five feeders 12 and the five rows of powder recovery devices 24 are arranged in parallel so as to face each other horizontally, but the present invention is not limited to this. That is, as shown in FIG. 4, for example, only one feeder 12 may be provided. Further, as shown in FIG. 5, a plurality of feeders 12 and a powder recovery device 24 may be vertically arranged. Of the heated powder to be processed 7 stored in the plurality of hoppers 17,
Those in the low temperature region can be returned to the supply port 11 by the transfer device 25.

【0016】粉末供給装置10で供給された被処理粉末
7は、時間経過と共に電極間の加熱部、排出ダクト1
4、冷却装置15を経てホッパ17の切出装置18から
装置の外に出ていく。従って装置内に滞留する時間は、
粉末供給装置10の供給量を調整することによって調整
することかできる。なお、被処理粉末7は粉粒状のもの
であり、高温度で加熱すれば黒鉛化でき、加熱温度域で
は導電性を有するものである。例えば、炭素材、炭素の
前駆体等である。
The powder 7 to be processed supplied by the powder supply device 10 is heated with the passage of time between the electrodes and the discharge duct 1.
4. Through the cooling device 15, the hopper 17 goes out of the device from the cutting device 18 of the hopper 17. Therefore, the time spent in the device is
It can be adjusted by adjusting the supply amount of the powder supply device 10. The powder to be treated 7 is in the form of powder and granules, and can be graphitized when heated at a high temperature, and has conductivity in a heating temperature range. For example, it is a carbon material, a precursor of carbon, or the like.

【0017】以下、各部の構造を詳細に説明する。 1、炉本体 炉本体1は密閉構造であり被処理粉末7を保持するよう
になっている。また、炉本体1には電極2が取り付けら
れており、電極2間に通電して炉本体1に保持される被
処理粉末7を加熱する。更に炉本体1には粉末供給装置
10、排出ダクト14、冷却装置15が接続している。
後述するように、炉本体1の中心部(黒鉛化領域8)は
高温(例えば約3000℃)であり、炉本体1は材質的
に耐えられない。そのため、炉本体1で保持している被
処理粉末7が粉粒体であり、断熱特性も併せ持つのでこ
れを利用して、この粉粒体7に適度の厚さをもたせ、そ
の外側を炉本体1として炉本体を高温から保護してい
る。
Hereinafter, the structure of each part will be described in detail. 1. Furnace main body The furnace main body 1 has a closed structure and holds the powder 7 to be processed. Electrodes 2 are attached to the furnace body 1, and electricity is supplied between the electrodes 2 to heat the powder 7 to be processed held in the furnace body 1. Further, a powder supply device 10, a discharge duct 14, and a cooling device 15 are connected to the furnace main body 1.
As will be described later, the central portion (graphitized region 8) of the furnace main body 1 is at a high temperature (for example, about 3000 ° C.), and the furnace main body 1 cannot withstand the material. Therefore, the powder 7 to be treated held in the furnace body 1 is a powder and a granule, and also has a heat insulating property. By utilizing this, the powder and the granule 7 are given an appropriate thickness and the outside thereof is 1, the furnace body is protected from high temperatures.

【0018】2.粉末供給装置 粉末供給装置10は、粉粒体状の被処理粉末7の供給口
11、被処理粉末7を炉本体内に供給するフィーダ12
(例えばスクリューフィーダ等)及びフィーダ駆動装置
13からなる。供給口11から供給された被処理粉末7
はフィーダ12の回転とともに上部のホッパー(図示せ
ず)から矢印21で示すように切り出され、炉本体1内
に送り込まれる。フィーダ12からの送り出し量は、フ
ィーダ12の回転数を制御することにより任意に設定で
きる。粉末供給装置10は1個若しくは複数個配置され
る。複数の場合、粉末供給装置10の各々が独立して供
給量を制御できる。ここで、複数の粉末供給装置10は
水平方向の同一面内に限定されず、図5に例示するよう
に上下方向の複数段であってもよい。また粉末供給装置
10と相対して(完全に真正面でなくてもよい)、被処
理粉末7を排出する排出ダクト14を有する。被処理粉
末7が炉本体1内に滞留する時間は、フィーダ12から
の送り出し量を制御することによって調整する。
2. Powder supply device The powder supply device 10 includes a supply port 11 for the powder 7 to be processed and a feeder 12 for supplying the powder 7 to the furnace body.
(For example, a screw feeder or the like) and a feeder driving device 13. Powder 7 to be processed supplied from supply port 11
Are cut out from an upper hopper (not shown) as indicated by an arrow 21 with the rotation of the feeder 12 and fed into the furnace body 1. The feed amount from the feeder 12 can be arbitrarily set by controlling the rotation speed of the feeder 12. One or a plurality of powder supply devices 10 are arranged. In the case of a plurality, the powder supply devices 10 can independently control the supply amount. Here, the plurality of powder supply devices 10 are not limited to the same plane in the horizontal direction, and may be a plurality of stages in the vertical direction as illustrated in FIG. Further, a discharge duct 14 for discharging the powder 7 to be processed is provided opposite to the powder supply device 10 (it does not have to be completely straight). The time during which the powder 7 to be processed stays in the furnace main body 1 is adjusted by controlling the amount of the powder 7 to be sent out from the feeder 12.

【0019】3.加熱部 炉本体1の外周部に対向設置された1対ないし複数対の
電極2によって被処理粉末7に通電し被処理粉末のもつ
固有抵抗に応じて発生するジュール熱により被処理粉末
7を加熱する。通電は電源5よりブスバー4を介して電
極2に流して行う。電源は直流でも、交流でもいずれも
可能である。電極2が複数対ある場合、スイッチング機
構6により各々の電極対は電気回路的に独立した対とな
っており、電源は共用でも、通電はスイッチング機構6
により、順次各々の電極対に切り替えて通電することを
繰り返して通電加熱する。なお、電極2は絶縁材3を介
して炉本体1に取り付けられている。粉粒体は、一般的
に熱伝導率が小さく、被処理粉末自体が断熱材の機能を
果たす。そのため粉粒体内部の熱は逃げにくく、内部が
高温に保持されることとなる。通電の投入電力量を調整
することにより、高温部の温度やその範囲を設定でき
る。また、図3に示すように複数対の電極を配置し、か
つスイッチング機構6で電源から通電する電極2を順次
切り替えることにより、電極間の中央部が最も高温に加
熱されるようになる。また、図示のように、電極が水平
方向と天地方向に配置することにより、立体的中央部
(炉本体内の被処理粉末の中央部付近)が最も高温に加
熱される。このため、炉本体1の壁は最高温度領域より
最も遠くなる。
3. Heating section Electricity is applied to the powder 7 to be processed by one or a plurality of pairs of electrodes 2 disposed opposite to the outer peripheral portion of the furnace body 1, and the powder 7 to be processed is heated by Joule heat generated according to the specific resistance of the powder to be processed. I do. The power is supplied from the power source 5 to the electrode 2 through the bus bar 4. The power supply can be either DC or AC. When there are a plurality of pairs of electrodes 2, each pair of electrodes is an independent pair in terms of an electric circuit by the switching mechanism 6.
Thus, the electric current is heated by repeating switching to each electrode pair in sequence and energizing. Note that the electrode 2 is attached to the furnace main body 1 via an insulating material 3. Powders generally have low thermal conductivity, and the powder to be processed itself functions as a heat insulating material. Therefore, the heat inside the granular material is difficult to escape, and the inside is kept at a high temperature. The temperature of the high-temperature portion and its range can be set by adjusting the amount of electric power supplied. Also, as shown in FIG. 3, by arranging a plurality of pairs of electrodes and sequentially switching the electrodes 2 to be energized from the power supply by the switching mechanism 6, the central portion between the electrodes is heated to the highest temperature. Further, as shown in the figure, by arranging the electrodes in the horizontal direction and the vertical direction, the three-dimensional central part (near the central part of the powder to be treated in the furnace body) is heated to the highest temperature. For this reason, the wall of the furnace main body 1 is farthest from the highest temperature region.

【0020】4.粉末回収装置 粉末回収装置24は、ほぼ水平な排出ダクト14と、こ
れに続くほぼ垂直なホッパ17とからなる。前述のよう
に排出ダクト14には冷却装置15が設けられている。
排出ダクト14は、粉末供給装置10と相対して(完全
に真正面でなくてよい)、被処理粉末7を排出する。粉
末供給装置10の数と排出ダクト14の数は同じでなく
ともよい。例えば、図4のように粉末供給装置10が1
基で排出ダクト14が5基でもよい。この場合、粉末供
給装置10は排出ダクト1基分の幅でなく広幅でもよ
い。中央の供給装置の幅が排出ダクト1基の幅であって
も何ら問題ない。なぜなら、3000℃部は正面の排出
ダクトへ向かい、低温部は少量が外側のダクトに流れる
ため、自然に流量調整ができるからである。図1乃至図
2のように、水平面内に複数の粉末供給装置10及び排
出ダクト14があり、各粉末供給装置10の供給量が同
じで、かつ排出ダクト14の抵抗が同じ場合、粉末供給
装置10及び排出ダクト14を結ぶ線上の加熱された被
処理粉末7の加熱部が各線上にある排出ダクト14にほ
ぼ排出される。この時、中央部(黒鉛化領域8)の被処
理粉末7と最外部の被処理粉末7が混合することはな
い。ここで、複数個設けられた複数の粉末供給装置10
は、水平方向の同一面内に限定されず、図5のように、
上下方向の複数段でもよい。垂直面内に複数の粉末供給
装置10及び排出ダクト14が多段に配置された場合も
同様である。各粉末供給装置10の供給量が同じで、か
つ排出ダクト14の抵抗が同じ場合、粉末供給装置10
及び排出ダクト14を結ぶ線上の被処理粉末7の加熱部
が各線上にある排出ダクトにほぼ排出される。この時、
黒鉛化領域8の中央部の被処理粉末と最外部の被処理粉
末が混合することはない。
4. Powder Recovery Device The powder recovery device 24 comprises a substantially horizontal discharge duct 14 followed by a substantially vertical hopper 17. As described above, the cooling device 15 is provided in the discharge duct 14.
The discharge duct 14 discharges the powder 7 to be processed, facing the powder supply device 10 (not necessarily completely in front). The number of powder supply devices 10 and the number of discharge ducts 14 need not be the same. For example, as shown in FIG.
The number of the discharge ducts 14 may be five. In this case, the width of the powder supply device 10 may be wider than that of one discharge duct. There is no problem even if the width of the central supply device is the width of one discharge duct. The reason is that the flow rate can be naturally adjusted because the 3000 ° C. part goes to the front discharge duct, and a small amount of the low temperature part flows to the outer duct. As shown in FIGS. 1 and 2, when there are a plurality of powder supply devices 10 and discharge ducts 14 in a horizontal plane, and the supply amount of each powder supply device 10 is the same and the resistance of the discharge duct 14 is the same, the powder supply device A heated portion of the heated powder 7 to be processed on a line connecting the discharge duct 10 and the discharge duct 14 is substantially discharged to the discharge duct 14 on each line. At this time, the powder 7 to be processed in the central portion (graphitized region 8) and the powder 7 to be processed at the outermost portion are not mixed. Here, a plurality of powder supply devices 10 provided in plurality are provided.
Is not limited to the same plane in the horizontal direction, as shown in FIG.
A plurality of vertical stages may be used. The same applies when a plurality of powder supply devices 10 and discharge ducts 14 are arranged in multiple stages in a vertical plane. When the supply amount of each powder supply device 10 is the same and the resistance of the discharge duct 14 is the same, the powder supply device 10
The heating part of the powder 7 to be processed on the line connecting the discharge ducts 14 is almost discharged to the discharge ducts on each line. At this time,
The powder to be processed at the center of the graphitized region 8 and the powder to be processed at the outermost portion are not mixed.

【0021】一方、複数の粉末供給装置10の供給量を
中央部を多く、外側を順次少なくすることにより、中央
部の被処理粉末7を、中央から外側に広がりながら切り
出せることになる。この場合、所定温度(黒鉛化温度、
約3000℃)に加熱された中央部のみを確実に排出で
き、所定温度まで加熱されていない被処理粉末が混入す
るコンタミネーション(汚染)を防止できる。また、複
数の粉末供給装置10と複数の排出ダクト14の組み合
わせを用いると、被処理粉末7の加熱温度分布(通常中
央部が高温で周囲が低温)に応じた熱処理を受けた被処
理粉末7を、各排出ダクト毎に区分けして取り出せる。
On the other hand, by increasing the supply amount of the plurality of powder supply devices 10 in the central portion and decreasing the amount in the outer portion sequentially, the powder 7 to be treated in the central portion can be cut out while spreading from the center to the outside. In this case, the predetermined temperature (graphitization temperature,
Only the central portion heated to about 3000 ° C.) can be reliably discharged, and contamination (contamination) in which the powder to be processed that has not been heated to the predetermined temperature is mixed can be prevented. Further, when a combination of the plurality of powder supply devices 10 and the plurality of discharge ducts 14 is used, the powder 7 to be processed which has been subjected to the heat treatment according to the heating temperature distribution of the powder 7 to be processed (usually, the central portion is high in temperature and the surrounding portion is low in temperature). Can be separated and taken out for each discharge duct.

【0022】排出ダクト14は下流に行くにしたがって
末広がりになっており、被処理粉末の層厚を薄くして冷
却を促進するようになっているのがよい。また、排出ダ
クト14は、耐熱・熱伝導性良好の材質、例えば、炭素
の黒鉛化炉の場合は黒鉛材で構成するのがよい。更に、
排出ダクト14のまわりは冷却装置15(この例では水
冷ジャケット)で囲み、高温の被処理粉末7を冷却する
ようになっている。なお、排出ダクト14内に冷却ガス
を吹き込んで高温被処理粉末を冷却してもよい。
The discharge duct 14 widens toward the downstream, and it is preferable that the thickness of the powder to be processed is reduced to promote cooling. Further, the discharge duct 14 is preferably made of a material having good heat resistance and heat conductivity, for example, a graphite material in the case of a graphitization furnace for carbon. Furthermore,
The periphery of the discharge duct 14 is surrounded by a cooling device 15 (a water cooling jacket in this example) so as to cool the high-temperature powder 7 to be processed. Note that a high-temperature powder to be processed may be cooled by blowing a cooling gas into the discharge duct 14.

【0023】排出ダクト14の出口には、押し出される
被処理粉末7に若干の抵抗を付けるため抵抗付加装置1
6を設けている。この抵抗付加装置16は、ダクト端部
で揺動可能であり、その抵抗値を調整できるようになっ
ている。この抵抗付加装置16により、被処理粉末7が
何らかの理由で流動化して勝手に流れるのを防止し、フ
ィーダ12の送り量に対応して切り出されるように流量
制御できる。また、排出ダクト14を出た被処理粉末7
は各排出ダクト毎に独立して設けられたホッパー17に
貯蔵され、切り出し装置18で矢印22で示すように外
部に排出される。切り出し装置18は、外部に排出22
された被処理粉末7のうち、黒鉛化されていないもの、
あるいは、黒鉛化されていない被処理粉末が混合してい
る処理済粉末は、搬送装置25(詳細図示せず)により
元に戻して、供給口11からフィーダ12に再供給する
ことにより有効に被処理粉末を使える。
At the outlet of the discharge duct 14, there is provided a resistance adding device 1 for applying a slight resistance to the powder 7 to be extruded.
6 are provided. The resistance adding device 16 is swingable at the end of the duct, and its resistance value can be adjusted. The resistance adding device 16 prevents the powder 7 to be processed from being fluidized for some reason and flowing without permission, and can control the flow rate so that the powder 7 is cut out according to the feed amount of the feeder 12. In addition, the powder 7 to be processed, which has exited the discharge duct 14,
Is stored in a hopper 17 provided independently for each discharge duct, and is discharged to the outside by the cutout device 18 as shown by an arrow 22. The cutout device 18 discharges to the outside 22
Non-graphitized powder 7 to be treated,
Alternatively, the processed powder in which the non-graphitized powder to be processed is mixed is returned to the original state by the transfer device 25 (not shown in detail), and is re-supplied to the feeder 12 from the supply port 11 to be effectively processed. Processed powder can be used.

【0024】5.ガス吹き込み 炉本体1内に吹き込みガス19を吹き込むガス吹込みノ
ズル20を更に備えている。被処理粉末7の加熱時に、
被処理粉末が酸化されたり反応することを防止するた
め、また反応による発生ガス濃度を希釈する目的で、ガ
ス吹込みノズル20から窒素やアルゴン等の不活性ガス
をノズルから吹き込むことができる。また、逆に、被処
理粉末7と反応させるため、反応ガスをノズルから吹き
込むこともできる。
5. Gas Blowing A gas blowing nozzle 20 for blowing a blowing gas 19 into the furnace body 1 is further provided. When the powder to be treated 7 is heated,
An inert gas such as nitrogen or argon can be blown from the gas blowing nozzle 20 from the gas blowing nozzle 20 in order to prevent the powder to be processed from being oxidized or reacted and to dilute the concentration of gas generated by the reaction. Conversely, a reaction gas can be blown from a nozzle to react with the powder 7 to be treated.

【0025】上述した本発明の構成により、粉末供給装
置10と粉末回収装置24により、黒鉛化領域8を連続
的に流れる被処理粉末7の流れを形成することができ
る。また、この黒鉛化領域を含む炉本体内の被処理粉末
に通電するように対向配置された少なくとも1対の電極
2の間に通電することにより、黒鉛化領域を通電加熱し
て黒鉛化可能な高温(例えば約3000℃)に加熱し、
この領域の被処理粉末を黒鉛化することができ、黒鉛化
した粉末(黒鉛粉末)を、被処理粉末の流れと共に粉末
回収装置24で回収することができる。従って、連続式
の黒鉛化製造プロセスが可能となり、被処理粉末の投入
から黒鉛粉末の回収までの時間を短縮できるとともに、
機械化、自動化に容易に対応でき、生産性の向上、製造
コストの低減、省力化、作業環境のクリーン化、黒鉛粉
末の品質均一化が図れ、装置全体のコンパクト化が可能
となる。
According to the configuration of the present invention described above, the powder supply device 10 and the powder recovery device 24 can form the flow of the powder 7 to be processed continuously flowing in the graphitized region 8. By energizing the powder to be processed in the furnace body including the graphitized region between at least one pair of electrodes 2 arranged to face each other, the graphitized region can be graphitized by energizing and heating. Heated to a high temperature (eg, about 3000 ° C.)
The powder to be treated in this region can be graphitized, and the graphitized powder (graphite powder) can be recovered by the powder recovery device 24 together with the flow of the powder to be processed. Therefore, a continuous graphitization manufacturing process becomes possible, and the time from input of the powder to be treated to recovery of the graphite powder can be reduced,
It can easily cope with mechanization and automation, and can improve productivity, reduce manufacturing costs, save labor, clean the working environment, and uniform the quality of graphite powder, making it possible to reduce the size of the entire apparatus.

【0026】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0027】[0027]

【発明の効果】上述した本発明の連続黒鉛化処理装置
は、以下の効果を有する。 1.従来のように被処理粉末を長期間貯留させることな
く、連続的に処理可能な設備である。 2.密閉式でコンパクトな設備であるため、外部への熱
放散が少ないため、従来炉より省エネ設備である。電源
設備も小型である。 3.作業環境の良い設備である。 4.コンパクトな設備である。 5.従来は、被処理粉末は独立したケースに入れ、その
周囲に加熱材料を別途充填し、加熱材料を電気抵抗加熱
していたが、本発明では、被処理粉末のみが充填されて
おり、被処理粉末とは別に加熱材料を準備する必要がな
く、被処理粉末をそのまま使える。このため、連続化、
機械化、自動化が容易にでき、生産性大幅向上、省力
化、作業環境のクリーン化、品質均一化が図れる。 6.被処理粉末を入れるケースが不要。またケースから
のコンタミネーション(汚染)がない。 7.アチソン炉は非常に大型の炉であり、物量が多いた
め、被処理粉末及び周囲の加熱材料の充填・取り出し
は、人手作業であり、生産効率が悪く、時間・手間・コ
ストがかかり、大変な作業であった。しかし、本発明に
より、機械化・自動化ができるため、省力化でき、生産
効率が上がる。また、従来は粉塵等も発生するため、作
業環境が極めて悪かったが、本発明は機械化・自動化に
より、クリーンな環境を維持できる。 8.従来は、例えば処理量50トンの場合、操業サイク
ルは3週間程度であるため、一旦操業が始まった後、万
一途中で不具合により操業中断した場合の損害は多大な
ものとなるが、本発明でと連続式であるため、炉容量を
10トン程度に小さくでき、万一,途中で不具合により
操業中断しても、影響は小さくて済む。また、再開も早
くでき、自由度が高い。
The continuous graphitization apparatus of the present invention has the following effects. 1. This is a facility that can continuously process powder without storing the powder to be processed for a long time as in the conventional case. 2. Since it is a closed and compact facility, there is little heat dissipation to the outside. The power supply equipment is also small. 3. It has good working environment. 4. It is a compact facility. 5. Conventionally, the powder to be treated was placed in an independent case, the surroundings were separately filled with a heating material, and the heating material was heated with electric resistance.In the present invention, only the powder to be treated is filled, There is no need to prepare a heating material separately from the powder, and the powder to be processed can be used as it is. Because of this, continuity,
It can be easily mechanized and automated, greatly improving productivity, saving labor, making the work environment cleaner, and achieving uniform quality. 6. No need to put powder to be processed. There is no contamination from the case. 7. The Acheson furnace is a very large furnace and has a large amount of material, so filling and unloading of the powder to be treated and surrounding heating materials is a manual operation, resulting in poor production efficiency, time, labor, cost, and It was work. However, according to the present invention, since mechanization and automation can be performed, labor can be saved and production efficiency is increased. In the past, dust and the like were generated, so that the working environment was extremely bad. However, the present invention can maintain a clean environment by mechanization and automation. 8. Conventionally, for example, when the processing amount is 50 tons, the operation cycle is about three weeks. Therefore, once the operation is started, if the operation is interrupted due to a trouble in the middle of the operation, the damage is enormous. Since the furnace is of a continuous type, the furnace capacity can be reduced to about 10 tons, and even if the operation is interrupted due to a problem on the way, the influence is small. In addition, resumption can be started quickly and the degree of freedom is high.

【0028】9.被処理粉末内にガスを吹き込むことに
より、 被処理粉末と反応しないガスを吹き込むことにより、
加熱時、被処理粉末が酸化されたり反応することを防
止。 被処理粉末と反応しないガスを吹き込むことにより、
加熱時に被処理粉末から発生するガスを系外に排出する
キャリアガスとして作用。 被処理粉末と反応しないガスを吹き込むことにより、
加熱時に被処理粉末から発生するガスを希釈できる。 逆に、被処理粉末と反応するガスを吹き込むことによ
り、被処理粉末と反応させて反応物を生成することも可 10.被処理粉末の切り出し装置を排出側に設ける場
合、装置耐熱性より被処理粉末が低温まで冷却された後
でないと設置できない。しかし、本発明では、常温であ
る被処理粉末の供給側の粉末供給装置によって加熱後の
排出量を制御できるため、耐熱性が不要な標準装置を用
いることができる。このため、設備的に安価となりまた
保守上からも有利となる。 11.加熱処理された被処理粉末を高温状態で定量的
に、かつ広く伸ばした状態(被処理粉末の層厚を薄くし
た状態、冷却装置に対して負荷を小さくした状態)で排
出できるため、被処理粉末が本来有する粉末による断熱
効果による悪影響がなくなり、効率よく(短時間、コン
パクト設備で)冷却できる。 12.粉粒体は供給及び排出のいずれの場合も架橋(ア
ーチ)を作り易く、このため粉粒体(被処理粉末)の動
きが停止してしまう場合がある。しかし、本発明の場
合、強制的に供給するため、供給及び排出のいずれの場
合も架橋(アーチ)を作ることがない。万一、何らかの
理由で操業が一旦停止し架橋(アーチ)を形成してしま
った場合も、粉末供給装置から強制的に被処理粉末を供
給することにより架橋(アーチ)を崩して正常操業に容
易に復帰できる。 13.図示のように複数対の電極を配置し、かつスイッ
チング機構で電源から通電する電極を順次切り替えるこ
とにより、電極間の中央部が最も高温に加熱されるよう
になる。また、図示のように、電極が水平方向と天地方
向に配置することにより、立体的中央部(炉本体内の被
処理粉末の中央部付近)が最も高温に加熱される。この
ため、炉本体壁が最高温度領域より、最も遠くなり、炉
本体の保護が容易となる。
9. By blowing gas into the powder to be processed, by blowing gas that does not react with the powder to be processed,
Prevents powder to be oxidized or reacted during heating. By blowing gas that does not react with the powder to be treated,
Acts as a carrier gas for discharging the gas generated from the powder to be processed during heating to the outside of the system. By blowing gas that does not react with the powder to be treated,
Gas generated from the powder to be processed during heating can be diluted. Conversely, by blowing a gas that reacts with the powder to be treated, it can be reacted with the powder to be treated to generate a reactant. When a device for cutting out the powder to be treated is provided on the discharge side, it cannot be installed unless the powder to be treated is cooled to a low temperature due to the heat resistance of the device. However, in the present invention, the discharge amount after heating can be controlled by the powder supply device on the supply side of the powder to be treated at room temperature, so that a standard device that does not require heat resistance can be used. For this reason, the equipment is inexpensive and maintenance is advantageous. 11. Since the heat-treated powder can be discharged quantitatively in a high temperature state and in a state where it is spread widely (a state in which the layer thickness of the powder to be processed is reduced and a load on a cooling device is reduced), There is no adverse effect due to the heat insulating effect of the powder inherent in the powder, and the powder can be cooled efficiently (in a short time, with compact equipment). 12. In both cases of supply and discharge, the granular material easily forms a bridge (arch), which may cause the movement of the granular material (the powder to be processed) to stop. However, in the case of the present invention, since the supply is forcibly performed, no bridge (arch) is formed in both the supply and the discharge. Should the operation temporarily stop for some reason and form a bridge (arch), the bridge is broken by forcibly supplying the powder to be treated from the powder supply device, facilitating normal operation. Can be returned to 13. By arranging a plurality of pairs of electrodes as shown in the figure and sequentially switching the electrodes to be energized from the power supply by the switching mechanism, the central portion between the electrodes is heated to the highest temperature. Further, as shown in the figure, by arranging the electrodes in the horizontal direction and the vertical direction, the three-dimensional central part (near the central part of the powder to be treated in the furnace body) is heated to the highest temperature. For this reason, the furnace main body wall is farthest from the maximum temperature region, and the furnace main body is easily protected.

【0029】14.図1及び図2に示すように、粉末供
給装置を複数台並べた場合、各々の供給量に変化を付け
ることにより、排出パターンを制御できる。この特徴に
より、例えば、中央部の粉末供給装置の供給量を最大と
し、端部に行くに従って順次少なくするように供給し、
かつ排出側の排出抵抗を同一としておくと、中心から供
給された被処理粉末は中心からやや外側の範囲まで広が
りながら排出されていく。このことにより、中央部の所
定温度で高温処理された被処理粉末のみを確実に選択的
に排出することができ、コンタミネーション(所定温度
まで加熱されていない被処理粉末が混入することによる
汚染)を防止できる。なお、本効果は粉末供給装置が中
央部1個で、排出ダクトが粉末供給装置の対向位置を中
心として両側にわたって複数個設けられている場合も同
様である。 15.この際、所定温度より低温の被処理粉末も排出さ
れるが、図2、図4、図5に示すように、搬送装置25
で供給口11へ戻すことにより再使用できるため無駄に
ならない。この際、一度加熱履歴を受けたものは、全く
処理を受けていない被処理粉末に比較すると、物性値が
変化するが、常に同じ温度ゾーンに繰り返し連続的に使
用することにより、または、より高温の温度ゾーンに定
常的に使用することにより被処理粉末の無駄がない。 16.排出ダクトが加熱された被処理粉末の高温部から
離れて設置できるため、高温による排出ダクトの損耗が
ない。またこの損耗による、所定温度に加熱済み被処理
粉末へのコンタミネーション(汚染)がない。 17.また、複数粉末供給装置と複数排出ダクトの組み
合わせを用いると、被処理粉末の加熱温度分布(通常中
央部が高温で周囲が低温)に応じた加熱温度範囲が異な
る熱処理を受けた被処理粉末を、各排出ダクト毎に区分
けして取り出せる。このため、異なる処理温度で処理さ
れた製品が同じ操業で一度に生産される。
14. As shown in FIGS. 1 and 2, when a plurality of powder supply devices are arranged, the discharge pattern can be controlled by changing each supply amount. With this feature, for example, the supply amount of the powder supply device in the center is maximized, and the powder is supplied so as to gradually decrease toward the end,
If the discharge resistance on the discharge side is the same, the powder to be processed supplied from the center is discharged while spreading from the center to a slightly outer range. This makes it possible to reliably and selectively discharge only the powder to be processed which has been subjected to a high temperature treatment at a predetermined temperature in the central portion, and to cause contamination (contamination due to mixing of the powder to be processed which has not been heated to the predetermined temperature). Can be prevented. This effect is the same when the number of powder supply devices is one at the center and a plurality of discharge ducts are provided on both sides of the powder supply device at the center of the opposing position. 15. At this time, the powder to be processed having a temperature lower than the predetermined temperature is also discharged. However, as shown in FIGS.
It can be reused by returning it to the supply port 11 with no waste. At this time, the material once subjected to the heating history changes its physical property value as compared to the powder to be treated which has not been treated at all, but is always used repeatedly and continuously in the same temperature zone, or at a higher temperature. There is no waste of the powder to be processed by using the temperature zone constantly. 16. Since the discharge duct can be set apart from the heated high-temperature portion of the powder to be processed, there is no wear of the discharge duct due to the high temperature. In addition, there is no contamination (contamination) on the powder to be processed heated to a predetermined temperature due to the wear. 17. In addition, when a combination of a plurality of powder supply devices and a plurality of discharge ducts is used, the powder to be processed which has been subjected to a heat treatment having a different heating temperature range according to the heating temperature distribution of the powder to be processed (usually, the central portion is high in temperature and the surrounding portion is low in temperature) , And can be separated and taken out for each discharge duct. Thus, products processed at different processing temperatures are produced at once in the same operation.

【0030】以上により、本発明により、機械化・自動
化、省力化、コンパクト、高生産効率な設備で、作業環
境がクリーンな環境で、高品質な製品を、低コストで処
理できる設備を提供できる。
As described above, according to the present invention, it is possible to provide equipment that can process high-quality products at low cost in a clean working environment with mechanization / automation, labor saving, compactness, and high production efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続黒鉛化処理装置の第1実施形態を
示す平面断面図である。
FIG. 1 is a plan sectional view showing a first embodiment of a continuous graphitization apparatus of the present invention.

【図2】図1のA−A線における断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B線における断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】本発明の連続黒鉛化処理装置の第2実施形態を
示す平面断面図と側面断面図である。
FIG. 4 is a plan sectional view and a side sectional view showing a second embodiment of the continuous graphitization apparatus of the present invention.

【図5】本発明の連続黒鉛化処理装置の第3実施形態を
示す側面断面図である。
FIG. 5 is a side sectional view showing a third embodiment of the continuous graphitization apparatus of the present invention.

【図6】従来のアチソン炉の模式的平面図である。FIG. 6 is a schematic plan view of a conventional Acheson furnace.

【符号の説明】[Explanation of symbols]

1 炉本体 2 電極 3 絶縁材 4 ブスバー 5 電源 6 スイッチング機構 7 被処理粉末 8 黒鉛化領域(所定温度ゾーン) 9 低温領域(所定温度未満ゾーン) 10 粉末供給装置 11 供給口 12 フィーダ(スクリューフィーダ) 13 駆動装置 14 排出ダクト 15 冷却装置 16 抵抗付加装置 17 ホッパー 18 切出装置 19 吹込みガス 20 ガス吹込みノズル 21 被処理粉末供給 22 被処理粉末排出 24 粉末回収装置 25 搬送装置(低温領域の被処理粉末を供給口11へ
戻す装置)
DESCRIPTION OF SYMBOLS 1 Furnace main body 2 Electrode 3 Insulation material 4 Bus bar 5 Power supply 6 Switching mechanism 7 Powder to be processed 8 Graphitized area (predetermined temperature zone) 9 Low temperature area (zone below predetermined temperature) 10 Powder supply device 11 Supply port 12 Feeder (screw feeder) DESCRIPTION OF REFERENCE NUMERALS 13 drive device 14 discharge duct 15 cooling device 16 resistance adding device 17 hopper 18 cutout device 19 blowing gas 20 gas blowing nozzle 21 supply of powder to be processed 22 discharge of powder to be processed 24 powder recovery device 25 conveyance device (low temperature region) Apparatus for returning processed powder to supply port 11)

フロントページの続き (72)発明者 松井 邦雄 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 望月 智俊 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 Fターム(参考) 4G046 CC01 CC09 Continued on the front page (72) Inventor Kunio Matsui 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Technical Research Institute, Ishikawajima Harima Heavy Industries Co., Ltd. Ishikawajima-Harima Heavy Industries, Ltd. F-term (reference) 4G046 CC01 CC09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内部に被処理粉末(7)が充填された炉
本体(1)と、 被処理粉末に通電するように炉本体に対向配置された少
なくとも1対の電極(2)と、 前記電極により通電処理される被処理粉末(7)を挟ん
で炉本体に対向配置された粉末供給装置(10)及び粉
末回収装置(24)と、を備え、 粉末供給装置と粉末回収装置により炉本体(1)内を連
続的に流れる被処理粉末の流れを形成し、電極間に通電
して被処理粉末(7)を通電加熱してこの領域の被処理
粉末の一部を黒鉛化する、ことを特徴とする連続黒鉛化
処理装置。
1. A furnace body (1) filled with a powder to be treated (7) therein, at least one pair of electrodes (2) arranged opposite to the furnace body so as to energize the powder to be treated, A powder supply device (10) and a powder recovery device (24) disposed opposite to the furnace main body with the powder to be processed (7) energized by the electrodes interposed therebetween; (1) forming a flow of the powder to be processed continuously flowing in the inside, energizing between the electrodes to heat and heat the powder to be processed (7) to graphitize a part of the powder to be processed in this region; A continuous graphitization apparatus characterized by the following.
【請求項2】 複数対の電極(2)が被処理粉末を囲ん
で配置され、更に該複数対の電極に順次切り替えて通電
するスイッチング機構(6)を備える、ことを特徴とす
る請求項1に記載の連続黒鉛化処理装置。
2. A plurality of pairs of electrodes (2) are arranged around a powder to be treated, and further comprising a switching mechanism (6) for sequentially switching and energizing the plurality of pairs of electrodes. 3. The continuous graphitization apparatus according to item 1.
【請求項3】 前記粉末供給装置(10)は、被処理粉
末をほぼ水平に供給しかつ供給量を独立して制御できる
1個もしくは複数のフィーダ(12)からなり、前記粉
末回収装置(24)は1個もしくは複数からなるほぼ水
平な排出ダクト(14)とこれに続くほぼ垂直なホッパ
(17)とからなる、ことを特徴とする請求項1に記載
の連続黒鉛化処理装置。
3. The powder supply device (10) comprises one or a plurality of feeders (12) for supplying the powder to be processed substantially horizontally and controlling the supply amount independently. 2.) The continuous graphitization apparatus according to claim 1, wherein the device comprises one or more substantially horizontal discharge ducts (14) followed by a substantially vertical hopper (17).
【請求項4】 前記排出ダクトには冷却装置(15)が
設けられ、排出ダクトとホッパの接続部には粉末流に抵
抗を付加する抵抗付加装置(16)が設けられ、ホッパ
の下端部には切出装置(18)が設けられている、こと
を特徴とする請求項3に記載の連続黒鉛化処理装置。
4. The discharge duct is provided with a cooling device (15), and at the connection between the discharge duct and the hopper, a resistance adding device (16) for adding resistance to the powder flow is provided, and at the lower end of the hopper. The continuous graphitization apparatus according to claim 3, characterized in that a cutting device (18) is provided.
【請求項5】 通電加熱された被処理粉末のうち、黒鉛
化されなかった被処理粉末を再度粉末供給装置に戻し
て、再度通電加熱する、ことを特徴とする請求項1乃至
4に記載の連続黒鉛化処理装置。
5. The method according to claim 1, wherein, among the powders to be heated and energized, the non-graphitized powder to be processed is returned to the powder supply device and heated again. Continuous graphitization equipment.
【請求項6】 炉本体内にガスを吹き込むガス吹込みノ
ズル(20)を更に備える、ことを特徴とする請求項1
乃至5に記載の連続黒鉛化処理装置。
6. The apparatus according to claim 1, further comprising a gas injection nozzle (20) for blowing gas into the furnace body.
6. The continuous graphitization apparatus according to any one of items 1 to 5.
JP10200123A 1998-07-15 1998-07-15 Continuous graphitizing treatment apparatus Pending JP2000034111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200123A JP2000034111A (en) 1998-07-15 1998-07-15 Continuous graphitizing treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10200123A JP2000034111A (en) 1998-07-15 1998-07-15 Continuous graphitizing treatment apparatus

Publications (1)

Publication Number Publication Date
JP2000034111A true JP2000034111A (en) 2000-02-02

Family

ID=16419214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200123A Pending JP2000034111A (en) 1998-07-15 1998-07-15 Continuous graphitizing treatment apparatus

Country Status (1)

Country Link
JP (1) JP2000034111A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167208A (en) * 2000-11-30 2002-06-11 Ishikawajima Harima Heavy Ind Co Ltd Continuous type graphitization furnace
WO2013058347A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
WO2013058348A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
WO2021131350A1 (en) * 2019-12-26 2021-07-01 日本電極株式会社 Thermal treatment device of carbon material granule and method therefor
CN114195145A (en) * 2022-01-04 2022-03-18 内蒙古恒科新材料科技有限公司 Electrode condensation type Acheson graphitizing furnace and installation and construction method thereof
CN114314067A (en) * 2021-12-22 2022-04-12 江苏道金智能装备有限公司 Automatic throw material transfer station

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167208A (en) * 2000-11-30 2002-06-11 Ishikawajima Harima Heavy Ind Co Ltd Continuous type graphitization furnace
JPWO2013058347A1 (en) * 2011-10-21 2015-04-02 昭和電工株式会社 Method for producing electrode material for lithium ion battery
US9059467B2 (en) 2011-10-21 2015-06-16 Showa Denko K.K. Method for producing electrode material for lithium ion batteries
JP5401631B2 (en) * 2011-10-21 2014-01-29 昭和電工株式会社 Method for producing electrode material for lithium ion battery
JP5401632B2 (en) * 2011-10-21 2014-01-29 昭和電工株式会社 Method for producing electrode material for lithium ion battery
JP2014029874A (en) * 2011-10-21 2014-02-13 Showa Denko Kk Manufacturing method of graphite material for lithium ion battery electrode material
JP2014053314A (en) * 2011-10-21 2014-03-20 Showa Denko Kk Method for producing graphite material for lithium ion battery electrode material
WO2013058348A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
WO2013058347A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
JPWO2013058348A1 (en) * 2011-10-21 2015-04-02 昭和電工株式会社 Method for producing electrode material for lithium ion battery
US9284192B2 (en) 2011-10-21 2016-03-15 Showa Denko K.K. Method for producing electrode material for lithium ion batteries
WO2021131350A1 (en) * 2019-12-26 2021-07-01 日本電極株式会社 Thermal treatment device of carbon material granule and method therefor
CN114314067A (en) * 2021-12-22 2022-04-12 江苏道金智能装备有限公司 Automatic throw material transfer station
CN114314067B (en) * 2021-12-22 2024-02-20 江苏道金智能制造科技股份有限公司 Automatic feeding transfer station
CN114195145A (en) * 2022-01-04 2022-03-18 内蒙古恒科新材料科技有限公司 Electrode condensation type Acheson graphitizing furnace and installation and construction method thereof
CN114195145B (en) * 2022-01-04 2023-06-16 内蒙古恒科新材料科技有限公司 Electrode condensation type Acheson graphitizing furnace and installation and construction method thereof

Similar Documents

Publication Publication Date Title
JP4231960B2 (en) Method and apparatus for producing carbon-containing iron using hearth rotary furnace
CN210001595U (en) Structure of continuous graphitizing furnace using carbon raw materials
JP2000034111A (en) Continuous graphitizing treatment apparatus
JP3787241B2 (en) Graphite production equipment
JP4151111B2 (en) Graphitized electric furnace
JP4147617B2 (en) Graphitized electric furnace
JP3838618B2 (en) Graphite carbon powder, production method and apparatus thereof
CN210065182U (en) High-temperature material cooling and conveying system of graphitizing furnace
JP2002013031A (en) Method for graphitizing carbon material and apparatus therefor
JP4238379B2 (en) Graphitized electric furnace
CN213873789U (en) Rotation type enamel stoving sintering production line
JP2002167208A (en) Continuous type graphitization furnace
CN110371966B (en) Carbon raw material continuous graphitizing furnace structure and graphitizing method
US20040115115A1 (en) Vertical conveyor apparatus for high temperature continuous processing of materials
JP4677667B2 (en) Graphitization apparatus and graphitization method
JPH11322317A (en) Electric furnace for graphitization
JP2023074931A (en) Heat treatment system, sagger provided therein, and heat treatment method
CN210085290U (en) Device for granulating molten smelting slag glass and recovering waste heat
JP2006306724A (en) Graphite carbon powder and method and apparatus for producing the same
CN217275559U (en) Box type heat treatment device
JP4281123B2 (en) Electric furnace
JP2003105340A (en) Continuous carbon raw material production device
JPH11322320A (en) Electric furnace
JP2000097584A (en) Granular body cooling device
KR102473356B1 (en) Continuous HBI Manufacturing Unit with concurrent heating Unit