JP2000030921A - Co-BASED AMORPHOUS METALLIC THIN WIRE AND ITS MANUFACTURE - Google Patents

Co-BASED AMORPHOUS METALLIC THIN WIRE AND ITS MANUFACTURE

Info

Publication number
JP2000030921A
JP2000030921A JP10200990A JP20099098A JP2000030921A JP 2000030921 A JP2000030921 A JP 2000030921A JP 10200990 A JP10200990 A JP 10200990A JP 20099098 A JP20099098 A JP 20099098A JP 2000030921 A JP2000030921 A JP 2000030921A
Authority
JP
Japan
Prior art keywords
wire
magnetic field
thin wire
effect
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10200990A
Other languages
Japanese (ja)
Inventor
Kaneo Mori
佳年雄 毛利
Shuji Ueno
修司 上埜
Katsuhiro Kawashima
克裕 川島
Isamu Ogasawara
勇 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Unitika Ltd
Original Assignee
Unitika Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd, Japan Science and Technology Corp filed Critical Unitika Ltd
Priority to JP10200990A priority Critical patent/JP2000030921A/en
Publication of JP2000030921A publication Critical patent/JP2000030921A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a Co-based amorphous thin wire which can obtain a large impedance variation against the variation of an external magnetic field by specifying the number of twists of the wire and making the wire exhibit an asymmetrical magnetic impedance effect against an external magnetic field when an asymmetrical alternating current is made to flow to the wire. SOLUTION: The number of twists of an amorphous metallic thin wire is set at >=25 twists/m so that the wire may exhibit an asymmetrical impedance effect (asymmetrical MI effect) and show high magnetic field sensitivity when an asymmetrical alternating current is made to flow to the wire. The 'thin wire' of this amorphous metallic thin wire is not limited particularly, but generally considered to be about <=200 μm. This amorphous metallic thin wire is manufactured by heat-treating a Co-based amorphous metallic thin wire at a temperature between 250 deg.C and the temperature of crystallization after the wire is twisted by >=25 times/m.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、Co系非
晶質金属細線に関するものであり、さらに詳しくは、外
部磁界に対し非対称な磁気インピーダンス効果を示す新
しい非晶質金属細線と、その製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Co-based amorphous metal thin wire, and more particularly, to a new amorphous metal thin wire exhibiting an asymmetric magneto-impedance effect with respect to an external magnetic field, and its production. It is about the method.

【0002】[0002]

【従来の技術】Fe族基の非晶質金属細線は優れた軟磁
気特性を有しており、なかでも特開平1−25932号
公報に記載されたCo系非晶質金属細線の場合には特定
の組成領域において高透磁率磁性細線が得られている。
そしてこの高透磁率細線は、特開平7−236317号
公報に記載されているように、高周波電流を通電して表
皮効果を生じさせると、非晶質細線の両端間のインピー
ダンス(または電圧)が外部磁界によって著しく変化す
る電磁気現象、いわゆる磁気インピーダンス(MI)効
果を生じることが知られている。特に、30〜50μm
径に伸線後張力下熱処理を施した零磁歪近傍のCo系非
晶質金属細線は、5Oe以下の外部磁界に対してインピ
ーダンスの変化が40〜60%にも達して著しく高い磁
界検出感度を示し、ワイヤ長を1mm以下としても優れ
た高速応答性と感度を維持することから、高感度マイク
ロ磁気センサ用の磁気素子として応用されている。
2. Description of the Related Art Fe-group-based amorphous metal fine wires have excellent soft magnetic properties. In particular, in the case of Co-based amorphous metal fine wires described in Japanese Patent Application Laid-Open No. 1-25932. High permeability magnetic fine wires are obtained in a specific composition region.
As described in JP-A-7-236317, when a high-frequency current is applied to generate a skin effect, the impedance (or voltage) between both ends of the amorphous thin wire becomes high. It is known that an electromagnetic phenomenon that is significantly changed by an external magnetic field, that is, a so-called magneto-impedance (MI) effect occurs. In particular, 30 to 50 μm
The Co-based amorphous metal thin wire near zero magnetostriction, which has been subjected to a heat treatment under tension after drawing to a diameter, has a remarkably high magnetic field detection sensitivity because the change in impedance reaches 40 to 60% with respect to an external magnetic field of 5 Oe or less. As shown in the figure, even when the wire length is set to 1 mm or less, it maintains excellent high-speed response and sensitivity, and is therefore applied as a magnetic element for a high-sensitivity micro magnetic sensor.

【0003】このような非晶質金属細線の磁気インピー
ダンス効果を利用して外部磁界の方向を検出するために
は、非晶質金属細線に外部からバイアス直流磁界を印加
する方法が用いられている。すなわちバイアス磁界を印
加することにより、外部磁界によるインピーダンス変化
が外部磁界の方向により異なるようになり、非対称な磁
気インピーダンス効果が得られるようになるからであ
る。そして、バイアス磁界の印加方法としては、通常バ
イアス用のコイルが細線周囲に配置される方法が用いら
れている。しかし、磁気インピーダンス効果の特徴を最
大限に活かして磁気マイクロ素子を構成するためには、
バイアス用のコイルを周囲に配置する方法は磁気素子の
大きさが必然的に大きくなる点や、またバイアス用の電
気回路を備える必要があることから素子の消費電力が大
きくなる点が欠点とされてきた。
In order to detect the direction of an external magnetic field using the magneto-impedance effect of such an amorphous metal thin wire, a method of externally applying a bias DC magnetic field to the amorphous metal thin wire is used. . That is, by applying the bias magnetic field, the impedance change due to the external magnetic field varies depending on the direction of the external magnetic field, and an asymmetric magnetic impedance effect can be obtained. As a method of applying a bias magnetic field, a method in which a coil for bias is usually arranged around a thin wire is used. However, in order to make the most of the characteristics of the magneto-impedance effect to construct a magnetic micro element,
Disadvantages of the method of disposing the bias coil around the drawback are that the size of the magnetic element is inevitably large, and that the power consumption of the element increases due to the need to provide an electric circuit for the bias. Have been.

【0004】この欠点を解決する方法として、特開平9
−80133号公報では、磁気インピーダンス素子にお
いて、スパイラル状の磁気異方性を有する磁性体と、こ
の磁性体に直流を重畳させた高周波電流またはパルス電
流を通電することにより、前記磁性体の電圧振幅が外部
磁界の符号(方向)に対して非対称となるように構成す
ることが提案されている。そして、その素子を製造する
方法として、円周方向の磁気異方性を有する磁性体(ワ
イヤ)を細く線引きし、そのワイヤに所定のひねりを与
えた状態でアニールした後に、ワイヤの両端を電極固定
する方法も提案されており、Fe−Co−Si−Bワイ
ヤに10回/mの捻りを与え通電ジュール熱処理を施し
たワイヤについて、外部磁界の符号(方向)に対し非対
称な電圧振幅(インピーダンス変化)が得られることも
述べられている。
As a method for solving this drawback, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. -80133 discloses that in a magnetic impedance element, a magnetic material having a spiral magnetic anisotropy and a high-frequency current or a pulse current in which a direct current is superimposed on the magnetic material are applied to the magnetic material to thereby increase the voltage amplitude of the magnetic material. Has been proposed to be asymmetrical with respect to the sign (direction) of the external magnetic field. Then, as a method of manufacturing the element, a magnetic body (wire) having circumferential magnetic anisotropy is drawn finely, annealed in a state where the wire is given a predetermined twist, and then both ends of the wire are electroded. A fixing method has also been proposed. For a wire obtained by subjecting an Fe—Co—Si—B wire to 10-turn / m twisting and applying an electric joule heat treatment, a voltage amplitude (impedance) that is asymmetric with respect to the sign (direction) of the external magnetic field. Change) is also obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
特開平9−80133号公報で示されている方法を実際
に検討してみると、Fe−Co−Si−B及びCo−S
i−B非晶質細線に10回/m程度の捻りを与えて種々
温度を変えて熱処理(アニール)を施し磁気インピーダ
ンス素子を構成する場合には確かに外部磁界の方向に対
し非対称な電圧振幅、すなわち非対称な磁気インピーダ
ンス効果が得られるが、捻り熱処理後の細線に通電する
交流電流や重畳する直流電流の大きさを種々検討して
も、磁界の変化に対する電圧振幅の大きな変化率(細線
インピーダンスの磁界変化に対する変化率)を得ること
ができないという、素子の磁界感度の低さに対する問題
点が明らかになった。
However, when the method disclosed in Japanese Patent Application Laid-Open No. 9-80133 is actually examined, it is found that Fe-Co-Si-B and Co-S
In the case where a magnetic impedance element is formed by applying a heat treatment (annealing) to the i-B amorphous thin wire by applying a twist of about 10 times / m and changing various temperatures to form a magneto-impedance element, it is true that the voltage amplitude is asymmetric with respect to the direction of the external magnetic field. In other words, although an asymmetrical magnetic impedance effect can be obtained, even if the magnitude of the alternating current or superimposed direct current flowing through the thin wire after the torsion heat treatment is variously examined, a large change rate of the voltage amplitude with respect to the change of the magnetic field (the fine wire impedance) (A rate of change with respect to the change in the magnetic field) cannot be obtained.

【0006】したがって、以上のような問題点を解消
し、バイアス用のコイルを配置してバイアス磁界を印加
しなくても、外部磁界の方向が検出できるような磁気イ
ンピーダンス効果、すなわち外部磁界に対し非対称なイ
ンピーダンス変化を示す非晶質金属細線において、外部
磁界の変化に対し大きなインピーダンス変化(高い磁界
感度)が得られる、新しい非晶質金属細線及びその製造
方法の開発が求められていた。
Therefore, the above-mentioned problems are solved, and the magneto-impedance effect that the direction of the external magnetic field can be detected without arranging the bias coil and applying the bias magnetic field, ie, the external magnetic field, There has been a demand for the development of a new amorphous metal wire and a method for manufacturing the same, which can obtain a large impedance change (high magnetic field sensitivity) with respect to a change in an external magnetic field in an amorphous metal wire showing an asymmetric impedance change.

【0007】[0007]

【課題を解決するための手段】この出願の発明は、上記
のとおりの課題を解決するために、まず第1には、捻れ
回数が25回/m以上であり、かつ、非対称交番電流が
通電された際に外部磁界に対して非対称な磁気インピー
ダンス効果を示すことを特徴とするCo系非晶質金属細
線を提供する。
In order to solve the above-mentioned problems, the invention of the present application firstly requires that the number of twists is 25 times / m or more and that an asymmetrical alternating current is supplied. A Co-based amorphous metal thin wire characterized by exhibiting an asymmetric magneto-impedance effect with respect to an external magnetic field when performed.

【0008】また、この出願の発明は、第2には、25
回/m以上の捻りを与えた状態で、250℃以上結晶化
温度以下の温度範囲で熱処理を行うことを特徴とする前
記Co系非晶質金属細線の製造方法をも提供する。以上
のとおりのこの出願の発明は、発明者らによる検討にお
いて初めて見出された、25回/m以上特定の捻れ回数
を備えたCo系非晶質金属細線が、非対称交番電流が通
電された際に外部磁界に対して非対称な磁気インピーダ
ンス効果を示し、かつ高い磁界感度を示すとの知見に基
づいて完成されたものである。
[0008] The invention of the present application is, secondly, 25.
The present invention also provides a method for producing the Co-based amorphous metal thin wire, wherein a heat treatment is performed in a temperature range of 250 ° C. or more and a crystallization temperature or less in a state where a twist of at least times / m is applied. As described above, in the invention of this application, a Co-based amorphous metal thin wire having a specific number of twists of 25 times / m or more, which was first discovered by the inventors, was subjected to an asymmetrical alternating current. It has been completed based on the finding that it exhibits an asymmetric magneto-impedance effect with respect to an external magnetic field and exhibits high magnetic field sensitivity.

【0009】[0009]

【発明の実施の形態】この出願の発明は以上のとおりの
特徴をもつものであるが、以下に詳しく発明の実施の形
態を説明する。まず、この出願の発明の非晶質金属細線
では、応力が付与されていない状態においても臨界値以
上の「捻れ」を保有することが重要であり、捻れ回数が
25回/m以上であることが必要である。ここで細線の
「捻れ」とは、非晶質金属細線が熱処理時に受けた捻り
応力により型付けされた形態であり、捻れ回数は、図1
に示すように伸線加工を受けた際に形成された細線
(1)の長手方向に平行な表面の加工跡(2)をもとに
定義される。すなわち、図2のように「捻れ」を保有す
る細線(3)において、直線状の加工跡(2)が細線の
長手方向(軸方向)となす角θを求めることにより、次
式(1)で捻れ回数が与えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and the embodiments of the invention will be described in detail below. First, in the amorphous metal thin wire of the invention of this application, it is important to maintain a "twist" of a critical value or more even in a state where no stress is applied, and the number of twists is 25 times / m or more. is necessary. Here, the “twist” of the fine wire is a form in which the amorphous metal fine wire is shaped by the torsional stress received during the heat treatment.
As shown in (1), it is defined based on the processing trace (2) on the surface parallel to the longitudinal direction of the fine wire (1) formed when the wire drawing is performed. That is, as shown in FIG. 2, in a thin wire (3) having “twist”, an angle θ between a linear processing trace (2) and the longitudinal direction (axial direction) of the thin wire is obtained, and the following equation (1) is obtained. Gives the number of twists.

【0010】 N=tan θ/πD (1) ここで、Nは捻り回数[回/m]、Dは細線の線径
[m]である。したがって、非晶質細線表面の加工跡
(2)を光学顕微鏡か走査電子顕微鏡で観察することに
より、細線の応力が付与されていない状態での捻れ回数
を求めることができる。
N = tan θ / πD (1) Here, N is the number of twists [times / m], and D is the wire diameter [m] of the thin wire. Therefore, by observing the processing trace (2) on the surface of the amorphous fine wire with an optical microscope or a scanning electron microscope, it is possible to determine the number of twists of the fine wire without stress.

【0011】非対称交番電流が通電された際に外部磁界
に対して非対称な磁気インピーダンス効果(以下、非対
称MI効果と称す)を示しかつ優れた磁界感度を示すた
めに、この出願の発明の非晶質金属細線では捻れ回数が
25回/m以上であることが必要である。細線がより高
感度な非対称MI効果を示すためには35回/m以上で
あることがより好ましく、50回/m以上であることが
最も好ましい。非晶質細線の捻れ回数が25回/m未満
になると、細線に通電する交流電流や重畳する直流電流
の大きさを種々検討しても、磁界の変化に対する電圧振
幅の大きな変化率(細線インピーダンスの磁界変化に対
する変化率)を得ることができなくなる。
In order to exhibit an asymmetric magneto-impedance effect (hereinafter referred to as an asymmetric MI effect) and an excellent magnetic field sensitivity to an external magnetic field when an asymmetrical alternating current is applied, the amorphous structure of the invention of the present application has been disclosed. In the case of a thin metal wire, the number of twists needs to be 25 times / m or more. In order for a thin line to exhibit a more sensitive asymmetric MI effect, the rate is more preferably 35 times / m or more, and most preferably 50 times / m or more. When the number of twists of the amorphous thin wire is less than 25 times / m, a large change rate of the voltage amplitude with respect to the change of the magnetic field (the thin wire impedance) can be obtained even if the magnitude of the alternating current or the direct current to be superimposed on the thin wire is variously examined. Change rate with respect to the change in the magnetic field) cannot be obtained.

【0012】この発明の非晶質金属細線は、応力が付与
されていない状態においても「捻れ」を保有するので、
細線両端を電極とハンダ接合やスポット溶接接合を行う
ことにより、容易に非対称MI効果を示す磁気素子を製
造できるものである。ここで、本発明の非晶質細線が示
す非対称MI効果については、細線の通電電流として交
流電流に直流バイアス電流を重畳させた非対称電流を用
いた場合に得られるものである。通常、100kHz以
上の高周波通電交流電流の実効値に対して、5%以上の
大きさの直流電流を重畳させる場合に、外部磁界の符号
(方向)に対し一方の磁界に対してのみ大きなインピー
ダンス変化を示すという顕著なMI効果の非対称性が認
められる。また、通電する交流電流の実効値としては、
非晶質細線の細線表面における円周磁界(次式(2)参
照)の大きさに換算して0.5Oe以上の大きさを有し
ていることが好ましい。
The amorphous metal fine wire of the present invention has "twist" even when no stress is applied.
A magnetic element exhibiting an asymmetric MI effect can be easily manufactured by performing solder joining or spot welding joining of both ends of the thin wire to an electrode. Here, the asymmetric MI effect exhibited by the amorphous thin wire of the present invention is obtained when an asymmetric current obtained by superimposing a DC bias current on an AC current is used as a current flowing through the thin wire. Normally, when a DC current of 5% or more is superimposed on an effective value of a high-frequency AC current of 100 kHz or more, a large impedance change only for one magnetic field with respect to the sign (direction) of the external magnetic field. , A remarkable asymmetry of the MI effect. Also, the effective value of the alternating current to be applied is
It is preferable that the amorphous fine wire has a magnitude of 0.5 Oe or more in terms of a circumferential magnetic field (see the following equation (2)) on the fine wire surface.

【0013】 Hθ=I/πD (2) ここでHθは細線表面の円周磁界、Iは通電する交流電
流の実効値、Dは線径である。さらに、この発明の非晶
質細線が示す非対称MI効果については、通電する交流
電流と重畳する直流電流の大きさを適宜調整することに
より、1Oeの磁界の変化に対するインピーダンスの変
化が30%以上の高感度を示すものであり、特に最適な
捻り回数を保有する細線を用いた場合は、1Oeの磁界
の変化に対するインピーダンスの変化が50%以上と極
めて高い磁界感度を示すものが得られるものである。
Hθ = I / πD (2) where Hθ is a circumferential magnetic field on the surface of the fine wire, I is an effective value of an alternating current to be applied, and D is a wire diameter. Further, with respect to the asymmetric MI effect exhibited by the amorphous thin wire of the present invention, the impedance change with respect to a change in the magnetic field of 1 Oe is 30% or more by appropriately adjusting the magnitude of the DC current to be superimposed on the AC current to be supplied. In particular, when a thin wire having an optimum number of twists is used, a change in the impedance with respect to a change in the magnetic field of 1 Oe is as high as 50% or more, and a very high magnetic field sensitivity is obtained. .

【0014】この発明の非晶質金属細線は、優れた磁気
インピーダンス効果を示すCo系非晶質金属細線であれ
ば特に組成の限定はないが、主要元素としてCoもしく
はCoとFe,Si,およびBが含有されることが好ま
しい。すなわち、この発明の非晶質細線においてCoも
しくはCoとFeは、細線の両端より発生する電圧を検
出する磁気インピーダンス効果を発揮する細線を得るた
めに必要不可欠な元素である。その含有量は、Co又は
CoとFeを合わせて65原子%以上が適当である。よ
り好ましくは、69〜83原子%であり、最も好ましく
は、70〜80原子%である。CoとFeを含有する場
合には、Fe量とCo量の和においてFeが原子%比率
で20%以下の比率で含まれることが適当であり、Fe
が4%から8%の比率で含まれることが好ましく、特に
Feが5%から7%の比率で含まれることが最も好まし
い。ここでFe量とCo量の和においてFeの比率が2
0%を越える場合は、細線の両端より発生する電圧を検
出しても優れた磁気インピーダンス効果が得られにくく
なる。またこの発明においては、Siの含有量は7〜1
7.5原子%であることが適当であり、好ましくは9〜
15原子%である。Siの含有量が7原子%未満である
か、または17.5原子%を超える場合は、非晶質単相
からなる非晶質金属細線は得られにくくなり実用に供せ
なくなる。同様にBの含有量は、10〜18原子%であ
ることが適当であり、好ましくは、12〜16原子%で
ある。Bの含有量が10原子%未満であるか、また18
原子%を越える場合は、非晶質単相からなる非晶質金属
細線は得られにくくなり実用に供せなくなる。また、た
とえばCr,Mo,Ta,Nb,Mn,Niなどの元素
も細線の示す磁気インピーダンス効果を損なわない限り
10原子%以下で含んでもよい。
The composition of the amorphous metal wire of the present invention is not particularly limited as long as it is a Co-based amorphous metal wire exhibiting an excellent magneto-impedance effect, but Co or Co and Fe, Si, and B is preferably contained. That is, in the amorphous thin wire of the present invention, Co or Co and Fe are indispensable elements for obtaining a thin wire exhibiting a magnetic impedance effect for detecting a voltage generated from both ends of the thin wire. The content is suitably at least 65 atomic% in total of Co or Co and Fe. More preferably, it is 69 to 83 atomic%, and most preferably, it is 70 to 80 atomic%. When Co and Fe are contained, it is appropriate that Fe is contained at a ratio of 20% or less in atomic% in the sum of the Fe amount and the Co amount.
Is preferably contained at a ratio of 4% to 8%, and most preferably Fe is contained at a ratio of 5% to 7%. Here, in the sum of the Fe amount and the Co amount, the ratio of Fe is 2
If it exceeds 0%, it becomes difficult to obtain an excellent magnetic impedance effect even if a voltage generated from both ends of the thin wire is detected. In the present invention, the content of Si is 7-1.
It is suitably 7.5 atomic%, and preferably 9 to
15 atomic%. When the content of Si is less than 7 atomic% or more than 17.5 atomic%, it is difficult to obtain an amorphous metal thin line composed of an amorphous single phase, and it is not practical. Similarly, the content of B is suitably from 10 to 18 atomic%, and preferably from 12 to 16 atomic%. The content of B is less than 10 atomic%;
If the content exceeds atomic%, it is difficult to obtain an amorphous metal thin line composed of an amorphous single phase, and it is not practical. Further, for example, elements such as Cr, Mo, Ta, Nb, Mn, and Ni may be contained at 10 atomic% or less as long as the magnetic impedance effect indicated by the fine wire is not impaired.

【0015】なお、この発明のCo系非晶質金属細線に
おける「細線」とは、特に限定されることはないが、一
般的にはその径が200μm以下のものを意味してい
る。より適当には、10〜100μmのものとして例示
されることになる。そして、この発明の非晶質金属細線
は、前記組成範囲からなるCo系非晶質金属細線を用い
て25回/m以上の捻りを与えた状態で、250℃以上
結晶化温度以下の温度範囲で熱処理を行うことにより製
造される。
The "fine wire" in the Co-based amorphous metal fine wire of the present invention is not particularly limited, but generally means a wire having a diameter of 200 μm or less. More suitably, it will be exemplified as that of 10 to 100 μm. The amorphous metal thin wire according to the present invention has a temperature range of 250 ° C. or more and a crystallization temperature or less in a state where a twist of 25 times / m or more is given using the Co-based amorphous metal thin wire having the above composition range. It is manufactured by performing a heat treatment.

【0016】ここで非晶質金属細線の熱処理条件として
は、任意の線径を有する非晶質金属細線を用い、25回
/m以上の捻りを与えた状態で熱処理を行うことが、熱
処理後の細線の磁気特性として高感度な非対称MI効果
を示すようにするためには必要であり、磁界感度のより
高い顕著な非対称MI効果を示す細線を得るためには、
35回/m以上の捻りを与えることが好ましく、50回
/m以上の捻りを与えることが最も好ましい。なお、同
時に付与される張力としては0.001kg/mm2
50kg/mm2 の範囲であればよい。
Here, the heat treatment conditions for the amorphous metal fine wire include that the heat treatment is performed using an amorphous metal thin wire having an arbitrary wire diameter and giving a twist of 25 turns / m or more. This is necessary in order to exhibit a highly sensitive asymmetric MI effect as the magnetic characteristics of the thin line, and in order to obtain a thin line exhibiting a remarkable asymmetric MI effect having a higher magnetic field sensitivity,
Preferably, a twist of 35 times / m or more is applied, and most preferably, a twist of 50 times / m or more is applied. The tension applied at the same time is 0.001 kg / mm 2 to
The range may be 50 kg / mm 2 .

【0017】さらに、この発明の非晶質金属細線の熱処
理条件としては、導入した捻りを細線に固着するために
250℃以上結晶化温度以下の温度範囲で熱処理を行う
ことが適当である。250℃未満の温度では捻りを細線
に固着することが難しく、熱処理時に付与する捻り回数
を多くしても好ましい非対称MI特性を得ることができ
なくなる。さらに結晶化が細線に生じた場合は、細線の
磁気特性として磁気インピーダンス効果そのものが得ら
れなくなる。なお、熱処理後の細線の磁気特性として、
磁界感度のより高い顕著な非対称MI効果を示す細線を
得るためには、熱処理温度が350℃以上530℃以下
で行うことが好ましい。
Further, as the heat treatment conditions for the amorphous metal fine wire of the present invention, it is appropriate to perform the heat treatment in a temperature range of 250 ° C. or more and a crystallization temperature or less in order to fix the introduced twist to the fine wire. If the temperature is less than 250 ° C., it is difficult to fix the twist to the fine wire, and even if the number of twists applied during the heat treatment is increased, it is not possible to obtain a desirable asymmetric MI characteristic. Further, when crystallization occurs in the fine wire, the magnetic impedance effect itself cannot be obtained as the magnetic characteristics of the fine wire. The magnetic properties of the thin wire after heat treatment
In order to obtain a thin line having a higher magnetic field sensitivity and exhibiting a remarkable asymmetric MI effect, the heat treatment is preferably performed at a temperature of 350 to 530 ° C.

【0018】また、熱処理時間としては、その非晶質細
線の熱処理前に保有する応力状態にもよるが、この発明
においては、0.05〜3000秒の間の熱処理を行う
ことにより、所望の磁気特性を有する非晶質金属細線を
得ることができる。この発明において用いることのでき
る捻りを与える前の非晶質金属細線としては、Fe−C
o−Si−BあるいはCo−Si−Bを主成分とする合
金を溶融し、冷却液体中で冷却固化させることより得る
ことができる。固化させる方法としては、種々の方法が
あげられるが、好ましい方法として、たとえば、特開昭
56−165016号公報または特開昭57−7905
2号公報に記載の、いわゆる回転液中紡糸法があげられ
る。また、急冷状態の非晶質細線を伸線工程により冷間
加工を行うことによっても、種々の線径を有する非晶質
金属細線が提供される。ここで非晶質金属細線の伸線条
件としては、1つのダイスにおける減面率が5〜15%
の範囲で行うことができ、複数のダイスを用い任意の線
径まで伸線加工を行うことができる。さらにこの発明に
用いる非晶質金属細線は無張力下あるいは張力下におい
て熱処理を行ったものでも、この発明の捻り熱処理よ
り、所定の捻り回数を付与すれば、細線の磁気特性とし
て高感度な非対称MI効果を示すようになる。
Although the heat treatment time depends on the stress state held before the heat treatment of the amorphous fine wire, in the present invention, the heat treatment for 0.05 to 3000 seconds is carried out to obtain a desired heat treatment. An amorphous metal thin wire having magnetic properties can be obtained. Examples of the amorphous metal fine wire before twisting that can be used in the present invention include Fe—C
It can be obtained by melting an alloy containing o-Si-B or Co-Si-B as a main component and cooling and solidifying it in a cooling liquid. Various methods can be mentioned as a method for solidifying, and a preferable method is, for example, JP-A-56-165016 or JP-A-57-7905.
The so-called spinning in liquid spinning method described in JP-A No. 2 (Kokai) No. 2 can be mentioned. Further, amorphous metal fine wires having various wire diameters are also provided by performing cold working of the rapidly cooled amorphous fine wire in a drawing step. Here, as the drawing conditions of the amorphous metal thin wire, the area reduction rate in one die is 5 to 15%.
And wire drawing can be performed to an arbitrary wire diameter using a plurality of dies. Further, even if the amorphous metal thin wire used in the present invention is subjected to heat treatment under no tension or under tension, if the twisting heat treatment of the present invention is given a predetermined number of twists, the magnetic characteristics of the fine wire can be asymmetrically sensitive. The MI effect appears.

【0019】この発明の非晶質金属細線は、捻り熱処理
により、捻りが固着されているため、細線長手方向の磁
気特性として、保磁力0.05〜0.25(Oe)の磁
気特性を示す。
Since the twist of the amorphous thin metal wire of the present invention is fixed by the torsion heat treatment, it exhibits a coercive force of 0.05 to 0.25 (Oe) as the magnetic property in the longitudinal direction of the thin wire. .

【0020】[0020]

【実施例】次に、この発明を実施例により具体的に説明
する。 (実施例1)50μm径まで伸線加工されたCo72.5
12.515非晶質細線を用いて、460℃で15分間1
30回/mの捻りを付与して熱処理を行った。そして、
熱処理後に細線表面を走査電子顕微鏡により観察したと
ころ、捻れ回数130回/mの捻れを有する非晶質細線
が得られた。次にこの細線を5mm長に切断し、両端を
電極にハンダ接合することにより、細線のMI効果を検
討した。図3には得られたMI効果の結果を示した。縦
軸に細線両端に発生する電圧Ew(p−p)は、横軸に
細線長手方向の外部磁界Hexを取り示している。
Next, the present invention will be specifically described with reference to examples. (Example 1) Co 72.5 S drawn to a diameter of 50 μm
i 12.5 B 15 using the amorphous thin lines, 15 minutes at 460 ° C. 1
Heat treatment was performed by applying a twist of 30 times / m. And
When the surface of the fine wire was observed with a scanning electron microscope after the heat treatment, an amorphous fine wire having a twist frequency of 130 times / m was obtained. Next, the fine wire was cut into a length of 5 mm, and the MI effect of the fine wire was examined by soldering both ends to electrodes. FIG. 3 shows the results of the obtained MI effect. The vertical axis shows the voltage Ew (pp) generated at both ends of the thin line, and the horizontal axis shows the external magnetic field Hex in the longitudinal direction of the thin line.

【0021】なお、MI効果の評価は図4に示す回路を
用いて行った。図4の回路は、この発明の非晶質細線
(4)、高周波電源(5)、直流電源(6)、抵抗
(7)からなっており、非晶質細線(4)に交流電流I
ac及び直流電流Idcを重畳させた電流を通電した際
に、非晶質細線(4)の両端に発生する電圧(振幅)E
wが外部磁界Hexに対し検出できるようになってい
る。
The evaluation of the MI effect was performed using the circuit shown in FIG. The circuit shown in FIG. 4 comprises an amorphous thin wire (4) of the present invention, a high-frequency power supply (5), a DC power supply (6), and a resistor (7).
The voltage (amplitude) E generated at both ends of the amorphous thin wire (4) when a current in which ac and the DC current Idc are superimposed is applied.
w can be detected with respect to the external magnetic field Hex.

【0022】図3より、周波数1MHzの15mAの交
流電流を通電した際に得られるMI効果は、◆印で示さ
れているように外部磁界に対して対称な双峰MI特性と
なっているのに対し、その交流に2.5〜7.5mAの
直流を重畳した非対称電流を通電した際に得られるMI
効果は、●、○や□印で示されているように外部磁界に
対して顕著な非対称特性になっている。そして、Hex
=0近傍の1Oeの外部磁界の変化に対して33%〜5
5%もの高感度なインピーダンス変化(電圧振幅変化)
が得られている。
FIG. 3 shows that the MI effect obtained when an alternating current of 15 mA having a frequency of 1 MHz is applied has a bimodal MI characteristic symmetrical with respect to an external magnetic field as shown by a mark. In contrast, MI obtained when an asymmetric current obtained by superimposing a DC of 2.5 to 7.5 mA on the AC is supplied.
The effect has a remarkable asymmetric characteristic with respect to an external magnetic field as shown by marks ●, ○ and □. And Hex
= 33% to 5 for a change in the external magnetic field of 1 Oe near = 0
Highly sensitive impedance change (voltage amplitude change) of 5%
Has been obtained.

【0023】このように、この発明の非晶質金属細線に
おいては、通電する交流電流と重畳する直流電流の大き
さを適宜調整することにより、高感度で顕著な非対称M
I効果が得られる。 (実施例2)50μm径まで伸線加工された(Co0.94
Fe0.0672.5Si12.515非晶質細線を用いて、50
0℃で15分間280 回/mの捻りを付与して熱処理
を行った。そして、熱処理後に細線表面を観察したとこ
ろ、捻れ回数280回/mの捻れを有する非晶質細線が
得られた。次にこの細線を5mm長に切断し、実施例1
と同様にして細線のMI効果を検討した。図5には得ら
れたMI効果の結果を示した。
As described above, in the amorphous metal thin wire of the present invention, by adjusting the magnitude of the alternating current to be passed and the direct current to be superimposed appropriately, high sensitivity and a remarkable asymmetric M
The I effect is obtained. (Example 2) Wire drawing was performed to a diameter of 50 μm (Co 0.94
Fe 0.06 ) 72.5 Si 12.5 B 15
Heat treatment was performed at 0 ° C. for 15 minutes by applying a twist of 280 times / m. When the surface of the fine wire was observed after the heat treatment, an amorphous fine wire having a twist of 280 times / m was obtained. Next, this thin wire was cut into a length of 5 mm.
In the same manner as described above, the MI effect of the thin wire was examined. FIG. 5 shows the results of the obtained MI effect.

【0024】図5より、周波数1MHzの15mAの交
流電流を通電した際に得られるMI効果は、◆印で示さ
れているように外部磁界に対して対称な双峰MI特性と
なっているのに対し、その交流に−7.5mAや9mA
の直流を重畳した非対称電流を通電した際に得られるM
I効果は、●や△印で示されているように外部磁界に対
して顕著な非対称特性になっている。そして、Hex=
0近傍の1Oeの外部磁界の変化に対して33%〜35
%もの高感度なインピーダンス変化(電圧振幅変化)が
得られている。
As shown in FIG. 5, the MI effect obtained when a 15 mA alternating current having a frequency of 1 MHz is applied has a bimodal MI characteristic symmetrical with respect to an external magnetic field as indicated by a mark. On the other hand, -7.5mA or 9mA
M obtained when an asymmetric current superimposed with
The I effect has a remarkable asymmetric characteristic with respect to an external magnetic field as indicated by a circle or a triangle. And Hex =
33% to 35 for a change in the external magnetic field of 1 Oe near 0
%, A highly sensitive impedance change (voltage amplitude change) is obtained.

【0025】ここで、図5の−7.5mAや9mAの直
流を重畳した場合のように、この発明の非晶質細線は、
重畳する直流電流の方向と大きさを変化させるだけで、
非対称性を示す磁界の方向(磁界の符号)を変化させる
ことができるという特徴を有することがわかる。したが
って、この発明の非晶質細線からなる非対称MI効果を
示す磁気素子を2個組み合わせれば、バイアスコイルを
用いない極めて簡単な構成からなるリニア磁界センサ用
の磁気素子が容易に実現する。 (比較例1)50μm径まで伸線加工されたCo72.5
12.515非晶質細線を用いて、460℃で15分間1
6回/mの捻りを付与して熱処理を行った。そして、熱
処理後に細線表面を観察したところ、捻れ回数16回/
mの捻れを有する非晶質細線が得られた。次にこの細線
を5mm長に切断し、実施例1と同様にして細線のMI
効果を検討した。図6には得られたMI効果の結果を示
した。
Here, as in the case where a direct current of -7.5 mA or 9 mA in FIG.
Just by changing the direction and magnitude of the superimposed DC current,
It can be seen that there is a characteristic that the direction (sign of the magnetic field) of the magnetic field showing asymmetry can be changed. Therefore, by combining two magnetic elements each having an asymmetric MI effect made of an amorphous thin wire according to the present invention, a magnetic element for a linear magnetic field sensor having an extremely simple structure without using a bias coil can be easily realized. (Comparative Example 1) Co 72.5 S drawn to a diameter of 50 µm
i 12.5 B 15 using the amorphous thin lines, 15 minutes at 460 ° C. 1
Heat treatment was performed by applying a twist of 6 times / m. When the fine wire surface was observed after the heat treatment, the number of twists was 16 times /
An amorphous thin wire having a twist of m was obtained. Next, the fine wire was cut into a length of 5 mm, and the MI of the fine wire was cut in the same manner as in Example 1.
The effect was examined. FIG. 6 shows the results of the obtained MI effect.

【0026】図6より、周波数1MHzの15mAの交
流電流を通電した際に得られるMI効果は、◇印で示さ
れているように外部磁界に対して対称な双峰MI特性と
なっている。また、その交流に4.5mAや7.5mA
の直流を重畳した非対称電流を通電した際に得られるM
I効果も、○や□印で示されているように外部磁界に対
してほとんど対称な双峰MI効果のままになっている。
さらに、この図6には示していないが直流電流の重畳方
向を変えた−0.1mA〜−9mAの場合についても、
ほとんど対称なMI効果しか得られないことが確認され
た。この非晶質細線は、保有する捻れ回数が16回/m
と本発明の範囲外であるため、外部磁界の符号(方向)
に対して顕著な非対称MI効果を示さないことが判明し
た。 (実施例3〜5,比較例2,3)30μm径まで伸線加
工された(Co0.94Fe0.0672.5Si12.515非晶質
細線を用いて、500℃で15分間、表1に記載した捻
り回数(捻れ回数N)を付与して熱処理を行った。そし
て、熱処理後の細線について、細線表面の捻れを走査電
子顕微鏡により観察し捻れ回数Nを求めた。さらに実施
例1と同様にして5mm長の磁気素子を作製、そのMI
効果を検討した。得られた結果を表1に示した。ここ
で、表1には、通電した1MHzの交流電流の実効値I
ac、重畳する直流電流Idcの大きさを示している。
また、得られた非対称MI効果については、非対称性の
有無ならびにHex=0近傍の1(Oe)の磁界変化に
対するインピーダンス変化(電圧振幅変化)を次式
(3)に基づき算出した値ηを記載している。
As shown in FIG. 6, the MI effect obtained when a 15 mA alternating current having a frequency of 1 MHz is applied has a bimodal MI characteristic that is symmetric with respect to an external magnetic field, as indicated by a triangle. In addition, 4.5mA or 7.5mA
M obtained when an asymmetric current superimposed with
The I effect also remains as a bimodal MI effect that is almost symmetric with respect to an external magnetic field, as indicated by ○ and □ marks.
Further, although not shown in FIG. 6, even in the case of −0.1 mA to −9 mA in which the direction of superposition of the DC current is changed,
It was confirmed that only an almost symmetric MI effect was obtained. This amorphous thin wire has a twist frequency of 16 times / m.
And the sign (direction) of the external magnetic field because it is outside the scope of the present invention.
Did not show a significant asymmetric MI effect. (Examples 3 to 5, Comparative Examples 2 and 3) Using (Co 0.94 Fe 0.06 ) 72.5 Si 12.5 B 15 amorphous fine wire drawn to a diameter of 30 μm, described in Table 1 at 500 ° C. for 15 minutes. The heat treatment was performed with the given number of twists (number of twists N). And about the fine wire after heat processing, the twist of the fine wire surface was observed with the scanning electron microscope, and the number of twists N was obtained. Further, a magnetic element having a length of 5 mm was manufactured in the same manner as in Example 1, and its MI
The effect was examined. Table 1 shows the obtained results. Here, Table 1 shows the effective value I of the supplied 1 MHz AC current.
ac shows the magnitude of the DC current Idc to be superimposed.
In addition, as for the obtained asymmetric MI effect, a value η calculated by calculating the presence or absence of asymmetry and the impedance change (voltage amplitude change) with respect to a magnetic field change of 1 (Oe) near Hex = 0 based on the following equation (3) is described. are doing.

【0027】 η=100×{Ew(Hex=1 or Hex=−1) −Ew(Hex=0)}/Ew(Hex=0) (3)Η = 100 × {Ew (Hex = 1 or Hex = −1) −Ew (Hex = 0)} / Ew (Hex = 0) (3)

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、実施例3〜5のこの発明の非晶
質金属細線はHex=0近傍の1Oeの外部磁界の変化
に対して32%〜55%もの高感度なインピーダンス変
化(電圧振幅変化)が得られている。それに対して、こ
の発明の範囲外の捻りを付与された状態で熱処理された
比較例2、3の細線は、保有する捻れ回数も25回/m
未満であり、そのため重畳する直流電流の大きさを種々
検討しても外部磁界に対し顕著な非対称MI特性が認め
られなかった。
From Table 1, it can be seen that the amorphous metal fine wires of Examples 3 to 5 according to the present invention have a highly sensitive impedance change (voltage amplitude) of 32% to 55% with respect to a change of an external magnetic field of 1 Oe near Hex = 0. Change) is obtained. On the other hand, the thin wires of Comparative Examples 2 and 3 which were heat-treated in a state where the twist was out of the range of the present invention had a twist number of 25 times / m.
Therefore, even when the magnitude of the superimposed DC current was examined in various ways, no remarkable asymmetric MI characteristic was observed for an external magnetic field.

【0030】[0030]

【発明の効果】以上詳しく説明したように、この出願の
発明の非晶質金属細線により、外部磁界の符号(方向)
に対し高感度な非対称MI効果を示すものが提供され
る。そのため、この発明の細線を用いることにより、バ
イアスコイルを用いることなく、小型で高感度な磁気イ
ンピーダンス効果に基づく新規な磁気素子を実現するこ
とができ、各種マイクロ磁気素子への応用が可能とな
る。
As described in detail above, the sign (direction) of the external magnetic field can be obtained by the amorphous metal thin wire of the present invention.
Which exhibit a highly sensitive asymmetric MI effect. Therefore, by using the thin wire of the present invention, it is possible to realize a novel magnetic element based on the magneto-impedance effect with small size and high sensitivity without using a bias coil, and application to various micro magnetic elements becomes possible. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の非晶質金属細線の熱処理に用いる非
晶質金属細線の表面の加工跡を示す概略図である。
FIG. 1 is a schematic diagram showing a processing trace on the surface of an amorphous metal thin wire used for heat treatment of an amorphous metal thin wire according to the present invention.

【図2】この発明の捻れを有する非晶質金属細線の表面
の加工跡を示す概略図である。
FIG. 2 is a schematic diagram showing a processing trace on the surface of a twisted amorphous metal thin wire according to the present invention.

【図3】この発明の実施例1の非晶質金属細線の磁気イ
ンピーダンス効果を示す特性図である。
FIG. 3 is a characteristic diagram showing a magneto-impedance effect of the amorphous thin metal wire of Example 1 of the present invention.

【図4】この発明において非晶質金属細線の磁気インピ
ーダンス効果を測定するための回路の構成図である。
FIG. 4 is a configuration diagram of a circuit for measuring a magneto-impedance effect of an amorphous metal thin wire in the present invention.

【図5】この発明の実施例2の非晶質金属細線の磁気イ
ンピーダンス効果を示す特性図である。
FIG. 5 is a characteristic diagram showing a magneto-impedance effect of the amorphous metal thin wire of Example 2 of the present invention.

【図6】この発明の比較例1の非晶質金属細線の磁気イ
ンピーダンス効果を示す特性図である。
FIG. 6 is a characteristic diagram showing a magneto-impedance effect of the amorphous metal thin wire of Comparative Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 非晶質金属細線 2 伸線工程で受けた加工跡 3,4 この発明の捻れを保有する非晶質金属細線 5 高周波交流電源 Eac 6 直流電源 Edc 7 抵抗 R Hex 外部磁界 DESCRIPTION OF SYMBOLS 1 Amorphous thin metal wire 2 Trace of processing received in drawing process 3, 4 Amorphous thin metal wire having twist of the present invention 5 High frequency AC power supply Eac 6 DC power supply Edc 7 Resistance R Hex External magnetic field

フロントページの続き (72)発明者 上埜 修司 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 川島 克裕 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 小笠原 勇 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 Fターム(参考) 2G017 AA03 AC09 AD69 BA02 BA03 5E041 AA14 AA19 BD03 CA10 NN01 NN18 Continuing from the front page (72) Inventor Shuji Ueno 23 Uji Kozakura, Uji-city, Kyoto Prefecture, Unitika Central Research Laboratory (72) Inventor Katsuhiro Kawashima 23 Uji Kozakura, Uji-shi, Kyoto Unitika Central Research Laboratory (72) ) Inventor Isamu Ogasawara 23 Uji Kozakura, Uji-city, Kyoto F Unit in Central Research Laboratory of Unitika Ltd. 2G017 AA03 AC09 AD69 BA02 BA03 5E041 AA14 AA19 BD03 CA10 NN01 NN18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 捻れ回数が25回/m以上であり、か
つ、非対称交番電流が通電された際に外部磁界に対して
非対称な磁気インピーダンス効果を示すことを特徴とす
るCo系非晶質金属細線。
1. A Co-based amorphous metal having a number of twists of 25 times / m or more and exhibiting an asymmetrical magnetic impedance effect with respect to an external magnetic field when an asymmetrical alternating current is applied. Thin line.
【請求項2】 25回/m以上の捻りを与えた状態で、
250℃以上結晶化温度以下の温度範囲で熱処理を行う
ことを特徴とする請求項1のCo系非晶質金属細線の製
造方法。
2. In a state where a twist of 25 times / m or more is given,
2. The method for producing a Co-based amorphous metal thin wire according to claim 1, wherein the heat treatment is performed in a temperature range from 250 ° C. to a crystallization temperature.
JP10200990A 1998-07-15 1998-07-15 Co-BASED AMORPHOUS METALLIC THIN WIRE AND ITS MANUFACTURE Pending JP2000030921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200990A JP2000030921A (en) 1998-07-15 1998-07-15 Co-BASED AMORPHOUS METALLIC THIN WIRE AND ITS MANUFACTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10200990A JP2000030921A (en) 1998-07-15 1998-07-15 Co-BASED AMORPHOUS METALLIC THIN WIRE AND ITS MANUFACTURE

Publications (1)

Publication Number Publication Date
JP2000030921A true JP2000030921A (en) 2000-01-28

Family

ID=16433684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200990A Pending JP2000030921A (en) 1998-07-15 1998-07-15 Co-BASED AMORPHOUS METALLIC THIN WIRE AND ITS MANUFACTURE

Country Status (1)

Country Link
JP (1) JP2000030921A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277522A (en) * 2001-03-21 2002-09-25 Sangaku Renkei Kiko Kyushu:Kk Magnetic field sensor
JP5950265B1 (en) * 2015-10-11 2016-07-13 マグネデザイン株式会社 Magnetic wire heat treatment apparatus and magnetic wire heat treatment method
JP2016164532A (en) * 2015-03-06 2016-09-08 愛知製鋼株式会社 Mi magnetic sensor
JP2017040663A (en) * 2016-11-04 2017-02-23 愛知製鋼株式会社 MI magnetic sensor
JP2019132698A (en) * 2018-01-31 2019-08-08 ヒロセ電機株式会社 Magnetic wire rod manufacturing method, magnetic wire rod, and magnetic sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277522A (en) * 2001-03-21 2002-09-25 Sangaku Renkei Kiko Kyushu:Kk Magnetic field sensor
JP4565072B2 (en) * 2001-03-21 2010-10-20 株式会社産学連携機構九州 Magnetic field sensor
JP2016164532A (en) * 2015-03-06 2016-09-08 愛知製鋼株式会社 Mi magnetic sensor
WO2016143504A1 (en) * 2015-03-06 2016-09-15 愛知製鋼株式会社 Magneto-impedance (mi) magnetic sensor
EP3255445A4 (en) * 2015-03-06 2018-12-12 Aichi Steel Corporation Magneto-impedance (mi) magnetic sensor
US10884076B2 (en) 2015-03-06 2021-01-05 Aichi Steel Corporation MI magnetic field sensor
JP5950265B1 (en) * 2015-10-11 2016-07-13 マグネデザイン株式会社 Magnetic wire heat treatment apparatus and magnetic wire heat treatment method
JP2017071846A (en) * 2015-10-11 2017-04-13 マグネデザイン株式会社 Magnetic wire heat treatment device and magnetic wire heat treatment method
JP2017040663A (en) * 2016-11-04 2017-02-23 愛知製鋼株式会社 MI magnetic sensor
JP2019132698A (en) * 2018-01-31 2019-08-08 ヒロセ電機株式会社 Magnetic wire rod manufacturing method, magnetic wire rod, and magnetic sensor

Similar Documents

Publication Publication Date Title
TW561193B (en) Process for manufacturing a magnetic component made of an iron-based soft magnetic alloy having a nanocrystalline structure
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
EP2418703B1 (en) Superconducting circuit, production method of superconducting joints, superconducting magnet, and production method of superconducting magnet
US20010001397A1 (en) Amorphous and nanocrystalline glass-covered wires and process for their production
Chiriac Preparation and characterization of glass covered magnetic wires
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
SK144597A3 (en) Method of producing a magnetic core made of nanocrystalline soft magnetic material
JP2000030921A (en) Co-BASED AMORPHOUS METALLIC THIN WIRE AND ITS MANUFACTURE
JP2501860B2 (en) Magnetic sensor and current sensor, and device using the same
JP6428884B1 (en) Magnetosensitive wire for magnetic sensor and method for manufacturing the same
TWI305925B (en) Current transformer having an amorphous fe-based core
Chiriac et al. Giant magnetoimpedance effect in soft magnetic wire families
JPH11186020A (en) Zero-phase current transformer
JP2698769B2 (en) Manufacturing method of high permeability core
KR100392677B1 (en) A magneto-impedance effect element and method for manufacturing the same
JPS6052557A (en) Low-loss amorphous magnetic alloy
JPS6227540A (en) Fine amorphous metallic wire
JPS62124250A (en) Amorphous alloy for electric current-detecting device
Chiriac et al. Inverse Wiedemann Effect in glass-covered amorphous wires
JPH11183278A (en) High-sensitivity magnetostrictive material for torque sensor as well as sensor shaft and its manufacture
JP2860914B2 (en) Manufacturing method of magnetic wire
JP2955998B2 (en) Composite magnetic wire
JP2000080413A (en) PRODUCTION OF Fe GROUP BASE AMORPHOUS METALLIC THIN STRIP
JPS61142672A (en) Electric connection terminal clip for filament lighting of magnetron
Das et al. Impact of thermally induced stress gradient on magneto-impedance sensitivity of As-quenched and Joule annealed microwires

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610