JP2000030922A - Magnetic steel sheet having high machinability and magnetic characteristic - Google Patents

Magnetic steel sheet having high machinability and magnetic characteristic

Info

Publication number
JP2000030922A
JP2000030922A JP10197472A JP19747298A JP2000030922A JP 2000030922 A JP2000030922 A JP 2000030922A JP 10197472 A JP10197472 A JP 10197472A JP 19747298 A JP19747298 A JP 19747298A JP 2000030922 A JP2000030922 A JP 2000030922A
Authority
JP
Japan
Prior art keywords
inclusions
steel sheet
machinability
magnetic
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10197472A
Other languages
Japanese (ja)
Other versions
JP3823548B2 (en
Inventor
Mitsuyo Maeda
光代 前田
Hiroyoshi Yashiki
裕義 屋鋪
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19747298A priority Critical patent/JP3823548B2/en
Publication of JP2000030922A publication Critical patent/JP2000030922A/en
Application granted granted Critical
Publication of JP3823548B2 publication Critical patent/JP3823548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic steel sheet having high machinability and a high magnetic characteristic by specifying the number of inclusions having a specific particle size or larger of the inclusions observed on the end face of steel sheet against the total number of inclusions. SOLUTION: Test pieces of a nonoriented magnetic steel sheet which contain nearly the same number (about 8,000-10,000 particles/mm2) of inclusions having particle size of >=0.1 μm, about 1 wt.% (Si+Al), about 110-130 Vickers hardness, and inclusions in various particle size distributions are examined and the test pieces are put in order based on the ratio (%) of the number per unit area of inclusions having particle sizes of >=0.1 μm to the number per unit area of inclusions having particle sizes of >=2 μm. When the number of the inclusions having particle sizes of >=2 μm exceeds the 10% of the total number of the inclusions having particle sizes of >=0.1 μm, the machinability of the magnetic steel sheet is improved. In addition, the kinds of the inclusions have no relation to the magnetic characteristic and machinability of the steel sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心と
して用いられる電磁鋼板に関し、特に回転機の回転子、
固定子の旋盤加工における切削性に優れ、かつ磁気特性
に優れた電磁鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic steel sheet used as an iron core of electric equipment, and more particularly, to a rotor of a rotating machine,
The present invention relates to an electromagnetic steel sheet which has excellent machinability in lathing of a stator and excellent magnetic properties.

【0002】[0002]

【従来の技術】電磁鋼板は変圧器、安定器などの静止機
器や、電動機、発電機等の回転機の鉄心材料として用い
られる。このような材料には優れた磁気特性が要求され
るが、鉄心を製作する段階で、打ち抜き性・かしめ性・
切削性などの加工性の良いことも要求される。しかしな
がらこれまで、無方向性電磁鋼板における切削性は、打
ち抜き性やかしめ性と比較して重要視されることが少な
かった。
2. Description of the Related Art Magnetic steel sheets are used as core materials for stationary equipment such as transformers and stabilizers, and for rotating machines such as electric motors and generators. Such materials are required to have excellent magnetic properties, but at the stage of manufacturing the iron core, punching, crimping,
Good workability such as machinability is also required. However, hitherto, the machinability of the non-oriented electrical steel sheet has been seldom regarded as important as compared with the punching property and the caulking property.

【0003】回転機の回転子、固定子は電磁鋼板を打ち
抜き、積層後、回転子−固定子間のエアギャップの寸法
精度を高めるため、旋盤による切削加工が行われる。と
くに回転子の鉄心は回転中の動的バランスが重要である
ため精度の高い切削を行うことが多い。切削性に劣る材
料を用いると、鉄心の製作段階で切削工具の取り替え頻
度が高くなり作業性や生産コストが低下する。
[0003] The rotor and the stator of the rotating machine are formed by punching out electromagnetic steel sheets, laminating them, and then performing cutting with a lathe in order to improve the dimensional accuracy of the air gap between the rotor and the stator. In particular, the rotor iron core often performs high-precision cutting because dynamic balance during rotation is important. If a material having poor machinability is used, the frequency of changing the cutting tool in the stage of manufacturing the iron core increases, and workability and production cost decrease.

【0004】また、切削性に劣る材料では、切削による
バリが発生しやすい。回転子や固定子には磁極を形成す
るための溝が設けられているが、バリはこの溝の縁部ま
たは端部で発生しやすい。切削バリを残したまま回転機
に組み込むと、鉄心の積層間で電気的な短絡を起こし鉄
損が増加したり、鉄心が過熱する恐れがある。あるい
は、バリが回転子−固定子間のエアギャップに巻き込ま
れて積層の破損やコイルの絶縁破壊を生じたりする。そ
のため、組み立て前に切削バリを除去しなければならな
いが、このバリ除去作業は余分な作業工数が発生するこ
と、バリ除去設備が必要なこと、ハンドリング作業の安
全が損なわれること等の問題がある。
On the other hand, a material having poor machinability tends to generate burrs due to cutting. The rotor or the stator is provided with a groove for forming a magnetic pole, and burrs are easily generated at the edge or end of the groove. If the core is incorporated into a rotating machine with cutting burrs remaining, an electrical short circuit may occur between the cores, resulting in an increase in iron loss or overheating of the core. Alternatively, burrs may be caught in the air gap between the rotor and the stator, causing damage to the lamination and dielectric breakdown of the coil. Therefore, it is necessary to remove cutting burrs before assembling. However, this deburring operation involves problems such as extra work steps, necessity of deburring equipment, and impairment of handling safety. .

【0005】従って、切削が容易でバリが発生しない電
磁鋼板が求められている。この要請に対して例えば下記
の技術が提案されている。
Therefore, there is a need for an electromagnetic steel sheet that is easy to cut and does not generate burrs. In response to this request, for example, the following technology has been proposed.

【0006】特公昭54−11769号公報には、電磁
鋼または電磁鋼板に黒鉛を添加することで切欠き効果、
潤滑効果が生じ、切削性が良くなるとしているが、黒鉛
添加は鋼板の磁気特性に悪影響を与えることから好まし
くない。
Japanese Patent Publication No. 54-1169 discloses a notch effect by adding graphite to an electromagnetic steel or an electromagnetic steel sheet.
It is stated that a lubricating effect is produced and the machinability is improved, but the addition of graphite is not preferable because it adversely affects the magnetic properties of the steel sheet.

【0007】特公昭56−34616号公報には、無方
向性電磁鋼板にMnを1〜3%と多量に添加すると切削
性が向上する技術が開示されているが、その理由は明確
にはしておらず、Mnの多量添加はコスト上昇となるた
め好ましくない。
Japanese Patent Publication No. 56-34616 discloses a technique for improving machinability by adding a large amount of Mn to non-oriented electrical steel sheets in an amount of 1 to 3%. The reason for this is clarified. However, addition of a large amount of Mn is not preferable because it increases the cost.

【0008】特開平4−293724号公報には、鋼板
中にPを添加することにより、無方向性電磁鋼板の磁気
特性を悪化させずに切削性を改善するとしているが、P
添加による靭性低下を補償するため、極低C、極低S化
が必要であり脱C脱Sコストが増加すること、および
(Si+Al)<1.5重量%の制約があり、電磁鋼板
の基本成分であるSi添加量の制約を受けるという問題
がある。
Japanese Patent Application Laid-Open No. 4-293724 discloses that by adding P to a steel sheet, the machinability is improved without deteriorating the magnetic properties of the non-oriented electrical steel sheet.
In order to compensate for the decrease in toughness due to the addition, ultra-low C and ultra-low S are required to increase the de-C and de-S costs, and there is a restriction of (Si + Al) <1.5% by weight. There is a problem that the amount of Si as a component is restricted.

【0009】特開平5−331602号公報には鋼板中
のMn量とAl量を規制することにより、鋼板の硬度を
調整して切削性を保持する技術が開示されているが、単
に鋼板の硬度を維持するだけでは十分な切削性が得られ
るとは言い難い。
Japanese Patent Application Laid-Open No. Hei 5-331602 discloses a technique in which the amount of Mn and the amount of Al in a steel sheet are regulated to adjust the hardness of the steel sheet to maintain the machinability. However, it is difficult to say that sufficient machinability can be obtained by simply maintaining the value.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、切削
性と磁気特性に優れた電磁鋼板を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic steel sheet having excellent machinability and magnetic properties.

【0011】[0011]

【課題を解決するための手段】本発明者らは、切削加工
を多用する回転子の材料である無方向性電磁鋼板につ
き、各種の製造条件で素材鋼を溶製し、各種の圧延、焼
鈍条件で試験材を作成した。
Means for Solving the Problems The inventors of the present invention have prepared a non-oriented electrical steel sheet, which is a material for a rotor that uses a lot of cutting, by melting raw steel under various manufacturing conditions, and performing various rolling and annealing processes. Test materials were prepared under the conditions.

【0012】これらの試験材の鋼中の介在物の個数と磁
気特性の関係について調査し、おおむね粒子径0.1μ
m以上の介在物について、顕微鏡観察断面で10000
個/mm2 以下であれば所定の磁気特性を満足すること
を確認した。
The relationship between the number of inclusions in the steel of these test materials and the magnetic properties was investigated, and it was found that the particle size was approximately 0.1 μm.
m or more for inclusions of 10,000 or more
It was confirmed that when the number was not more than the number / mm 2 , predetermined magnetic properties were satisfied.

【0013】次いで、試験材を鉄心の形に積層し、切削
性の試験を行った。各種の試験片のうち、工具損傷が少
なく工具寿命の長い試験片について、つまり切削性が良
いと評価された試験片について丹念に観察すると、切削
性に劣ると評価された試験片に比べて、介在物のサイズ
が大きいものが多いという知見を得た。
Next, the test materials were laminated in the form of an iron core, and a test of machinability was performed. Of the various test specimens, when carefully examining the test specimens with low tool damage and long tool life, that is, the test specimens evaluated as having good machinability, compared to the test specimens evaluated as having poor machinability, We have found that many inclusions are large in size.

【0014】さらに、切削性が良いと評価された試験片
のうち磁気特性が良いものを調査すると、介在物の粒子
径2μm以上の比較的大きな介在物数が全体の介在物の
中である程度以上の比率(10%以上)を有することが
分かった。
[0014] Further, among the test pieces evaluated as having good machinability, those having good magnetic properties were investigated. As a result, a relatively large number of inclusions having a particle diameter of 2 μm or more was found to be more than a certain number in the total inclusions. (10% or more).

【0015】上記の知見に基づき完成した本発明の要旨
は「断面で観察される鋼中の介在物の粒子のうち、粒子
径2μm以上の粒子数が、粒子径0.1μm以上の粒子
数に対して10%以上であることを特徴とする切削性と
磁気特性に優れた電磁鋼板」にある。
The gist of the present invention, which has been completed based on the above findings, is that among the particles of inclusions in steel observed in a cross section, the number of particles having a particle diameter of 2 μm or more is reduced to the number of particles having a particle diameter of 0.1 μm or more. An electrical steel sheet having excellent machinability and magnetic properties characterized by being 10% or more.

【0016】ここで介在物とは、硫化物、酸化物、炭化
物、窒化物、およびこれらの複合体をいう。粒子径とは
等面積の円の直径として表したものをいう。
Here, the inclusions refer to sulfides, oxides, carbides, nitrides, and composites thereof. The particle diameter refers to the diameter of a circle having the same area.

【0017】[0017]

【発明の実施の形態】本発明の実施に際して、各条件を
限定した理由を以下に述べる。図1は(Si+Al)量
が約0.2重量%である化学組成を有する試験片の鋼中
介在物の個数と磁気特性(鉄損W15/50)の関係を
示すグラフである。同図に示すように、粒子数が100
00個/mm2 を超えると磁気特性が劣化することがわ
かる。これは結晶粒の成長が介在物に抑制されるためと
考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting each condition in implementing the present invention will be described below. FIG. 1 is a graph showing the relationship between the number of inclusions in steel and magnetic properties (iron loss W15 / 50) of a test piece having a chemical composition in which the amount of (Si + Al) is about 0.2% by weight. As shown in FIG.
It can be seen that when the number exceeds 00 pieces / mm 2 , the magnetic properties deteriorate. This is considered because the growth of crystal grains is suppressed by inclusions.

【0018】なお、粒子数の測定は、光学顕微鏡で効率
よく観察できる0.1μm以上の介在物を対象とした。
The number of particles was measured for inclusions of 0.1 μm or more that can be efficiently observed with an optical microscope.

【0019】次に、発明者らは介在物のサイズと磁気特
性に注目し、化学組成がほぼ同じ鋼材で、0.1μm以
上の粒子径の介在物の個数がほぼ同じ(8000〜10
000個/mm2 )試験片を選び出し、その磁気特性を
調査した。これらの材料の試験片の中に、磁気特性に優
れたものと劣るものとがあった。磁気特性に劣る材料を
光学顕微鏡で調べると、微細な介在物が多数分散してお
り、磁気特性に優れた材料では微細な介在物の個数が少
なく、粒子径の大きな介在物が多いことがわかった。す
なわち、介在物粒子数が同じ場合、粒子径が大きい側に
分布しているものが磁気特性に優れている。この時、介
在物の個数を粒子径の大きさで層別したところ、下記の
ように、磁気特性を劣化させるのは粒子径が2μm未満
の介在物であることがわかった。
Next, the inventors pay attention to the size and magnetic characteristics of the inclusions, and the number of the inclusions having a particle diameter of 0.1 μm or more in steel materials having substantially the same chemical composition (8000 to 10).
000 pieces / mm 2 ) Test pieces were selected and their magnetic properties were investigated. Some of the test pieces of these materials had excellent and inferior magnetic properties. Examination of a material with poor magnetic properties with an optical microscope reveals that many fine inclusions are dispersed, and that a material with excellent magnetic properties has a small number of fine inclusions and a large number of inclusions with a large particle size. Was. That is, when the number of inclusion particles is the same, those distributed on the side where the particle diameter is large have excellent magnetic properties. At this time, when the number of inclusions was stratified according to the particle size, it was found that inclusions having a particle diameter of less than 2 μm deteriorated the magnetic properties as described below.

【0020】図2は介在物の粒子径と介在物個数比率の
関係を示すグラフである。同図において、各試験片の粒
子径0.1μm以上の全介在物個数はほぼ同数(800
0〜10000個/mm2 )であるが、2μm以上の介
在物が少なく、微細な介在物が多い鋼板Aでは他の鋼板
に比べて鉄損が劣っている。
FIG. 2 is a graph showing the relationship between the particle diameter of inclusions and the ratio of the number of inclusions. In the figure, the number of all the inclusions having a particle diameter of 0.1 μm or more in each test piece is almost the same (800
0-10000 pieces / mm 2) a but, inclusions or 2μm less, and the iron loss inferior to fine inclusions often steel other steel in A.

【0021】同図に示すように、粒子径を2μmで整理
すると、介在物の粒子個数と磁気特性との相関が強いこ
とがわかる。
As shown in the figure, when the particle diameter is arranged at 2 μm, it is understood that the correlation between the number of particles of the inclusions and the magnetic characteristics is strong.

【0022】次に、切削性のよい試験体について、その
切削面を走査型電子顕微鏡(SEM)で観察すると、切
削破断の起点には介在物が存在することがわかった。こ
のことから、材料が切削加工を受ける際に、工具に介在
物粒子が当たることで被削材に亀裂を生じ、割れが促進
され切削が進むものと推定した。さらに、切削屑および
切削バリの形態と介在物の形態とを比較したところ、介
在物が切削時の破断起点になるためには、そのサイズが
ある程度以上の大きさである方がより効果的であること
がわかった。
Next, when the cut surface of the specimen having good machinability was observed with a scanning electron microscope (SEM), it was found that inclusions were present at the starting point of the cut fracture. From this, it was presumed that when the material was subjected to cutting, the inclusion particles hit the tool, causing a crack in the work material, which accelerated the cracking and advanced the cutting. Furthermore, a comparison of the form of the shavings and burrs with the form of the inclusions shows that the inclusions should be at least a certain size in order for the inclusions to be the starting point of the fracture during cutting. I found it.

【0023】図3は、介在物粒子径と切削工具の磨耗量
の関係を示すグラフである。同図は粒子径0.1μm以
上の全介在物個数がほぼ同数(8000〜10000個
/mm2 )、(Si+Al)が約1重量%、ビッカース
硬度が110〜130である種々の介在物粒子径分布を
有する無方向性電磁鋼板の試験片について調査したもの
である。同図では、横軸は粒子径が0.1μm以上の介
在物の単位面積当たりの個数を分母とし、粒子径が2μ
m以上の介在物の個数を分子とした比率(%)で整理し
た。同図からわかるように、粒子径2μm以上の介在物
個数が、粒子径0.1μm以上の粒子個数全体の10%
を超えると、電磁鋼板の切削性は向上することがわか
る。
FIG. 3 is a graph showing the relationship between the particle size of inclusions and the amount of wear of the cutting tool. The figure shows various inclusion particle diameters in which the total number of inclusions having a particle diameter of 0.1 μm or more is almost the same (8000 to 10000 / mm 2 ), (Si + Al) is about 1% by weight, and Vickers hardness is 110 to 130. This is a survey of non-oriented electrical steel sheets having a distribution. In the figure, the horizontal axis represents the number of inclusions having a particle diameter of 0.1 μm or more per unit area as a denominator, and the particle diameter is 2 μm.
The number (m) or more of the inclusions was arranged as a ratio (%) as a molecule. As can be seen from the figure, the number of inclusions having a particle diameter of 2 μm or more accounts for 10% of the total number of particles having a particle diameter of 0.1 μm or more.
It can be seen that when the ratio exceeds 1, the machinability of the magnetic steel sheet is improved.

【0024】以上のことから、切削性と磁気特性を両立
させるためには、0.1μm以上の介在物を対象とした
ときの個数比率で、2μm以上のものが少なくとも10
%以上でなければならないといえる。望ましくはこの比
率が15%以上、さらに望ましくは20%以上である。
また、磁気特性への影響および切削性への影響からみ
て、介在物の種類は問わない。
From the above, in order to achieve both the machinability and the magnetic characteristics, at least 10 μm or more of inclusions having a size of 2 μm or more should be included when targeting inclusions having a size of 0.1 μm or more.
%. Preferably, this ratio is at least 15%, more preferably at least 20%.
Further, the type of the inclusion is not limited in view of the influence on the magnetic characteristics and the effect on the machinability.

【0025】次に、本発明の電磁鋼板を製造する方法を
述べる。本発明の電磁鋼板の種類は無方向性、1方向
性、2方向性いずれに適用してもよい。切削性が重要な
ものは回転機の回転子であるため、とくに無方向性電磁
鋼板に好適である。
Next, a method for producing the magnetic steel sheet of the present invention will be described. The type of the magnetic steel sheet of the present invention may be applied to any of non-directional, one-directional, and two-directional. What is important for the machinability is the rotor of the rotating machine, and is particularly suitable for non-oriented electrical steel sheets.

【0026】鋼成分は電磁鋼板の場合は、化学組成が重
量%で、C:≦0.005%、Mn:0.1〜4%、S
i:0.1〜4.5%、Al:≦8%、P:≦0.1
%、S:≦0.05%、残部がFeおよび不可避的不純
物、が代表的組成である。
In the case of an electrical steel sheet, the steel composition has a chemical composition in weight%, C: ≦ 0.005%, Mn: 0.1 to 4%, S
i: 0.1 to 4.5%, Al: ≤ 8%, P: ≤ 0.1
%, S: ≦ 0.05%, the balance being Fe and unavoidable impurities is a typical composition.

【0027】本発明では鋼中に比較的粒径の大きな介在
物を分散させるため、介在物の種類は大きなものが得ら
れ易くて圧延工程で細粒化しにくい強固なものが望まし
く、硫化物、酸化物あるいはそれらの複合体を主体に析
出させるのが好適である。従って、上記の化学組成では
S量とO量の両者のバランスを調整するのが望ましい。
炭化物、窒化物も本発明の介在物として好適であるが、
それらを形成させ得るTi、Zr、Al、V、Nb、C
r、B、Wなどを添加するのが望ましい。
In the present invention, since inclusions having a relatively large grain size are dispersed in the steel, it is desirable that the type of the inclusions be large and easy to obtain, and that the inclusions are hard to be finely divided in the rolling step. It is preferred that oxides or composites thereof are mainly deposited. Therefore, in the above chemical composition, it is desirable to adjust the balance between both the S amount and the O amount.
Carbides and nitrides are also suitable as inclusions in the present invention,
Ti, Zr, Al, V, Nb, C capable of forming them
It is desirable to add r, B, W and the like.

【0028】溶製は常法にしたがって、転炉で出鋼後、
真空脱ガス装置で脱炭処理、脱酸処理を行い、電磁鋼板
の基本組成に必要なSi、Al、Mnを添加する。この
とき脱酸、脱硫方法を制御することで介在物の粒子径が
大きくなるようにするのが望ましい。この溶鋼を常法に
従い連続鋳造する。
In accordance with a conventional method, after melting in a converter,
Decarburization treatment and deoxidation treatment are performed by a vacuum degasser, and Si, Al, and Mn necessary for the basic composition of the magnetic steel sheet are added. At this time, it is desirable to control the deoxidation and desulfurization methods to increase the particle diameter of the inclusions. This molten steel is continuously cast according to a conventional method.

【0029】熱延条件は特に規定するものではないが、
介在物を細粒化しないように、加熱温度は1150℃以
下とするのが望ましい。その後、酸洗、冷間圧延、必要
に応じて温間圧延、焼鈍、必要に応じて再冷間圧延、再
焼鈍を行う。焼鈍はバッチ焼鈍でも連続焼鈍でもよい
が、制御の容易な連続焼鈍が望ましい。焼鈍温度は所定
の磁気特性を付与するため、750〜1100℃とする
のが望ましい。
Although the hot rolling conditions are not particularly specified,
The heating temperature is desirably 1150 ° C. or lower so as not to make the inclusions fine. Thereafter, pickling, cold rolling, if necessary, warm rolling, annealing, and if necessary, re-cold rolling and re-annealing are performed. Annealing may be batch annealing or continuous annealing, but continuous annealing with easy control is desirable. The annealing temperature is desirably 750 to 1100 ° C. in order to provide predetermined magnetic properties.

【0030】[0030]

【実施例】(実施例1)化学組成が重量%で、C:0.
002〜0.005%、Mn:0.1〜0.4%、S
i:0.1〜0.2%、Al:0.0001〜0.00
50%、P:0.05〜0.08%、S:0.005〜
0.050%、O:0.003〜0.020%、残部が
Feおよび不可避的不純物からなる鋼を常法により溶製
し、熱間圧延、冷間圧延、焼鈍を行って番号A〜Iの無
方向性電磁鋼板を作成した。製造条件として番号A〜C
のグループに対して、番号DはSを低めとし、番号Eは
熱延加熱温度を高くし、番号FはS量を低く熱延加熱温
度を高くし、番号Gは冷間圧下率を高くし、番号Hは酸
素量を少なくし、番号Iは酸素量を高くして各種の介在
物の粒子径が得られるようにした。
EXAMPLES (Example 1) When the chemical composition is% by weight and C: 0%.
002-0.005%, Mn: 0.1-0.4%, S
i: 0.1 to 0.2%, Al: 0.0001 to 0.00
50%, P: 0.05-0.08%, S: 0.005-
0.050%, O: 0.003 to 0.020%, the balance being made of steel consisting of Fe and unavoidable impurities by a conventional method, and subjected to hot rolling, cold rolling and annealing to carry out numbers A to I. Non-oriented electrical steel sheet was produced. Numbers A to C as manufacturing conditions
For the group of No. D, S was set low, No. E was set to increase the hot-rolling heating temperature, No. F was set to lower the S content and set the hot-rolling heating temperature high, and No. G was set to increase the cold rolling reduction. No. H reduced the oxygen content and No. I increased the oxygen content so that the particle sizes of various inclusions could be obtained.

【0031】得られた鋼板に絶縁皮膜を施し、最終板厚
0.50mmとした。この鋼板を円盤状に打ち抜いて積
層し、鋼板番号A〜Iに対応した切削試験体A〜Iとし
た。
The obtained steel sheet was coated with an insulating film to have a final thickness of 0.50 mm. The steel sheets were punched out in a disk shape and laminated to obtain cutting test pieces A to I corresponding to steel sheet numbers A to I.

【0032】この試験体を旋盤で切削し、切削性を比較
した。切削試験条件は切削速度:150m/min、送
り:0.2mm/rev、切り込み量:0.5mmとし
た。切削工具はブレーカー付サーメットチップを使用し
た。切削性は、工具摩耗をチップの逃げ面平均摩耗量で
評価した。磁気特性はJISに表記されているエプスタ
イン試験法で鉄損と磁束密度を測定した。
This test piece was cut with a lathe and the cutting properties were compared. The cutting test conditions were as follows: cutting speed: 150 m / min, feed: 0.2 mm / rev, cutting depth: 0.5 mm. The cutting tool used was a cermet chip with a breaker. For the machinability, the tool wear was evaluated based on the average flank wear of the insert. The magnetic properties were measured for iron loss and magnetic flux density by the Epstein test method described in JIS.

【0033】試験体の介在物は、光学顕微鏡により板厚
断面を倍率400倍で60視野につき観察し、画像処理
装置にて個々の介在物粒子径を円相当径として算出し
た。各試験体とも介在物は大部分が硫化物、酸化物およ
びそれらの複合介在物であり、他にはわずかな窒化物、
および炭化物が分散していた。
The inclusions of the test specimen were observed with an optical microscope at a magnification of 400 at a magnification of 400 in 60 fields of view, and the particle diameter of each inclusion was calculated as an equivalent circle diameter by an image processing apparatus. In each specimen, the inclusions were mostly sulfides, oxides and their composite inclusions, and a small amount of nitrides,
And carbides were dispersed.

【0034】図4は試験体の種類と粒子径2μm以上の
介在物比率の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the type of test specimen and the ratio of inclusions having a particle diameter of 2 μm or more.

【0035】図4に示すように、試験体A〜Cは、粒子
径2μm以上の介在物の比率が10%以上であり、本発
明の範囲を満足するものであった(試験体A〜Cを本発
明例とする)。試験体D〜Iは、本発明の範囲を満足し
ていなかった(試験体D〜Iを比較例とする)。
As shown in FIG. 4, in the test pieces A to C, the ratio of the inclusions having a particle diameter of 2 μm or more was 10% or more, which satisfied the range of the present invention (test pieces A to C). Is an example of the present invention). Specimens D to I did not satisfy the scope of the present invention (specimens D to I are comparative examples).

【0036】図5は試験体別の切削時間と工具磨耗量の
関係を示すグラフである。また、表1に各試験体の磁気
特性(鉄損:W15/50および磁束密度:B50)を
示す。
FIG. 5 is a graph showing the relationship between the cutting time for each specimen and the amount of tool wear. Table 1 shows the magnetic properties (iron loss: W15 / 50 and magnetic flux density: B50) of each specimen.

【0037】[0037]

【表1】 [Table 1]

【0038】図5において、本発明例である試験体A〜
Cは工具摩耗量が小さく、表1に示すように磁気特性も
良好(鉄損7.0(W/kg)以下、磁束密度1.8
(T)以上)であった。比較例である被削材D、E、F
は、同図に示すように工具摩耗量が大きく、また、表1
に示すように磁気特性も不良であった。比較例である試
験体G、H、Iは、同図に示すように工具摩耗量は小さ
いが、表1に示すように磁気特性に劣っていた。
In FIG. 5, test pieces A to A of the present invention are shown.
C shows a small tool wear and good magnetic properties as shown in Table 1 (iron loss 7.0 (W / kg) or less, magnetic flux density 1.8).
(T) or more). Workpieces D, E, F as Comparative Examples
Indicates that the tool wear is large as shown in FIG.
The magnetic properties were also poor as shown in FIG. Specimens G, H, and I, which are comparative examples, had a small tool wear amount as shown in FIG.

【0039】(実施例2)化学組成が重量%で、C:
0.002〜0.003%、Mn:0.1〜0.3%、
Si:0.9〜1.1%、Al:0.3〜0.5%、
P:0.06〜0.08%、S:0.0005〜0.0
50%、O:0.002〜0.012、残部がFeおよ
び不可避的不純物からなる鋼を常法により溶製し、熱間
圧延、冷間圧延、焼鈍を行って番号P〜Xの無方向性電
磁鋼板を作成した。製造条件として番号P〜Rのグルー
プに対し、番号Sは冷間圧下率を高めにし、番号TはS
量を低くし、番号Uは熱延加熱温度高くし、番号Vは酸
素量を低くし、番号Wは酸素量を高くし、番号Xは酸素
量を低くし熱延加熱温度を高くして、各種の介在物の粒
子径が得られるようにした。
(Example 2) The chemical composition is expressed in% by weight, and C:
0.002 to 0.003%, Mn: 0.1 to 0.3%,
Si: 0.9 to 1.1%, Al: 0.3 to 0.5%,
P: 0.06 to 0.08%, S: 0.0005 to 0.0
50%, O: 0.002 to 0.012, the balance being made of steel consisting of Fe and unavoidable impurities by a conventional method, subjected to hot rolling, cold rolling and annealing, and subjected to non-directional numbers P to X An electrical steel sheet was prepared. As for the production conditions, for the groups of numbers P to R, the number S increases the cold rolling reduction, and the number T
No. U increases the hot rolling temperature, No. V decreases the oxygen content, No. W increases the oxygen content, X decreases the oxygen content and increases the hot rolling temperature, Various particle sizes of inclusions were obtained.

【0040】これらの鋼板に絶縁皮膜を施し、最終板厚
0.35mmとした。この鋼板を外周に4本の溝の付い
た円盤状に打ち抜いて積層し、番号P〜Xに対応して断
続切削の試験体P〜Xとした。断続切削試験条件は切削
速度:320m/min,送り:0.05mm/re
v,切り込み量:0.05mmとし、切削工具は超硬チ
ップを使用した。
These steel sheets were coated with an insulating film to have a final thickness of 0.35 mm. This steel plate was punched and laminated in a disk shape with four grooves on the outer periphery, and the specimens P to X for intermittent cutting corresponding to the numbers P to X were obtained. The intermittent cutting test conditions were as follows: cutting speed: 320 m / min, feed: 0.05 mm / re
v, depth of cut: 0.05 mm, and a cutting tool used a carbide tip.

【0041】実施例1と同じ手順で切削性(工具磨
耗)、磁気特性(鉄損、磁束密度)を評価した。被削材
の切り欠き溝部に発生した切削バリを調査するために、
切削時間1200秒後に切削バリの長さを計測した。
The cutability (tool wear) and magnetic properties (iron loss, magnetic flux density) were evaluated in the same procedure as in Example 1. In order to investigate the cutting burr generated in the notch groove of the work material,
After 1200 seconds of cutting time, the length of the cutting burr was measured.

【0042】図6は試験体の種類と粒子径2μm以上の
介在物比率の関係を示すグラフである。同図に示すよう
に、試験体P〜Rは、粒子径2μm以上の介在物の比率
が10%以上であり、本発明の範囲を満足するものであ
った(試験体P〜Rを本発明例とする)。試験体S〜X
は、本発明の範囲を満足していなかった(試験体S〜X
を比較例とする)。
FIG. 6 is a graph showing the relationship between the type of test specimen and the ratio of inclusions having a particle diameter of 2 μm or more. As shown in the drawing, the ratio of the inclusions having a particle diameter of 2 μm or more was 10% or more in the test pieces P to R, which satisfied the scope of the present invention. Example). Specimens SX
Did not satisfy the scope of the present invention (specimens SX
Is a comparative example).

【0043】図7は試験体別の切削時間と工具磨耗量の
関係を示すグラフである。図8は試験体別の切削バリ長
さを示すグラフである。また、表2に各試験体の磁気特
性(鉄損:W15/50および磁束密度:B50)を示
す。
FIG. 7 is a graph showing the relationship between the cutting time for each test piece and the amount of tool wear. FIG. 8 is a graph showing the cutting burr length for each test piece. Table 2 shows the magnetic properties (iron loss: W15 / 50 and magnetic flux density: B50) of each specimen.

【0044】[0044]

【表2】 [Table 2]

【0045】図7に示すように、本発明例の試験体P、
Q、Rは、工具摩耗量が少なく、図8に示すように切削
バリ長さも小さかった。また、表2に示すように、試験
体P、Q、Rの磁気特性は良好(鉄損4.0(W/k
g)以下、磁束密度1.8(T)以上)であった。
As shown in FIG. 7, the specimen P of the present invention example
For Q and R, the amount of tool wear was small, and the cutting burr length was small as shown in FIG. In addition, as shown in Table 2, the magnetic properties of the test pieces P, Q, and R were good (iron loss 4.0 (W / k
g), the magnetic flux density was 1.8 (T) or more).

【0046】図7に示すように、比較例の試験体S、T
では、工具摩耗量が大きく、図8に示すように、切削バ
リ長さも大きかった。また、表2に示すように、試験体
S、Tの磁気特性も不良であった。
As shown in FIG. 7, the test pieces S and T of the comparative example
In Fig. 8, the amount of tool wear was large, and as shown in Fig. 8, the length of the cutting burr was also large. Further, as shown in Table 2, the magnetic properties of the test pieces S and T were also poor.

【0047】比較例である試験体Uでは切削試験途中で
工具欠損が発生し、試験を中止したため工具磨耗量、切
削バリ長さのデータは採取しなかった。また、試験体U
の磁気特性も劣っていた。
In the specimen U, which is a comparative example, a tool defect occurred during the cutting test, and the test was stopped. Therefore, data on the tool wear amount and the cutting burr length were not collected. The specimen U
Also had poor magnetic properties.

【0048】図7に示すように、比較例である試験体
V、W、Xについては、工具摩耗量は試験体S、Tより
小さく、図8に示すように、切削バリも比較的小さかっ
たが、表2に示すように磁気特性が劣っていた。
As shown in FIG. 7, with respect to the test pieces V, W, and X as the comparative examples, the tool wear was smaller than the test pieces S and T, and as shown in FIG. 8, the cutting burrs were relatively small. However, as shown in Table 2, the magnetic properties were inferior.

【0049】[0049]

【発明の効果】本発明の電磁鋼板は、切削性と磁気特性
の両方を満足し、積層鉄心に組み立て切削加工を行う場
合、切削工具の寿命が長くなり、切削バリの発生もない
ため、作業能率が向上し、バリ除去作業を省略すること
ができる。
The electromagnetic steel sheet of the present invention satisfies both the machinability and the magnetic properties, and when assembling and cutting into a laminated iron core, the life of the cutting tool is prolonged and there is no generation of cutting burrs. The efficiency is improved, and the burr removal operation can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼中介在物個数と磁気特性(鉄損W15/5
0)の関係を示すグラフである。
FIG. 1 Number of inclusions in steel and magnetic properties (iron loss W15 / 5
It is a graph which shows the relationship of 0).

【図2】介在物の粒子径と介在物個数比率の関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the particle size of inclusions and the number ratio of inclusions.

【図3】介在物粒子径と切削工具の磨耗量の関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the particle size of inclusions and the amount of wear of a cutting tool.

【図4】試験体の種類と粒子径2μm以上の介在物比率
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the type of test specimen and the ratio of inclusions having a particle diameter of 2 μm or more.

【図5】試験体別の切削時間と工具磨耗量の関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between cutting time and tool wear for each test piece.

【図6】試験体の種類と粒子径2μm以上の介在物比率
の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the type of test specimen and the ratio of inclusions having a particle diameter of 2 μm or more.

【図7】試験体別の切削時間と工具磨耗量の関係を示す
グラフである。
FIG. 7 is a graph showing the relationship between cutting time and tool wear for each test piece.

【図8】試験体別の切削バリ長さを示すグラフである。FIG. 8 is a graph showing the cutting burr length for each test object.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 康孝 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 Fターム(参考) 5E041 AA02 AA11 CA04 NN06 NN17 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasutaka Okada 4-33 Kitahama, Chuo-ku, Osaka-shi F-term in Sumitomo Metal Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断面で観察される鋼中の介在物の粒子の
うち、粒子径2μm以上の粒子数が、粒子径0.1μm
以上の粒子数に対して10%以上であることを特徴とす
る切削性と磁気特性に優れた電磁鋼板。
1. Among particles of inclusions in steel observed in a cross section, the number of particles having a particle diameter of 2 μm or more is 0.1 μm or more.
An electrical steel sheet having excellent machinability and magnetic properties, characterized in that it is at least 10% with respect to the number of particles.
JP19747298A 1998-07-13 1998-07-13 Electrical steel sheet with excellent machinability and magnetic properties Expired - Fee Related JP3823548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19747298A JP3823548B2 (en) 1998-07-13 1998-07-13 Electrical steel sheet with excellent machinability and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19747298A JP3823548B2 (en) 1998-07-13 1998-07-13 Electrical steel sheet with excellent machinability and magnetic properties

Publications (2)

Publication Number Publication Date
JP2000030922A true JP2000030922A (en) 2000-01-28
JP3823548B2 JP3823548B2 (en) 2006-09-20

Family

ID=16375058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19747298A Expired - Fee Related JP3823548B2 (en) 1998-07-13 1998-07-13 Electrical steel sheet with excellent machinability and magnetic properties

Country Status (1)

Country Link
JP (1) JP3823548B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190122A (en) * 2002-12-13 2004-07-08 Kobe Steel Ltd Soft magnetic steel material superior in machinability and magnetic property, soft magnetic steel part superior in magnetic property, and method for manufacturing soft magnetic steel parts
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
US7540927B2 (en) 2005-08-11 2009-06-02 Kobe Steel, Ltd. Soft magnetic steels excellent in cold forgeability, machinability and magnetic properties, and soft magnetic steel parts excellent in magnetic properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190122A (en) * 2002-12-13 2004-07-08 Kobe Steel Ltd Soft magnetic steel material superior in machinability and magnetic property, soft magnetic steel part superior in magnetic property, and method for manufacturing soft magnetic steel parts
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
US7971484B2 (en) 2005-05-10 2011-07-05 Sanyo Special Steel Co., Ltd. Method for evaluating reliability of steel and high-reliability steel obtained by the same
US7540927B2 (en) 2005-08-11 2009-06-02 Kobe Steel, Ltd. Soft magnetic steels excellent in cold forgeability, machinability and magnetic properties, and soft magnetic steel parts excellent in magnetic properties

Also Published As

Publication number Publication date
JP3823548B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
US6638368B2 (en) Non-oriented electrical steel sheet and method for producing the same
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5699601B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP5699642B2 (en) Motor core
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
WO2004050934A1 (en) Non-oriented magnetic steel sheet and method for production thereof
JP2004084053A (en) Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JPWO2020137500A1 (en) Non-oriented electrical steel sheet
TW202124739A (en) Motor core and production method for same
JP2001059145A (en) Nonoriented silicon steel sheet and its manufacture
JP2010018857A (en) Non-oriented electrical steel sheet for rotor, and manufacturing method therefor
JP2003213385A (en) Nonoriented silicon steel sheet
TWI727616B (en) Non-directional electromagnetic steel sheet, split stator and rotating motor
JP2003096548A (en) Non-oriented silicon steel sheet, and production method therefor
JP7119519B2 (en) Non-oriented electrical steel sheet, stator core, rotor core and manufacturing method thereof
JP2000030922A (en) Magnetic steel sheet having high machinability and magnetic characteristic
JP2000160306A (en) Non-oriented silicon steel sheet excellent in workability and its production
WO2020188812A1 (en) Non-oriented electromagnetic steel sheet
JP2003055746A (en) Nonoriented silicon steel sheet and production method therefor
WO2011027697A1 (en) Non-oriented electromagnetic steel sheet
JP4932782B2 (en) Electrical steel sheet, electrical parts using the same, and manufacturing method thereof
JP2005344179A (en) High-strength non-oriented silicon steel sheet with excellent magnetic property and fatigue characteristic, and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees