JP2000027768A5 - - Google Patents

Download PDF

Info

Publication number
JP2000027768A5
JP2000027768A5 JP1998229267A JP22926798A JP2000027768A5 JP 2000027768 A5 JP2000027768 A5 JP 2000027768A5 JP 1998229267 A JP1998229267 A JP 1998229267A JP 22926798 A JP22926798 A JP 22926798A JP 2000027768 A5 JP2000027768 A5 JP 2000027768A5
Authority
JP
Japan
Prior art keywords
scroll
pump
spiral
working fluid
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1998229267A
Other languages
Japanese (ja)
Other versions
JP2000027768A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP10229267A priority Critical patent/JP2000027768A/en
Priority claimed from JP10229267A external-priority patent/JP2000027768A/en
Publication of JP2000027768A publication Critical patent/JP2000027768A/en
Publication of JP2000027768A5 publication Critical patent/JP2000027768A5/ja
Pending legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 スクロール式液体ポンプ
【特許請求の範囲】
【請求項1】厚板に1巻き前後の渦巻き状溝を設けた固定スクロ−ルと円形板上に1巻き以下の渦巻き状突起を設けた旋回スクロ−ルを互いに噛み合わせてポンプ室を形成する容積式液体ポンプにおいて、
(1)渦巻き状溝2aの溝幅の数倍直線で巻き終り側を延長させた終端に前記溝に連通させた吸入口を設けるとともに該渦巻き状溝の巻き始め中央部に連通する吐出口を設けた構成された固定スクロ−ル。
(2)円形板上におよそ5/6巻の渦巻き状突起で構成された旋回スクロ−ル。
以上の如く構成されたことを特徴とするスクロ−ル式液体ポンプ。
【請求項2】(1)旋回スクロ−ルの渦巻き状突起の内側巻き始め部に当該巻き始め渦巻き形状と同じ曲率と同じ断面形状を有したプレ−ト3a。
(2)該プレ−ト近傍の渦巻き形状と同じ曲率と同じ断面形状をした押さえ3b。
(3)該プレ−ト端部を縦に貫通して回転自由にさせて旋回スクロ−ルの端板または渦巻き突起と押さえとで固定されるピンA3c。
(4)渦巻き状突起と押さえとで固定されるピンB3d。
以上の如く構成されたラップ弁を,渦巻き状突起の巻き始めの切り欠き部に装着させて構成されたことを特徴とする請求項1記載のスクロ−ル式液体ポンプ。
【請求項3】旋回スクロ−ルの渦巻き状突起の先端中央には歯厚の数分の1の幅で,幅と高さの比がおよそ1前後以下の固定チップを渦巻き状突起に沿って設けるないしは固定スクロ−ル側にも同様の固定チップを溝壁面の上端部で溝両壁面から旋回スクロ−ルの歯厚のおよそ1/2離れた位置に渦巻き状に設けて構成されたことを特徴とする請求項1または2記載のスクロ−ル式液体ポンプ。
【発明の詳細な説明】
【0001】
【産業上の利用分野】
本発明は,気体または液体からなる作動流体に圧力または運動エネルギ−を加える容積式の流体機械であって,特に水力機械としてのスクロ−ル式液体ポンプに関する。
【0002】
【従来の技術】
従来の1つケ−シング内に収納したモ−タで直接駆動するとともに作動流体を液体とするスクロ−ル式ポンプの公知例として,特開昭59−185861及び特開平5−79462が挙げられる。さらには,産業用の利用分野が異なるが,作動流体に対する作用が同じで本発明の構造に最も近い公知例として特開平9−71296が挙げられる。
【0003】
いずれの公知例も,ハウジングとこれに一体固定された固定スクロ−ルとモ−タからの動力が伝達される駆動軸と自転防止機構により旋回運動させられる旋回スクロ−ルからポンプ部が構成されている。このポンプ部により作動流体に圧力または運動エネルギ−が与えられる動作原理はどれも同じである。
【0004】
これらはポンプ室とモ−タや駆動系を収納する空間の間を完全に仕切る構造ではなく作動流体が多量ないしは少量流入する構造になっていた。
【0005】
固定と旋回スクロ−ル1対で形成される2つのポンプ室形状は最初の公知例は対称に形成され,後者2例では非対称に形成される等で多少異なるが,いずれのポンプ室も径方向側壁面は渦巻き線で形成されている。
【0006】
【発明が解決しようとする課題】
本発明が解決しようとしている課題として,従来ではポンプ部への吸い込み配管と吐き出し配管の延長または取り出し方向が水平で同方向でないので,ポンプ設置の作業性が悪く,配管の占める空間も大きかった。
【0007】
従来のポンプ室の壁面は渦巻き曲線のみで形成されているので,吸い込み行程時の課題として,行程終了前にポンプ室容積を最大にした後容積は閉じ込み空間としての設計上の理論容積100%まで減少して吸い込み行程が完了することになる。
【0008】
この最大容積と理論容積100%との差となる数%の容積分がポンプ室から吸い込み通路内へ逆流することになる。これにより発生した吸い込み通路内での大きな脈動により振動騒音が増大するとともに圧力の異常上昇から配管の破裂やスクロ−ル部材が破損する等の問題があった。
【0009】
ポンプ室の理論容積100%を形成した後の吐き出し行程時の課題としては,ポンプ室内の容積が減少するとともに中央に設けた吐出口に連通する渦巻き状溝空間に開口する渦巻き状突起の巻き始め先端側壁と渦巻き状溝内壁間の隙間が大きくなって作動流体が流出するが,容積変化に比べて吐き出し行程初期段階でのその隙間による開口面積は少なく,液圧縮が発生してスクロ−ル部材や摺動部が損傷する問題があり,その対策としてラップ弁が1部で用いられていたが,ラップ弁を構成するプレ−トの支持構造が悪く,作動流体の流出エネルギ−を受けて破損する場合があった。
【0010】
固定スクロ−ルと旋回スクロ−ルを噛み合わせてポンプ室をさせ、互いの溝や突起壁面及び底面間でシ−ルされて吐き出し側から吸い込み側へ作動流体が漏れ出さないように微小隙間を保持する構造となっているが,スクロ−ルの加工精度に組立ての問題及び運転中に発生するスクロ−ル部材の変形等に対してその微小隙間を十分に保持することができず、漏れによる効率低下を招いていた。
【0011】
また,モ−タや摺動部の回りに作動流体が充満するかまたは混入する可能性が極めて高い構造となっており,適正な潤滑剤が使用できないことによる摺動部の大幅な耐久性低下、作動流体に対する耐久性を高めた特殊モ−タの開発等による特性の低下やコスト高、さらには潤滑剤や摺動部で発生した摩耗粉やモ−タに使用される材料等によって作動流体が汚染されていた。またモ−タと駆動軸が液体中で回転することによる大きな撹拌損失が発生し効率を大きく低下させていた。
【0012】
そして,ポンプを停止させた時,通常吐き出し圧力が吸い込み圧力より高い状態にあり,その差圧による力がスクロ−ル部材に作用して旋回スクロ−ルが逆転して異常音や異常振動が発生したり,場合よりスクロ−ル部材や摺動部の破損を招く原因になっていた。
【0013】
さらには,吸入口と吐出口に接続される配管が互いに直交したり,またポンプ本体に対して対向する配置に設けら,設置性が悪くなる問題があった。
【0014】
【課題を解決するための手段】
上記従来例の課題を解決するために,始めに円形状の端板上に渦巻き状突起をおよそ5/6巻きの巻き終り終端部に歯厚程度内側に曲げたベントラップを設けた旋回スクロ−ルと厚板内に渦巻き状の溝をおよそ1巻き設けその巻き終りから同じ溝幅で前記ベンドラップの曲げ量と同程度内側に移動した後で溝幅の数倍直線で延長させた終端に前記溝に連通させて吸入口を設けるとともに巻き始め中央部に吐出口を前記溝に連通させて設けた固定スクロ−ルとを噛み合わせて前記渦巻き状突起の内外壁側に180°位相がずれて大きさの異なるポンプ室を形成させる。
【0015】
旋回スクロ−ルの渦巻き状突起の先端中央には歯厚の数分の1で,幅と高さの比がおよそ1前後の固定チップを渦巻き状突起に沿って設ける。固定スクロ−ル側にも必要に応じて同様の固定チップを溝壁面の上端部で溝両壁面から旋回スクロ−ル突起厚さの1/2離れた位置に渦巻き状溝に沿って設ける。固定スクロ−ル側の固定チップは旋回スクロ−ルを固定スクロ−ル側に押しつける構造では無くてもよい。
【0016】
旋回スクロ−ル渦巻き状突起巻き始めの一部を取り除いた替わりに取り除いたラップと同様の形状をして1軸を支点にして固定スクロ−ルの溝幅の範囲で揺動可能なラップ弁を設けるとともに前記1軸の上下を支えることによりラップ弁の動作が安定する。また吐き出し通路内にはポンプ停止時吸い込み側との圧力差からポンプが逆転しないようにラップ弁の保護を兼ねて逆流防止弁が装着されている。
【0017】
これらの課題を解決する手段は気体を扱うポンプでも適用可能である。
【0018】
上記の如く構成することにより,設置性が良くて高効率,低振動・低騒音でしかも高い耐久性が達成できるスクロ−ル式液体ポンプ及びこのポンプを用いて得られる清浄度の高い作動流体を提供することを目的とする。
【0019】
【作 用】
前記の如く構成されたスクロ−ル式液体ポンプは,吸い込み管と吐き出し管が同方向で水平に配置されているので,ポンプ設置が容易なことと容積式のポンプ室内部に液体を保有した状態で起動できるので,作動流体を吸い上げるに要する立ち上がり時間が短くなる。
【0020】
固定スクロ−ルに設けられた渦巻き状の溝に挿入された旋回スクロ−ルに設けられたベンドラップ含めた渦巻き状の突起の旋回運動により,渦巻き状突起壁面内外に180°位相がずれて形成される1対の非対称形ポンプ室に吸い込み口から作動流体がおよそ連続的に流入してポンプ室の中央へ移動して中央の吐き出し側溝内に圧送されるが,ラップ弁の装着により液圧縮を発生させることなく,そして渦巻き状溝内壁面と固定チップ等による旋回スクロ−ルの端板と渦巻き状突起間を確実にシ−ルして吐き出し側から吸い込み側への漏れを大幅に低減することが出来る。
【0021】
さらには,旋回スクロ−ル端板とハウジング内のボスとの間に設けた旋回シ−ルにより,モ−タ及び駆動部が収納されている駆動系収納室は完全な密閉状態にあり,駆動系収納室内の潤滑油に作動流体が混入することがなく軸受等摺動部への給油ポンプによる強制給油やガス雰囲気中で回転するモ−タへの油による冷却が可能となり,信頼性が高まると同時に効率も高まる。
【0022】
また作動流体にモ−タの付着物や潤滑油,摩耗粉等が混入することがないので,作動流体の清浄度が保持されることになる。
【0023】
【実施例】
本発明のスクロ−ル式液体ポンプに用いる作動流体として水を対象に説明を進めるが,その他のガソリンや薬品等の液体さらには気体についても適用は可能である。また,多くの液体ポンプで適用されているポンプ部とモ−タと軸を直結し一体にして密閉容器に収納する構造を基本とするが,モ−タ以外の駆動源でポンプ部を駆動する構造にも適用は可能である。
【0024】
本発明のスクロ−ル式液体ポンプの動作原理を図1を用いて説明する。但し,スクロ−ル流体機械の動作原理はタ−ボ機械協会発行の「タ−ボ機械」21巻12号など多くの文献で説明されているので,詳細は省く。
【0025】
ポンプ部は厚板内に渦巻き状溝2aをおよそ1巻き設け,その巻き終りから同じ溝幅で内側に少し移動した後の溝を直線で延長させた終端部に連通させた吸入口2fを設けるとともに巻き始め中央部に吐出口2eを前記溝に連通させて設けた固定スクロ−ルと,端板上に設けたおよそ5/6巻きの渦巻き状突起1aの巻き終りに渦巻き状突起1aの断面幅すなはち歯厚程度内側に曲げたベントラップ1hを設けた旋回スクロ−ルとを互いに噛み合わせて渦巻き状溝2a内空間を渦巻き状突起1aで内外に2分して大きさが異なり位相が180°ずれたポンプ室を形成させる。
【0026】
旋回スクロ−ル1端板の渦巻き状突起1aの反対側に後述する自転防止機構が摺動可能に配置されているため,旋回スクロ−ル1はモ−タに直結した駆動軸の回転に伴い固定スクロ−ル2に対して公転のみの旋回運動をする。
【0027】
図1に示した(a)〜(d)の図は,旋回スクロ−ルの旋回運動に伴い、ポンプの動作状態が図中に示した矢印の方向で駆動軸の回転角度が90°ピッチで順次に変化する過程を示している。従って軸が1回転して再び(a)の状態に戻ることになる。
【0028】
(a)の状態は渦巻き状溝2a内空間を渦巻き状突起1aで分離して形成されて密閉空間となったポンプ室Aが形成され,その内側は渦巻き状突起1a内側の中間当りで渦巻き状溝2a壁面間で微小隙間でシ−ルされ吸入口2fに連通している空間と吐出口2eに連通している空間とに分離されている。
【0029】
前記ポンプ室Aは、軸が90°回転した次の(b)では中央側の突起外壁と溝外壁間の隙間が大きくなって開口して吐出口2fに連通し、(c)から(d)と移行するに従い該ポンプ室の容積が小さくなって空間内の作動流体を吐出口に押し出す。
【0030】
(c)ではポンプ室Bが形成され、ポンプ室Aと同様(d)〜(a)への移行とともに空間が減少して内部の作動流体は吐出口へと送り込まれた後ポンプ部から外に吐き出される。
【0031】
次に,図2〜5を用いて駆動系含めたポンプ構造について説明する。スクロ−ル式液体ポンプを駆動系と一体にして内蔵したポンプ全体の断面図を図2に示す。図2のA視図を図3に示す。
【0032】
外観上,ポンプ全体は密閉ケ−ス15とハウジング5そして固定スクロ−ル2から構成されている。密閉ケ−ス内はモ−タ14と駆動軸10に給油ポンプ11そして下部に封入された潤滑油これとハウジング5内には旋回スクロ−ル1の一部と駆動系が含まれている。固定スクロ−ル2にはポンプ室と図3に示すように作動流体の流入流出用の吸入口2fと吐出口2eが同方向で水平に配置されている。
【0033】
またモ−タ14の動力を旋回スクロ−ル1に伝達する駆動軸8に旋回スクロ−ルの自転防止機構としてのオルダムリング4が設けられ,また旋回スクロ−ルを含めてこれらをハウジング5等が支えている。そして駆動軸8左端に設けた給油ポンプ11と油溜に挿入された給油管12を介して油を吸い上げて各摺動部へ供給される。吸い上げた油の一部は油噴出管13からモ−タ14へと散布されてモ−タ冷却に用いられる。
【0034】
図2のB−B断面を図4に示す。旋回スクロ−ル1の渦巻き状突起の回転位置はおよそ図1の(d)に相当している。図2のC−C断面を図5に示す。この図では旋回スクロ−ル1の背面に設けたオルダムリング4とキ−溝5fが示されている。
【0035】
さらに,旋回スクロ−ル1の端板1d外周とハウジング5の内部ボス5a外周壁との間に弾性体で構成された円筒状の旋回シ−ル6を設けて、密閉ケ−ス15内とハウジング5内部の駆動系を収納した駆動系収納室空間を密閉状態にして気密性を保持できるように仕切っている。旋回シ−ル6の一部である弾性体内外の圧力差を無くす必要がある場合は外の圧力に合わせて密閉ケ−ス内の圧力を予高めておけば良い。
【0036】
固定及び旋回スクロ−ルの形状を図6〜10を用いて説明する。図6に示した固定スクロ−ルの渦巻き状溝2a形状,吸入口2fと吐出口2eの位置関係,前記溝壁面近くの表面に設けた細長い固定チップ2cさらには図7に示した旋回スクロ−ルの端板上に設けた渦巻き状突起1aとその中央に設けた細長い固定チップ1cの形状については説明済みである。
【0037】
渦巻き状溝2aの巻き終りと渦巻き状突起1aのベンドラップ1hと呼ばれる巻き終り終端部の拡大図を図8に示す。図中のR2の大きさは歯厚と同程度とし,その範囲は60°前後が良い。R1の大きさはR2に歯厚を加えた値とし,その範囲はR1と同じとする。ベンドラップ1h先端のR3は歯厚の1/2以上であれば良い。
【0038】
渦巻き状溝2aから直線に移行するつなぎのR5とR4はそれぞれR2とR1の包絡線となる。すなはちR5はR2に旋回半径を加えた値となり,R4はR1に旋回半径を加えた値となる。
【0039】
渦巻き状突起1aの断面図を図9に示す。歯厚は先端より端板側が多少厚く形成されているが必要条件ではない。その先端には固定チップ1cが歯厚の数分の1の厚さと高さで形成されている。
【0040】
固定スクロ−ルの渦巻き状溝を設けた面の裏から見ている図10では,吸入口2fと吐出口2eは同方向で水平に配置されている。
【0041】
ハウジング5には、図11の正面図に示すように,旋回スクロ−ル端板1dの背面を受けるリング状のスラスト受面5dやその内側にオルダムリングのキ−が挿入されるキ−溝5f,主軸受5cそして給油ポンプから摺動部へ供給された後再び油溜に戻すための油戻し穴5g等が設けられている。
【0042】
旋回スクロ−ルに設けられたラップ弁3は図12に示すように,プレ−ト3a,押さえ3b,ピンA3cとピンB3dから構成され渦巻き状突起の巻き始めの切り欠き1gに装着されている。ピンA3cはプレ−ト3aを貫通して押さえ3bと渦巻き状突起1aに設けた穴に挿入されて両端を支持されている。ピンBは押さえと渦巻き状突起に設けた穴に挿入して押さえを固定する役目をしている。
【0043】
従って,プレ−トはピンA回りの回転は自由となる。また,切り欠き1g上に乗るプレ−ト合わせ面間は微小隙間を保持する構造となっている。このためピンA軸方向の合わせ面はピンA中心のR形状となっている。図示していないが,プレ−トと端板間に磁石を設けて停止時プレ−トを切り欠き1g上に保持することもできる。
【0044】
ラップ弁3を旋回スクロ−ルに設ける代わりに,固定スクロ−ル側に設けることも可能であり,またラップ弁の代わりに,渦巻き状突起巻き始めの旋回運動に伴う隙間を他の渦巻き壁面より大きくしても同様の効果が得られるが,特性上は多少不利となる。
【0045】
旋回シ−ル6は図13の断面図に示すように,薄肉で両端が開口した弾性のある円筒ゴム7,剛性のある円環状の支持リング8及び円筒ゴム7固定用のOリング9で構成されている。
【0046】
図の場合,円筒ゴムの上端を旋回スクロ−ルの端板1d外周に設けた環状溝部に外から弾性のあるOリングで固定され,一方支持リング8側はハウジング内側のボス外周面下部に圧入固定かOリングシ−ルにて固定される。
【0047】
以上の如く構成されたスクロ−ル式ポンプの働きについて以下説明する。
【0048】
モ−タ14から伝達された動力は駆動軸8の偏心軸から旋回軸1eを介して旋回スクロ−ル1に駆動力が伝達されるが,旋回スクロ−ルとハウジング5との間に介在してるオルダムリング4により旋回スクロ−ルの自転は阻止され固定スクロ−ルに対して旋回運動を行うことになる。この旋回運動により図1の原理図で示したポンプ作用が可能となる。
【0049】
すなはち,作動流体は固定スクロ−ルの吸入口2fから渦巻き状溝2aと渦巻き状突起1aで形成されたポンプ室に流入後送り出されて吐出口2eから流出することになる。
【0050】
起動時のようにポンプ内に作動流体が無く気体で充満している場合でも、容積式のために強制的にポンプ内の気体を排除して,ポンプ本体より低い位置にある作動流体を吸い上げることができる。
【0051】
ポンプ室内へ作動流体が流入する吸い込み行程時の回転角度に対するポンプ室容積の変化,渦巻き状突起巻き終り終端部と吸入口に近い渦巻き状溝壁面間の隙間の変化,そしてその隙間内を流れる作動流体の流速の変化を図14の(a),(b),(c)にそれぞれ示す。
【0052】
(a)の縦軸の容積100%は渦巻き状突起の内外で位相がずれて形成される一方の閉じ込み空間の設計上の理論容積を現し,(b)の隙間100%は旋回半径のおよそ2倍の最大隙間を現す。そして、(c)の速度は0から上が吸い込み状態を下は逆流を現している。図中点線が従来の各変化特性で実線が本発明の各変化特性を示している。
【0053】
従来の場合,(a)に示すように回転角度が0°から進むに従い容積を増加させて300°前後で最大となった後減少して100%になる。一方隙間は(b)に示すように300°前後では0に近い値である。
【0054】
このため(c)の速度に示すように300°前後以降で逆流現象が発生すると同時に高速に対する流出抵抗の増大で急激な圧力上昇が生じることになる。このように,100%を越える容積の増加は無駄な動力消費になると同時に異常圧力上昇によるポンプ損傷を招く原因になっていた。
【0055】
本発明では旋回スクロ−ルの渦巻き状突起1aの巻き終り終端部にベンドラップを設け渦巻き状溝2a形状もそれに合わせることにより,図14の実線に示すように,(a)の容積変化は100%を越えることはなく,(c)の速度変化も0から常に上にあって逆流現象の発生はない。
【0056】
図15では,ポンプ室内から作動液体が吐出口へ向けて流出する吐き出し行程時の回転角度に対するポンプ室容積の変化,渦巻き状突起巻き始め部と中央に近い渦巻き状溝壁面間の隙間の変化,そしてその隙間内を流れる作動流体の流速の変化をそれぞれ(a),(b),(c)に示している。縦軸の容積100%と隙間100%は図14に同じである。
【0057】
(a)の容積の変化は点線の従来と実線の本発明は類似している。(b)の隙間の変化は回転角度0°近辺が大きく異なり,従来はほとんど隙間0から暫時増加しているが,本発明ではラップ弁を旋回スクロ−ルの渦巻き状突起の巻き始めに設けることにより,当初から適度に大きな隙間を有している。
【0058】
このため(c)の速度の変化に示すように,従来では容積変化に対する隙間の変化が少ないので速度が異常に上昇しており,ポンプ室内での異常圧力上昇を促す結果になっている。これに伴い効率の低下やスクロ−ル部材の破損に摺動部の破損を招く結果となっている。
【0059】
一方,本発明ではポンプ室内の圧力状態に応じて隙間が適度に増減するので,速度の異常上昇はなく,さらには渦巻き状突起の先端で渦巻き線に沿った初期摩耗性の高い固定チップを設けること,また場合により渦巻き状溝側にも同様の固定チップを設けることにより,高効率で信頼性の高い極めて安定したポンプ特性が得られる。
【0060】
次に,駆動系に係わる働きについて説明する。旋回スクロ−ル端板外周とハウジングのスラスト受面のあるボス外周面との間に設けた旋回シ−ル6で作動流体が充満しているポンプ室のある空間と密閉状態にあるモ−タ等が収納されている駆動系収納室は完全に分離されいるので,駆動軸を支える軸受,旋回スクロ−ル背面のスラスト受面の摺動部そしてオルダムリングのキ−摺動部等の潤滑に適した油の選定と各摺動部への適切な給油が可能となり,またその油の特性や量を半永久的に保持できるので,摺動部の耐久性が飛躍的に向上すると同時にモ−タも前記油で十分冷却可能となる。
【0061】
さらには,駆動系収納室から油や摩耗粉等がポンプ室内を流れる作動流体中に混入することがないので作動流体の清浄度が保持できる。
【0062】
【発明の効果】
前記の如く構成されたスクロ−ル式液体ポンプは,ポンプ室が固定スクロ−ルの渦巻き状溝内で旋回スクロ−ルの渦巻き状突起の内外に180°位相がずれて非対称に形成されることに加えて渦巻き状突起の終端部にベンドラップを設けることにより,吸入通路内の作動流体の流れは速度変動が少なく配管振動が小さくなる。
【0063】
さらには,旋回スクロ−ル側ないしは固定スクロ−ル側にも渦巻き線の沿って設けられた小さな突起の固定チップによりポンプ室内のシ−ル性が高まることにより効率向上が図れる。
【0064】
旋回スクロ−ルの渦巻き状突起の巻き始めにラップ弁を設けたポンプにおいては,作動流体の吐き出し行程で液圧縮に伴う異常圧力上昇もなく滑らかに吐出通路内に流出するので,渦巻き状突起や摺動部に作用する荷重も少なく高い信頼性が得られると同時にポンプ室内の流出抵抗や漏れさらには摺動摩擦損失も少なく高い効率が得られる。
【0065】
また,固定スクロ−ルの渦巻き状溝に連通する吸入口と吐出口に接続されるそれぞれの配管は同方向で並行して伸ばせるので,設置性が良くなる。
【0066】
さらには,ポンプ室のある作動流体が流れる空間と密閉ケ−ス内でハウジングとで形成される駆動系収納室とは旋回シ−ルで仕切られて密閉状態にあるので,作動流体が摺動部や潤滑油に混入して軸受等の摺動部の耐久性を損なうことはない。
【0067】
逆に,作動流体にも潤滑油が混入することがなく且つポンプ内の作動流体が接触する場所に摺動する部分がほとんどないので摺動により発生する摩耗粉などが混入することもなく,清浄度の高い作動流体が得られる効果がある。
【図面の簡単な説明】
【図1】 スクロ−ル式ポンプの動作原理図
【図2】 スクロ−ル式ポンプの縦断面図
【図3】 図2のA視図
【図4】 図2のA−A断面図
【図5】 図2のB−B断面図
【図6】 固定スクロ−ルの正面図
【図7】 旋回スクロ−ルの正面図
【図8】 ポンプ室の一部拡大図
【図9】 渦巻き状突起の断面図
【図10】 固定スクロ−ルの平面図
【図11】 ハウジングの正面図
【図12】 旋回スクロ−ルに装着したラップ弁の分解図
【図13】 旋回シ−ルの断面図
【図14】 回転角度に対するポンプ室の(a)吸い込み容積の変化、
(b)ポンプ室入口の隙間の変化及び(c)ポンプ室入口の流速の変化の図
【図15】 回転角度に対するポンプ室の(a)吐き出し容積の変化、
(b)ポンプ室出口の隙間の変化及び(c)ポンプ室出口の流速の変化の図
【符号の説明】
1 旋回スクロ−ル
1a 渦巻き状突起
1c 固定チップ
1d 端板
1g 切り欠き
1h ベンドラップ
2 固定スクロ−ル
2a 渦巻き状溝
2c 固定チップ
2e 吐出口
2f 吸入口
3 ラップ弁
3a プレ−ト
3b 押さえ
3c ピンA
3d ピンB
5 ハウジング
5a ボス
5d スラスト受面
5g 油戻し穴
6 旋回シ−ル
7 円筒ゴム
8 支持リング
9 Oリング
10 駆動軸
11 給油ポンプ
12 給油管
13 油噴出管
15 密閉ケ−ス
14 モ−タ
17 潤滑油
19 駆動系収納室

[Document name] Specification [Title of invention] Scroll type liquid pump [Claims]
1. A pump chamber is formed by engaging a fixed scroll having a spiral groove of about one turn on a thick plate and a swirl scroll having a spiral protrusion of one or less turns on a circular plate. In a positive displacement liquid pump
(1) A suction port that communicates with the groove is provided at the end of the spiral groove 2a that extends the winding end side with a straight line several times the groove width, and a discharge port that communicates with the winding start center of the spiral groove is provided. Provided configured fixed scroll.
(2) A swivel scroll composed of approximately 5/6 spiral protrusions on a circular plate.
A scroll-type liquid pump characterized by being configured as described above.
2. (1) A plate 3a having the same curvature and the same cross-sectional shape as the spiral shape at the start of winding at the inner winding start portion of the spiral protrusion of the swirl scroll.
(2) A presser 3b having the same curvature and the same cross-sectional shape as the spiral shape in the vicinity of the plate.
(3) A pin A3c that vertically penetrates the plate end and is allowed to rotate freely and is fixed by an end plate or a spiral protrusion of a swirl scroll and a presser.
(4) Pin B3d fixed by a spiral protrusion and a presser.
The scroll-type liquid pump according to claim 1, wherein the lap valve configured as described above is mounted on a notch at the start of winding of the spiral protrusion.
3. A fixed tip having a width of a fraction of the tooth thickness and a width-to-height ratio of about 1 or less is placed along the spiral protrusion at the center of the tip of the spiral protrusion of the swirl scroll. A similar fixing tip is provided on the fixed scroll side at the upper end of the groove wall surface in a spiral shape at a position approximately 1/2 of the tooth thickness of the swirl scroll from both wall surfaces of the groove. The scroll type liquid pump according to claim 1 or 2.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Industrial application field]
The present invention relates to a positive displacement fluid machine that applies pressure or kinetic energy to a working fluid composed of gas or liquid, and particularly relates to a scroll type liquid pump as a hydraulic machine.
0002.
[Conventional technology]
Known examples of a scroll type pump that is directly driven by a motor housed in one conventional case and uses a working fluid as a liquid include JP-A-59-185861 and JP-A-5-79462. .. Further, Japanese Patent Application Laid-Open No. 9-71296 is mentioned as a known example which has the same action on the working fluid and is closest to the structure of the present invention, although the fields of application for industrial use are different.
0003
In each known example, the pump unit is composed of a housing, a fixed scroll integrally fixed to the housing, a drive shaft for transmitting power from the motor, and a swivel scroll that is swiveled by a rotation prevention mechanism. ing. The operating principle of applying pressure or kinetic energy to the working fluid by this pump unit is the same.
0004
These were not structures that completely separated the pump chamber from the space that houses the motor and drive system, but rather a structure in which a large amount or a small amount of working fluid flowed in.
0005
The shapes of the two pump chambers formed by a pair of fixed and swirl scrolls are slightly different, such as being formed symmetrically in the first known example and asymmetrically in the latter two examples, but both pump chambers are radial. The side wall surface is formed by a spiral wire.
0006
[Problems to be Solved by the Invention]
As a problem to be solved by the present invention, conventionally, the extension or take-out direction of the suction pipe to the pump portion and the discharge pipe is horizontal and not in the same direction, so that the workability of the pump installation is poor and the space occupied by the pipe is large.
0007
Since the wall surface of the conventional pump chamber is formed only by a spiral curve, the problem at the time of the suction stroke is that the volume after maximizing the pump chamber volume before the end of the stroke is 100% of the theoretical theoretical volume as a confined space. The suction process will be completed.
0008
A volume of several percent, which is the difference between the maximum volume and the theoretical volume of 100%, flows back from the pump chamber into the suction passage. As a result, vibration noise increases due to the large pulsation in the suction passage, and there are problems such as the pipe bursting and the scroll member being damaged due to the abnormal rise in pressure.
0009
After forming the theoretical volume of the pump chamber of 100%, the problem during the discharge stroke is that the volume of the pump chamber decreases and the spiral protrusions that open in the spiral groove space that communicates with the discharge port provided in the center begin to wind. The gap between the tip side wall and the inner wall of the spiral groove becomes large and the working fluid flows out, but the opening area due to the gap at the initial stage of the discharge stroke is small compared to the volume change, and liquid compression occurs and the scroll member A lap valve was used in one part as a countermeasure against the problem of damage to the sliding part and the sliding part, but the support structure of the plate that constitutes the lap valve was poor, and it was damaged due to the outflow energy of the working fluid. There was a case.
0010
The fixed scroll and the swivel scroll are engaged to form a pump chamber, and a minute gap is created so that the working fluid does not leak from the discharge side to the suction side by being sealed between the grooves, the wall surface of the protrusion, and the bottom surface. Although it has a structure to hold it, it is not possible to sufficiently hold the minute gap due to assembly problems due to the processing accuracy of the scale and deformation of the scale member that occurs during operation, resulting in leakage. It caused a decrease in efficiency.
0011
In addition, the structure is such that there is an extremely high possibility that the working fluid will fill or mix around the motor and sliding parts, and the durability of the sliding parts will be significantly reduced due to the inability to use an appropriate lubricant. The working fluid is deteriorated due to the development of a special motor with improved durability against the working fluid, the cost is high, and the working fluid is caused by the lubricant, wear debris generated in the sliding parts, and the material used for the motor. Was contaminated. In addition, a large stirring loss occurs due to the rotation of the motor and the drive shaft in the liquid, which greatly reduces the efficiency.
0012
When the pump is stopped, the discharge pressure is normally higher than the suction pressure, and the force due to the differential pressure acts on the scroll member to reverse the swirling scroll, causing abnormal noise and vibration. In some cases, it caused damage to the scroll member and sliding parts.
0013
Furthermore, there is a problem that the pipes connected to the suction port and the discharge port are orthogonal to each other, or are provided so as to face the pump body, resulting in poor installability.
0014.
[Means for solving problems]
In order to solve the problem of the above-mentioned conventional example, a swirl scroll in which a spiral protrusion is first provided on a circular end plate with a bent trap bent inward by about the tooth thickness at the end of winding of about 5/6 turns. Approximately one spiral groove is provided in the pump and the plank, and after moving inward with the same groove width as the bending amount of the bend wrap from the end of the winding, the end is extended by a straight line several times the groove width. A suction port is provided so as to communicate with the groove, and a fixed scroll provided so as to communicate with the groove is engaged with a discharge port at the center of the winding start, so that the phase shifts 180 ° toward the inner and outer walls of the spiral protrusion. To form pump chambers of different sizes.
0015.
At the center of the tip of the spiral protrusion of the swirl scroll, a fixed tip that is a fraction of the tooth thickness and has a width-to-height ratio of about 1 is provided along the spiral protrusion. If necessary, a similar fixing tip is provided on the fixed scroll side at the upper end of the groove wall surface at a position 1/2 of the thickness of the swirl scroll protrusion from both wall surfaces of the groove along the spiral groove. The fixed tip on the fixed scroll side does not have to have a structure that pushes the swivel scroll against the fixed scroll side.
0016.
Swivel scroll Spiral protrusion A lap valve that has the same shape as the lap that was removed instead of removing a part of the winding start, and that can swing within the groove width of the fixed scal with one axis as the fulcrum. The operation of the lap valve is stabilized by providing the lap valve and supporting the upper and lower sides of the one shaft. In addition, a check valve is installed in the discharge passage to protect the lap valve so that the pump does not reverse due to the pressure difference from the suction side when the pump is stopped.
[0017]
Means for solving these problems can also be applied to pumps that handle gases.
0018
A scroll-type liquid pump that is easy to install, has high efficiency, low vibration, low noise, and high durability can be achieved by configuring as described above, and a highly clean working fluid obtained by using this pump. The purpose is to provide.
0019
[Usage]
In the scroll type liquid pump configured as described above, the suction pipe and the discharge pipe are arranged horizontally in the same direction, so that the pump can be easily installed and the liquid is held inside the positive displacement pump chamber. Since it can be started with, the rise time required to suck up the working fluid is shortened.
0020
Due to the swirling motion of the spiral protrusion including the bend wrap provided in the swirl scroll inserted in the spiral groove provided in the fixed scroll, the spiral protrusion is formed 180 ° out of phase inside and outside the wall surface. The working fluid flows into the pair of asymmetric pump chambers from the suction port almost continuously, moves to the center of the pump chamber, and is pumped into the discharge side groove in the center. To significantly reduce leakage from the discharge side to the suction side by reliably sealing between the end plate of the swirl scroll and the spiral protrusion by the inner wall surface of the spiral groove and the fixed tip, etc., without generating it. Can be done.
0021.
Furthermore, due to the swivel seal provided between the swivel scroll end plate and the boss in the housing, the drive system storage chamber in which the motor and drive unit are housed is in a completely sealed state and is driven. No hydraulic fluid gets mixed in the lubricating oil in the system storage chamber, and forced lubrication by a lubrication pump to sliding parts such as bearings and cooling by oil to a motor that rotates in a gas atmosphere are possible, improving reliability. At the same time, efficiency increases.
0022.
In addition, the cleanliness of the working fluid is maintained because moter deposits, lubricating oil, wear debris, etc. do not get mixed into the working fluid.
[0023]
【Example】
Although the description will be made for water as the working fluid used in the scroll type liquid pump of the present invention, it can be applied to other liquids such as gasoline and chemicals as well as gases. In addition, the basic structure is that the pump unit, motor, and shaft, which are used in many liquid pumps, are directly connected and integrated and stored in a closed container, but the pump unit is driven by a drive source other than the motor. It can also be applied to structures.
0024
The operating principle of the scroll type liquid pump of the present invention will be described with reference to FIG. However, since the operating principle of the scroll fluid machine is explained in many documents such as "Tabo Machine" Vol. 21, No. 12 published by the Turbo Machinery Association, details are omitted.
0025
The pump portion is provided with approximately one spiral groove 2a in the plank, and a suction port 2f is provided so as to communicate with the terminal portion in which the groove after slightly moving inward with the same groove width from the end of the winding is extended in a straight line. A fixed scroll provided with a discharge port 2e communicating with the groove at the center of the winding start, and a cross section of the spiral protrusion 1a at the end of winding of the spiral protrusion 1a of about 5/6 winding provided on the end plate. The width, that is, the thickness of the teeth, is about the thickness of the teeth, and the spiral groove 2a is divided into two parts by the spiral protrusion 1a. Form a pump chamber offset by 180 °.
0026
Since the rotation prevention mechanism described later is slidably arranged on the opposite side of the spiral protrusion 1a of the swirl scroll 1 end plate, the swivel scroll 1 accompanies the rotation of the drive shaft directly connected to the motor. It makes a turning motion only for revolution with respect to the fixed scroll 2.
[0027]
In the figures (a) to (d) shown in FIG. 1, the operating state of the pump is in the direction of the arrow shown in the figure as the swivel scroll moves, and the rotation angle of the drive shaft is 90 ° pitch. It shows the process of changing sequentially. Therefore, the shaft makes one rotation and returns to the state of (a) again.
[0028]
In the state (a), the pump chamber A formed by separating the inner space of the spiral groove 2a by the spiral protrusion 1a to form a closed space is formed, and the inside thereof is spiral at the middle of the inside of the spiral protrusion 1a. The groove 2a is sealed with a minute gap between the wall surfaces and is separated into a space communicating with the suction port 2f and a space communicating with the discharge port 2e.
[0029]
In the next (b) where the shaft is rotated by 90 °, the gap between the protrusion outer wall and the groove outer wall on the central side becomes large and the pump chamber A opens to communicate with the discharge port 2f, and the pump chamber A communicates with the discharge port 2f from (c) to (d). As the process shifts to, the volume of the pump chamber becomes smaller and the working fluid in the space is pushed out to the discharge port.
[0030]
In (c), the pump chamber B is formed, and as in the case of the pump chamber A, the space decreases with the transition from (d) to (a), and the working fluid inside is sent to the discharge port and then outward from the pump portion. Be spit out.
0031
Next, the pump structure including the drive system will be described with reference to FIGS. 2 to 5. FIG. 2 shows a cross-sectional view of the entire pump in which the scroll type liquid pump is integrated with the drive system. The A view of FIG. 2 is shown in FIG.
[0032]
In appearance, the entire pump is composed of a sealed case 15, a housing 5, and a fixed scroll 2. Inside the closed case, the motor 14, the drive shaft 10, the lubrication pump 11, the lubricating oil sealed in the lower part, and the housing 5 include a part of the swivel scroll 1 and the drive system. As shown in FIG. 3, the pump chamber and the suction port 2f and the discharge port 2e for the inflow and outflow of the working fluid are horizontally arranged in the fixed scroll 2 in the same direction.
0033
Further, the drive shaft 8 for transmitting the power of the motor 14 to the swivel scroll 1 is provided with an old dam ring 4 as a rotation prevention mechanism for the swivel scroll, and the housing 5 and the like including the swivel scroll. Is supporting. Then, oil is sucked up and supplied to each sliding portion via the oil supply pump 11 provided at the left end of the drive shaft 8 and the oil supply pipe 12 inserted into the oil reservoir. A part of the sucked up oil is sprayed from the oil ejection pipe 13 to the motor 14 and used for cooling the motor.
0034
The BB cross section of FIG. 2 is shown in FIG. The rotational position of the spiral protrusion of the swirl scroll 1 corresponds to (d) in FIG. The CC cross section of FIG. 2 is shown in FIG. In this figure, an old dam ring 4 and a key groove 5f provided on the back surface of the swivel scroll 1 are shown.
0035.
Further, a cylindrical swivel seal 6 made of an elastic body is provided between the outer circumference of the end plate 1d of the swivel scroll 1 and the outer peripheral wall of the inner boss 5a of the housing 5, and the inside of the airtight case 15 is provided. The drive system storage chamber space that houses the drive system inside the housing 5 is sealed so as to maintain airtightness. When it is necessary to eliminate the pressure difference between the inside and outside of the elastic body, which is a part of the swivel seal 6, the pressure inside the sealed case may be preliminarily increased according to the outside pressure.
0036
The shapes of the fixed and swivel scrolls will be described with reference to FIGS. 6-10. The spiral groove 2a shape of the fixed scroll shown in FIG. 6, the positional relationship between the suction port 2f and the discharge port 2e, the elongated fixed tip 2c provided on the surface near the groove wall surface, and the swirl scroll shown in FIG. The shapes of the spiral protrusion 1a provided on the end plate of the wheel and the elongated fixing tip 1c provided at the center thereof have already been described.
0037
FIG. 8 shows an enlarged view of the winding end of the spiral groove 2a and the winding end end of the spiral protrusion 1a called the bend wrap 1h. The size of R2 in the figure should be about the same as the tooth thickness, and the range should be around 60 °. The size of R1 is the value obtained by adding the tooth thickness to R2, and the range is the same as that of R1. R3 at the tip of the bend wrap 1h may be 1/2 or more of the tooth thickness.
[0038]
R5 and R4 of the connecting line transitioning from the spiral groove 2a to a straight line are envelopes of R2 and R1, respectively. That is, R5 is the value obtained by adding the turning radius to R2, and R4 is the value obtained by adding the turning radius to R1.
[0039]
A cross-sectional view of the spiral protrusion 1a is shown in FIG. The tooth thickness is formed slightly thicker on the end plate side than the tip, but this is not a necessary condition. A fixed tip 1c is formed at the tip thereof with a thickness and height that is a fraction of the tooth thickness.
0040
In FIG. 10 viewed from the back of the surface of the fixed scroll provided with the spiral groove, the suction port 2f and the discharge port 2e are arranged horizontally in the same direction.
[0041]
As shown in the front view of FIG. 11, the housing 5 has a ring-shaped thrust receiving surface 5d that receives the back surface of the swivel scroll end plate 1d and a key groove 5f into which an old dam ring key is inserted. , The main bearing 5c and the oil return hole 5g for returning to the oil reservoir after being supplied from the oil supply pump to the sliding portion are provided.
[0042]
As shown in FIG. 12, the lap valve 3 provided on the swivel scroll is composed of a plate 3a, a retainer 3b, a pin A3c and a pin B3d, and is attached to a notch 1g at the start of winding of the spiral protrusion. .. The pin A3c penetrates the plate 3a and is inserted into a hole provided in the holding 3b and the spiral protrusion 1a to support both ends. The pin B serves to fix the presser foot by inserting it into a hole provided in the presser foot and the spiral protrusion.
[0043]
Therefore, the plate can rotate freely around the pin A. In addition, the structure is such that a minute gap is maintained between the plate mating surfaces that ride on the notch 1 g. Therefore, the mating surface in the pin A axis direction has an R shape at the center of the pin A. Although not shown, a magnet may be provided between the plate and the end plate to hold the plate at rest on 1 g of the notch.
[0044]
Instead of providing the lap valve 3 on the swirl scroll, it is also possible to provide it on the fixed scroll side, and instead of the lap valve, a gap due to the swirling motion at the beginning of the spiral projection winding is provided from another spiral wall surface. The same effect can be obtained by increasing the size, but it is somewhat disadvantageous in terms of characteristics.
0045
As shown in the cross-sectional view of FIG. 13, the swivel seal 6 is composed of an elastic cylindrical rubber 7 that is thin and has openings at both ends, a rigid annular support ring 8, and an O-ring 9 for fixing the cylindrical rubber 7. Has been done.
[0046]
In the case of the figure, the upper end of the cylindrical rubber is fixed to the annular groove provided on the outer circumference of the end plate 1d of the swivel scroll with an elastic O-ring from the outside, while the support ring 8 side is press-fitted into the lower part of the outer peripheral surface of the boss inside the housing. It is fixed or fixed with an O-ring seal.
[0047]
The operation of the scroll type pump configured as described above will be described below.
0048
The power transmitted from the motor 14 is transmitted from the eccentric shaft of the drive shaft 8 to the swivel scroll 1 via the swivel shaft 1e, but is interposed between the swivel scroll and the housing 5. The rotation of the swivel scroll is prevented by the Teru Oldam ring 4, and the swivel motion is performed on the fixed scroll. This turning motion enables the pumping action shown in the principle diagram of FIG.
[0049]
That is, the working fluid flows in from the suction port 2f of the fixed scroll into the pump chamber formed by the spiral groove 2a and the spiral protrusion 1a, and then is sent out and discharged from the discharge port 2e.
0050
Even when there is no working fluid in the pump and it is filled with gas as in the case of startup, the gas in the pump is forcibly removed due to the positive displacement type, and the working fluid at a position lower than the pump body is sucked up. Can be done.
0051
Changes in the volume of the pump chamber with respect to the rotation angle during the suction stroke in which the working fluid flows into the pump chamber, changes in the gap between the end of the spiral protrusion winding and the wall surface of the spiral groove near the suction port, and the operation flowing in the gap. Changes in the flow velocity of the fluid are shown in FIGS. 14 (a), (b), and (c), respectively.
[0052]
The volume of 100% on the vertical axis of (a) represents the theoretical volume of the design of one of the confined spaces formed out of phase inside and outside the spiral projection, and the gap of 100% of (b) is approximately the turning radius. Represents a double maximum gap. Then, the velocity of (c) is from 0 to the upper part showing the suction state and the lower part showing the backflow. The dotted line in the figure shows each conventional change characteristic, and the solid line shows each change characteristic of the present invention.
[0053]
In the conventional case, as shown in (a), the volume is increased as the rotation angle advances from 0 °, reaches a maximum at around 300 °, and then decreases to 100%. On the other hand, as shown in (b), the gap is a value close to 0 at around 300 °.
0054
Therefore, as shown in the speed of (c), a backflow phenomenon occurs after about 300 °, and at the same time, a rapid increase in pressure occurs due to an increase in outflow resistance with respect to high speed. In this way, an increase in volume exceeding 100% causes wasteful power consumption and at the same time causes pump damage due to an abnormal pressure rise.
0055
In the present invention, by providing a bend wrap at the end of the spiral protrusion 1a of the swirl scroll and matching the shape of the spiral groove 2a with it, the volume change of (a) is 100 as shown by the solid line in FIG. It does not exceed%, and the velocity change in (c) is always above 0, and no backflow phenomenon occurs.
0056
In FIG. 15, the change in the volume of the pump chamber with respect to the rotation angle during the discharge stroke in which the hydraulic fluid flows out from the pump chamber toward the discharge port, the change in the gap between the spiral protrusion winding start portion and the spiral groove wall surface near the center, The changes in the flow velocity of the working fluid flowing in the gap are shown in (a), (b), and (c), respectively. The volume of 100% and the gap of 100% on the vertical axis are the same as in FIG.
[0057]
The change in volume in (a) is similar to the conventional dotted line and the solid line of the present invention. The change in the gap in (b) differs greatly in the vicinity of the rotation angle of 0 °, and conventionally increases from the gap of 0 for a while, but in the present invention, the lap valve is provided at the beginning of winding of the spiral protrusion of the swirl scroll. Therefore, it has a moderately large gap from the beginning.
0058.
For this reason, as shown in the change in speed in (c), in the past, the change in the gap with respect to the volume change was small, so the speed increased abnormally, resulting in an increase in abnormal pressure in the pump chamber. As a result, the efficiency is lowered and the scroll member is damaged, resulting in damage to the sliding portion.
[0059]
On the other hand, in the present invention, since the gap is appropriately increased or decreased according to the pressure state in the pump chamber, there is no abnormal increase in speed, and a fixed tip having high initial wear resistance along the spiral line is provided at the tip of the spiral protrusion. In some cases, by providing a similar fixing tip on the spiral groove side, highly efficient, highly reliable and extremely stable pump characteristics can be obtained.
[0060]
Next, the functions related to the drive system will be described. A motor in a sealed state with a space with a pump chamber filled with working fluid by a swivel seal 6 provided between the outer circumference of the swivel scroll end plate and the outer peripheral surface of the boss with the thrust bearing surface of the housing. Since the drive system storage chamber where etc. are stored is completely separated, it is necessary to lubricate the bearings that support the drive shaft, the sliding parts of the thrust receiving surface on the back of the swivel scroll, and the key sliding parts of the old dam ring. It is possible to select the appropriate oil and supply the appropriate oil to each sliding part, and since the characteristics and amount of the oil can be maintained semi-permanently, the durability of the sliding part is dramatically improved and at the same time the motor is used. Can be sufficiently cooled with the oil.
[0061]
Furthermore, the cleanliness of the working fluid can be maintained because oil, wear debris, etc. from the drive system storage chamber do not mix into the working fluid flowing through the pump chamber.
[0062]
【Effect of the invention】
In the scroll type liquid pump configured as described above, the pump chamber is formed asymmetrically with a 180 ° phase shift inside and outside the spiral protrusion of the swirl scroll in the spiral groove of the fixed scroll. In addition, by providing a bend wrap at the end of the spiral protrusion, the flow of the working fluid in the suction passage has less speed fluctuation and less pipe vibration.
[0063]
Furthermore, efficiency can be improved by improving the sealability in the pump chamber by fixing tips of small protrusions provided along the spiral line on the swirl scroll side or the fixed scroll side.
[0064]
In a pump with a lap valve at the beginning of winding of the spiral protrusion of the swirl scroll, the pump smoothly flows out into the discharge passage without an abnormal pressure rise due to liquid compression in the discharge stroke of the working fluid. High reliability can be obtained with less load acting on the sliding part, and at the same time, high efficiency can be obtained with less outflow resistance and leakage in the pump chamber and sliding friction loss.
[0065]
In addition, since each pipe connected to the suction port and the discharge port communicating with the spiral groove of the fixed scroll can be extended in parallel in the same direction, the installability is improved.
[0066]
Furthermore, since the space where the working fluid with the pump chamber flows and the drive system storage chamber formed by the housing in the closed case are separated by a swivel seal and are in a closed state, the working fluid slides. It does not impair the durability of sliding parts such as bearings by mixing with parts and lubricating oil.
[0067]
On the contrary, the working fluid is not mixed with lubricating oil, and since there is almost no sliding part in the pump where the working fluid comes into contact, wear powder generated by sliding is not mixed and is clean. It has the effect of obtaining a high degree of working fluid.
[Simple explanation of drawings]
1 is an operating principle diagram of a scroll type pump. FIG. 2 is a vertical sectional view of the scroll type pump. FIG. 3 is a sectional view taken along the line A of FIG. 2. FIG. 4 is a sectional view taken along the line AA of FIG. 5 is a cross-sectional view taken along the line BB of FIG. 2. FIG. 6 is a front view of a fixed scroll. FIG. 7 is a front view of a swirling scroll. FIG. 8 is a partially enlarged view of a pump chamber. FIG. 10 is a plan view of the fixed scroll. FIG. 11 is a front view of the housing. FIG. 12 is an exploded view of a lap valve mounted on the swivel scroll. FIG. 13 is a cross-sectional view of the swivel seal. FIG. 14 (a) Change in suction volume of the pump chamber with respect to the rotation angle,
(B) Changes in the gap at the inlet of the pump chamber and (c) Changes in the flow velocity at the inlet of the pump chamber. FIG.
(B) Changes in the gap at the outlet of the pump chamber and (c) Changes in the flow velocity at the outlet of the pump chamber [Explanation of symbols]
1 Swirling scroll 1a Swirl protrusion 1c Fixed tip 1d End plate 1g Notch 1h Bend wrap 2 Fixed scroll 2a Swirl groove 2c Fixed tip 2e Discharge port 2f Suction port 3 Wrap valve 3a Plate 3b Hold A
3d pin B
5 Housing 5a Boss 5d Thrust receiving surface 5g Oil return hole 6 Swivel seal 7 Cylindrical rubber 8 Support ring 9 O-ring 10 Drive shaft 11 Lubrication pump 12 Lubrication pipe 13 Oil ejection pipe 15 Sealed case 14 Motor 17 Lubrication Oil 19 Drive system storage room

JP10229267A 1998-07-08 1998-07-08 Scroll type liquid pump Pending JP2000027768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10229267A JP2000027768A (en) 1998-07-08 1998-07-08 Scroll type liquid pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10229267A JP2000027768A (en) 1998-07-08 1998-07-08 Scroll type liquid pump

Publications (2)

Publication Number Publication Date
JP2000027768A JP2000027768A (en) 2000-01-25
JP2000027768A5 true JP2000027768A5 (en) 2005-08-04

Family

ID=16889443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10229267A Pending JP2000027768A (en) 1998-07-08 1998-07-08 Scroll type liquid pump

Country Status (1)

Country Link
JP (1) JP2000027768A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310960B2 (en) * 2002-03-13 2009-08-12 ダイキン工業株式会社 Scroll type fluid machinery
BR112012018242B1 (en) * 2010-01-22 2020-12-08 Daikin Industries, Ltd scroll compressor
JP6330345B2 (en) * 2014-01-29 2018-05-30 株式会社デンソー Compressor mounting structure
CN103939331B (en) * 2014-04-22 2016-01-13 西安交通大学 A kind of two phase flow refrigeration system eddy type working medium pump
CN115370961B (en) * 2022-10-24 2022-12-27 东南大学 Electric-driven quick air compressing device

Similar Documents

Publication Publication Date Title
RU2592153C1 (en) Scroll compressor
KR100772219B1 (en) Oil feeding structure for scroll compressor
KR100916554B1 (en) Scroll compressor having a clearance for the oldham coupling
AU3577799A (en) Positive displacement pump
KR20060049946A (en) Motor compressor lubrication
CN109113990B (en) Scroll compressor having a plurality of scroll members
US5593297A (en) Scroll type compressor
JPH05202868A (en) Compressor
US5577903A (en) Rotary compressor
JP2000027768A5 (en)
WO2019240134A1 (en) Scroll compressor
JP2000027768A (en) Scroll type liquid pump
JP2014125908A (en) Scroll compressor
KR101785062B1 (en) Triangular rotary pump
EP0743454B1 (en) Scroll type fluid displacement apparatus
JP4121783B2 (en) Scroll compressor
JP4618645B2 (en) Scroll compressor
JP3389753B2 (en) Scroll type fluid machine
JP5114708B2 (en) Hermetic scroll compressor
JP2001280261A (en) Fuel pump
KR20190001431A (en) Triangular rotary pump using vane of dumbbell shape
CN214221484U (en) Fluid pump
JP3036927B2 (en) Scroll compressor
JP2006527818A (en) Single vane rotary pump or motor
KR100360238B1 (en) Slide bush for scroll compressor