JP2000027701A - Stirling engine - Google Patents
Stirling engineInfo
- Publication number
- JP2000027701A JP2000027701A JP10200098A JP20009898A JP2000027701A JP 2000027701 A JP2000027701 A JP 2000027701A JP 10200098 A JP10200098 A JP 10200098A JP 20009898 A JP20009898 A JP 20009898A JP 2000027701 A JP2000027701 A JP 2000027701A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- heaters
- downstream
- hot gas
- upstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2244/00—Machines having two pistons
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、スターリング機関
に関し、特にその加熱器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Stirling engine, and particularly to a heater for the Stirling engine.
【0002】[0002]
【従来の技術】一般にスターリング機関10は、図1に
示すように、90度の位相差をなす4個のシリンダ11
A、11B、11C、11Dが同心円上に配置されてい
る。しかして、シリンダ11A、11B、11C及び1
1Dは、夫々、内部にピストン12A、12B、12C
及び12Dが上下動可能に装架されており、シリンダ1
1Aの内部においてはピストン12Aの上側及び下側に
は、夫々、膨張室13A及び圧縮室14Aが形成されて
いる。同様に、シリンダ11Bの内部には膨張室13B
及び圧縮室14Bが、シリンダ11Cの内部には膨張室
13C及び圧縮室14Cが、シリンダ11Dの内部には
膨張室13D及び圧縮室14Dが、形成されている。2. Description of the Related Art Generally, as shown in FIG. 1, a Stirling engine 10 has four cylinders 11 having a phase difference of 90 degrees.
A, 11B, 11C, and 11D are arranged on concentric circles. Thus, the cylinders 11A, 11B, 11C and 1
1D has pistons 12A, 12B, 12C inside, respectively.
And 12D are vertically movably mounted, and the cylinder 1
Inside 1A, an expansion chamber 13A and a compression chamber 14A are formed above and below the piston 12A, respectively. Similarly, an expansion chamber 13B is provided inside the cylinder 11B.
The compression chamber 14B has an expansion chamber 13C and a compression chamber 14C formed inside the cylinder 11C, and the cylinder 11D has an expansion chamber 13D and a compression chamber 14D formed therein.
【0003】隣り合う膨張室13Aと圧縮室14B、隣
り合う膨張室13Bと圧縮室14C、隣り合う膨張室1
3Cと圧縮室14D及び隣り合う膨張室13Dと圧縮室
14Aの各々は、ヒータチューブの形態をなす加熱器1
5、再生器16及びクーラ17を介して接続されて、隣
り合う膨張室と圧縮室との間に、作動空間が形成され
る。しかして、各作動空間には、ヘリウムその他のガス
が作動媒体が封入され、加熱器15が燃焼器16からの
火炎によるA方向からの熱により熱せられると、周知の
如くピストン12A、12B、12C及び12Dが、9
0度の位相差でもって往復上下動を行い、斜板18を主
たる構成要素とする出力機構19から回転出力が取り出
される。[0003] Adjacent expansion chamber 13A and compression chamber 14B, adjacent expansion chamber 13B and compression chamber 14C, adjacent expansion chamber 1
3C and the compression chamber 14D, and the adjacent expansion chamber 13D and the compression chamber 14A are each provided with a heater 1 in the form of a heater tube.
5. The working space is formed between the expansion chamber and the compression chamber adjacent to each other through the regenerator 16 and the cooler 17. In each working space, a working medium is filled with helium or another gas, and when the heater 15 is heated by heat from the direction A due to the flame from the combustor 16, the pistons 12A, 12B, 12C are well known. And 12D are 9
A reciprocating up and down movement is performed with a phase difference of 0 degree, and a rotation output is taken out from an output mechanism 19 having a swash plate 18 as a main component.
【0004】[0004]
【発明が解決しようとする課題】ところが、上記したス
ターリング機関の熱源として、焼却炉で発生する高温の
廃熱を用いる場合、燃焼器17が除去されて、B方向に
流れる高温の廃熱に加熱器15が晒されることになる。
しかして加熱器15は、実際は、図2に示すように、多
数のヒタチューブから構成されており、熱が図1におい
てA方向に流れた場合、熱は均一に伝達されるが、熱が
図1・2においてB方向に流れた場合、各加熱器15に
伝達される熱量及び作動媒体の温度にバラツキが生じ
る。これは、加熱器15全体が円を描くような格好とな
り、熱ガスが、円周にガイドされたりするなどして、加
熱器15の内方部から吸収される熱量にアンバランスが
生じ、このアンバランスは各作動媒体の変換効率の不均
衡をもたらし、結果として、機関出力の低下を招く。因
みに、同一条件で実験をおこなったところ、熱がA方向
に流れたときの機関出力を1とすれば、熱がB方向に流
れたときの機関出力は、約0、7となり、熱ガスの方向
が変わるだけで約30パーセントの機関の出力低下が見
られた。However, when high-temperature waste heat generated in an incinerator is used as a heat source of the above-mentioned Stirling engine, the combustor 17 is removed and the high-temperature waste heat flowing in the B direction is heated. The vessel 15 will be exposed.
Thus, the heater 15 is actually composed of a large number of hitter tubes as shown in FIG. 2, and when the heat flows in the direction A in FIG. When the fluid flows in the direction B in 2, the amount of heat transmitted to each heater 15 and the temperature of the working medium vary. This is because the entire heater 15 looks like a circle, and the heat gas is guided around the circumference, and the amount of heat absorbed from the inside of the heater 15 is unbalanced. The imbalance results in an imbalance in the conversion efficiency of each working medium, resulting in a decrease in engine output. By the way, when the experiment was performed under the same conditions, assuming that the engine output when the heat flows in the direction A is 1, the engine output when the heat flows in the direction B becomes about 0, 7, and Only a change in direction resulted in about a 30 percent reduction in engine power.
【0005】それ故に、本発明は、かような不具合を除
去した、スターリング機関を提供せんことを、その技術
的課題とする。Therefore, an object of the present invention is to provide a Stirling engine which eliminates such a problem.
【0006】[0006]
【課題を解決するための手段】上記した課題解決するた
めに請求項1において講じた手段(第1技術的手段)
は、隣合う膨張室と圧縮室とが多数のヒータチューブか
らなる加熱器と再生器とクーラとを介して接続されるこ
とにより前記膨張室から前記圧縮室に至る作動空間が形
成され、前記作動空間に作動ガスが密封されると共に前
記膨張室を備えた4個のシリンダが90度の位相差をな
すように同心円上に配置されたスターリング機関におい
て、前記4個の加熱器を半分ずつ熱ガスの上流及び下流
に位置せしめると共に、均衡手段を設けて下流側の2個
の加熱器への伝熱量と上流側の2個の加熱器への伝熱量
を等しくするようにしたスターリング機関を構成したこ
とである。Means for Solving the Problems Means taken in claim 1 to solve the above problems (first technical means)
The working space from the expansion chamber to the compression chamber is formed by connecting the adjacent expansion chamber and compression chamber via a heater comprising a number of heater tubes, a regenerator, and a cooler. In a Stirling engine in which a working gas is sealed in a space and four cylinders provided with the expansion chambers are arranged concentrically so as to form a phase difference of 90 degrees, the four heaters are each heated by a hot gas. And a Stirling engine having a balance means so as to equalize the amount of heat transferred to the two downstream heaters and the amount of heat transferred to the two upstream heaters. That is.
【0007】[0007]
【作用及び効果】上記した請求項1記載の構成(第1技
術的手段)においては、各加熱器は略同じ位の量の熱ガ
スに晒されると共に下流側の加熱器の温度と上流側の加
熱器の温度とが略同一化されるので、全体として、各加
熱器が吸収する熱量が等しくなり、従来のような不具合
が惹起されるようなことはない。In the above construction (first technical means), each heater is exposed to substantially the same amount of hot gas and the temperature of the downstream heater and the temperature of the upstream heater are compared. Since the temperatures of the heaters are substantially equalized, the amounts of heat absorbed by the respective heaters are equalized as a whole, and the conventional trouble does not occur.
【0008】[0008]
【発明の実施の形態】本発明の実施の形態の諸例を図3
乃至図8に依拠して説明するが、スターリング機関10
の基本的な構成は、図1に示したものと同じであるの
で、以下の説明は、図1の構成と異なる事項について行
う。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows various examples of the embodiment of the present invention.
The description will be made with reference to FIG.
Is basically the same as that shown in FIG. 1, and therefore the following description will be made on matters different from the configuration of FIG.
【0009】図3及び図4に示すスターリング機関10
においては、シリンダ11Aと再生器16Aとを連結す
る加熱器15Aは複数のヒーターチューブからなり、ヒ
ーターチューブは全体として所定の幅を持つ列状に構成
される。再生16Aは、図示されないクーラを介してシ
リンダ11Bの圧力室(図示略)と連通している。シリ
ンダ11Bと再生器16Bとを連結する加熱器15B、
シリンダ11Cと再生器16Cとを連結する加熱器15
C及びシリンダ11Dと再生器16Dとを連結する加熱
器15Dは、いずれも、加熱器15Aと同じような構成
つまりヒーターチューブが全体として所定の幅を持つ列
状形態をなすようになっている。The Stirling engine 10 shown in FIGS.
In the above, the heater 15A connecting the cylinder 11A and the regenerator 16A is composed of a plurality of heater tubes, and the heater tubes are arranged in a row having a predetermined width as a whole. The regeneration 16A communicates with a pressure chamber (not shown) of the cylinder 11B via a cooler (not shown). A heater 15B connecting the cylinder 11B and the regenerator 16B,
Heater 15 connecting cylinder 11C and regenerator 16C
C and the heater 15D connecting the cylinder 11D and the regenerator 16D have the same configuration as the heater 15A, that is, the heater tube has a row shape having a predetermined width as a whole.
【0010】しかして、特に図3から明らかなように、
加熱器15A及び加熱器15Dが、熱ガス方向Bと略直
角をなすように延在している。そして、加熱器15A及
び加熱器15Dは、若干の芯ずれ状態で、配置されてい
る。また、加熱器15B及び加熱器15Cが、加熱器1
5A及び加熱器15Dの下流側において、熱ガス方向B
と略直角をなすように延在しており、加熱器15Bは加
熱器15Cに対して、少しく芯ずれした態様で配置され
る。かように、配置構成をした場合、各加熱器において
は、パイプ間に間隙があることから、上流側の加熱器1
5A及び加熱器15Dを略直角に通過した熱ガス(高温
の排気ガスの流れ)は、その後、同様に、下流側の加熱
器15B及び加熱器15Cを通過する。However, as is apparent from FIG.
The heater 15A and the heater 15D extend so as to be substantially perpendicular to the hot gas direction B. The heater 15A and the heater 15D are arranged with a slight misalignment. In addition, the heater 15B and the heater 15C
5A and the downstream side of the heater 15D, the hot gas direction B
, And the heater 15B is arranged in a mode slightly offset from the heater 15C. As described above, when the arrangement is configured, since there is a gap between the pipes in each heater, the upstream heater 1
The hot gas (flow of high-temperature exhaust gas) that has passed through the heater 5D and the heater 15D at a substantially right angle thereafter similarly passes through the heater 15B and the heater 15C on the downstream side.
【0011】しかして、上流側の加熱器15A及び加熱
器15Dも下流側の加熱器15B及び加熱器15Cも、
単位時間当たり同じ量の熱ガスに晒されるが、熱ガスが
持つ熱の一部が上流側の加熱器15A及び加熱器15D
内を流れる作動媒体に吸収されているので、熱量の温度
が低くなり、下流側の加熱器15B及び加熱器15C内
を流れる作動媒体の温度が上流側の加熱器15A及び加
熱器15Dを流れる作動媒体の温度に比べて低くなる。
その結果、上流側の加熱器15A及び加熱器15Dを流
れる作動媒体がなす仕事と下流側の加熱器15B及び加
熱器15C内を流れる作動媒体がなす仕事との間で差が
生じて変換効率が低下するの。そこで、上流側の加熱器
15A及び加熱器15D内を流れる作動媒体の温度と、
下流側の加熱器15B及び加熱器15C内を流れる作動
媒体の温度とを等しくするために、以下に述べるような
均衡手段が用いられる。Thus, both the upstream heater 15A and the heater 15D, and the downstream heater 15B and the heater 15C,
It is exposed to the same amount of hot gas per unit time, but a part of the heat of the hot gas is part of the upstream heaters 15A and 15D.
Since the temperature of the calorific value is reduced because it is absorbed by the working medium flowing through the inside, the temperature of the working medium flowing in the downstream heaters 15B and 15C is increased by the operation flowing through the upstream heaters 15A and 15D. It is lower than the temperature of the medium.
As a result, a difference occurs between the work performed by the working medium flowing through the upstream heaters 15A and 15D and the work performed by the working medium flowing through the downstream heaters 15B and 15C, and the conversion efficiency is reduced. It's going down. Therefore, the temperature of the working medium flowing in the upstream heaters 15A and 15D,
In order to equalize the temperature of the working medium flowing in the heaters 15B and 15C on the downstream side, a balancing means as described below is used.
【0012】すなわち、図5に示すように、下流側の加
熱器15B及び加熱器15Cのヒーターチューブにフィ
ン21を設け、全体として、下流側の加熱器15B及び
加熱器15Cが熱ガスに晒される面積を、上流側の加熱
器15A及び加熱器15Dが熱ガスに晒される面積を約
50パーセント増しとしても良いし、図6に示すよう
に、整流板22を用いて、上流側の加熱器15A及び加
熱器15Dを通過しない熱ガスを下流側の加熱器15B
及び加熱器15Cに直接当てるようにしても良い。ま
た、図7に示すように、下流側の加熱器15B及び加熱
器15Cのヒーターチューブの投影面積を上流側の加熱
器15A及び加熱器15Dのヒーターチューブの投影面
積よりも大きく設定しても良い。更には、図8に示すよ
うに、下流側の加熱器15B及び加熱器15Cのヒータ
ーチューブ間のピッチを、上流側の加熱器15A及び加
熱器15Dのヒーターチューブ間のピッチを密ならしめ
ても良い。That is, as shown in FIG. 5, the fins 21 are provided on the heater tubes of the downstream heaters 15B and 15C, and the downstream heaters 15B and 15C are exposed to hot gas as a whole. The area of the upstream heaters 15A and 15D may be increased by about 50% by exposing the heaters 15A and 15D to the hot gas. Alternatively, as shown in FIG. And the hot gas that does not pass through the heater 15D is transferred to the downstream heater 15B.
Alternatively, it may be applied directly to the heater 15C. Further, as shown in FIG. 7, the projected area of the heater tubes of the downstream heaters 15B and 15C may be set larger than the projected area of the heater tubes of the upstream heaters 15A and 15D. . Furthermore, as shown in FIG. 8, the pitch between the heater tubes of the downstream heater 15B and the heater 15C may be made closer to the pitch between the heater tubes of the upstream heater 15A and the heater 15D. .
【0013】上記したとこらから明らかなように、加熱
器15A及び加熱器15D並びに下流側の加熱器15B
及び加熱器15C内を流れる作動媒体の温度及び熱流か
ら吸収する熱量は略同じになり、機関出力が従来に比べ
て向上する。因みに、従来の機関出力を1とした場合、
図5、図6、図7及び図8に示す均衡手段を採用した場
合の機関出力は、夫々、1.35、1.27、1.21
及び1.06となり、本発明の実施態様に係るスターリ
ング機関の出力特性が、従来に比べて格段に向上してい
ることが明瞭に理解できる。As is apparent from the above description, the heaters 15A and 15D and the downstream heater 15B
In addition, the temperature of the working medium flowing through the heater 15C and the amount of heat absorbed from the heat flow become substantially the same, and the engine output is improved as compared with the conventional case. By the way, if the conventional engine output is 1,
When the balancing means shown in FIGS. 5, 6, 7 and 8 are employed, the engine outputs are 1.35, 1.27 and 1.21 respectively.
And 1.06, which clearly shows that the output characteristics of the Stirling engine according to the embodiment of the present invention are remarkably improved as compared with the conventional case.
【図1】スターリング機関の一般的構成を示す概略図で
ある。FIG. 1 is a schematic diagram showing a general configuration of a Stirling engine.
【図2】従来の加熱器の平面図である。FIG. 2 is a plan view of a conventional heater.
【図3】本発明に係るスターリング機関に採用される加
熱器の配列状態を示す平面図である。FIG. 3 is a plan view showing the arrangement of heaters employed in the Stirling engine according to the present invention.
【図4】図3に示す加熱器の配列を側面から見た図であ
る。FIG. 4 is a side view of the arrangement of the heaters shown in FIG. 3;
【図5】図3に示す加熱器に付加される均衡手段の第1
態様を示す概念図である。FIG. 5 shows a first example of a balancing means added to the heater shown in FIG.
It is a conceptual diagram showing an aspect.
【図6】図3に示す加熱器に付加される均衡手段の第2
態様を示す概念図である。FIG. 6 shows a second example of the balancing means added to the heater shown in FIG.
It is a conceptual diagram showing an aspect.
【図7】図3に示す加熱器に付加される均衡手段の第3
態様を示す概念図である。FIG. 7 shows a third example of the balancing means added to the heater shown in FIG. 3;
It is a conceptual diagram showing an aspect.
【図8】図3に示す加熱器に付加される均衡手段の第4
態様を示す概念図である。FIG. 8 shows a fourth example of the balancing means added to the heater shown in FIG. 3;
It is a conceptual diagram showing an aspect.
11A シリンダ 11B シリンダ 11C シリンダ 11D シリンダ 15A 加熱器 15B 加熱器 15C 加熱器 15D 加熱器 16A 再生器 16B 再生器 16C 再生器 16D 再生器 21 フィン(均衡手段) 22 整流板(均衡手段) 11A cylinder 11B cylinder 11C cylinder 11D cylinder 15A heater 15B heater 15C heater 15D heater 16A regenerator 16B regenerator 16C regenerator 16D regenerator 21 Fin (balance means) 22 Straightening plate (balance means)
Claims (1)
ューブからなる加熱器と再生器とクーラとを介して接続
されることにより前記膨張室から前記圧縮室に至る作動
空間が形成され、前記作動空間に作動ガスが密封される
と共に前記膨張室を備えた4個のシリンダが90度の位
相差をなすように同心円上に配置されたスターリング機
関において、前記4個の加熱器を半分ずつ熱ガスの上流
及び下流に位置せしめると共に、均衡手段を設けて下流
側の2個の加熱器への伝熱量と上流側の2個の加熱器へ
の伝熱量を等しくするようにしたスターリング機関。An operating space extending from the expansion chamber to the compression chamber is formed by connecting an adjacent expansion chamber and a compression chamber via a heater including a plurality of heater tubes, a regenerator, and a cooler. A Stirling engine in which a working gas is sealed in the working space and four cylinders provided with the expansion chambers are arranged concentrically so as to form a phase difference of 90 degrees. A Stirling engine which is positioned upstream and downstream of the hot gas at a time, and is provided with a balancing means so that the amount of heat transferred to the two heaters on the downstream side is equal to the amount of heat transferred to the two heaters on the upstream side. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10200098A JP2000027701A (en) | 1998-07-15 | 1998-07-15 | Stirling engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10200098A JP2000027701A (en) | 1998-07-15 | 1998-07-15 | Stirling engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000027701A true JP2000027701A (en) | 2000-01-25 |
Family
ID=16418821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10200098A Pending JP2000027701A (en) | 1998-07-15 | 1998-07-15 | Stirling engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000027701A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004101983A1 (en) * | 2003-05-13 | 2004-11-25 | Honda Motor Co. Ltd. | Multi-stage stirling engine |
CN100370128C (en) * | 2003-05-13 | 2008-02-20 | 本田技研工业株式会社 | Multi-stage stirling engine |
JP2011038460A (en) * | 2009-08-10 | 2011-02-24 | Technical Research & Development Institute Ministry Of Defence | Stirling engine heat exchanger |
WO2011118033A1 (en) * | 2010-03-26 | 2011-09-29 | トヨタ自動車株式会社 | Heat exchanger for stirling engine |
-
1998
- 1998-07-15 JP JP10200098A patent/JP2000027701A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004101983A1 (en) * | 2003-05-13 | 2004-11-25 | Honda Motor Co. Ltd. | Multi-stage stirling engine |
CN100370128C (en) * | 2003-05-13 | 2008-02-20 | 本田技研工业株式会社 | Multi-stage stirling engine |
US7484366B2 (en) | 2003-05-13 | 2009-02-03 | Honda Motor Co., Ltd. | Multistage stirling engine |
KR101009391B1 (en) * | 2003-05-13 | 2011-01-19 | 혼다 기켄 고교 가부시키가이샤 | Multi-stage stirling engine |
JP2011038460A (en) * | 2009-08-10 | 2011-02-24 | Technical Research & Development Institute Ministry Of Defence | Stirling engine heat exchanger |
WO2011118033A1 (en) * | 2010-03-26 | 2011-09-29 | トヨタ自動車株式会社 | Heat exchanger for stirling engine |
JP5316699B2 (en) * | 2010-03-26 | 2013-10-16 | トヨタ自動車株式会社 | Stirling engine heat exchanger |
US8984877B2 (en) | 2010-03-26 | 2015-03-24 | Toyota Jidosha Kabushiki Kaisha | Heat exchanger for stirling engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3866674A (en) | Gas turbine regenerator | |
JP2722076B2 (en) | Heat exchanger for cooling cracked gas | |
CA1119584A (en) | Thermal management of heat exchanger structure | |
JP4897335B2 (en) | Stirling engine | |
RU2117892C1 (en) | Heat exchanger | |
AU2004320632B2 (en) | Method and apparatus for forming a heat exchanger | |
JP2000027701A (en) | Stirling engine | |
US3780800A (en) | Regenerator strongback design | |
JP2003161147A (en) | Heat exchange system | |
EP0760082B1 (en) | Plate heat exchanger | |
US4671064A (en) | Heater head for stirling engine | |
JPH10213012A (en) | Series double-acting type four cylinder hot gas engine | |
JP2003155929A (en) | Heat exchanger | |
WO1991002146A1 (en) | Circumferential heat exchanger | |
CN216665778U (en) | Waste incineration flue gas Stirling engine heat absorption hot head heat exchanger | |
CA2268837C (en) | Heat exchanger | |
JPS6033421A (en) | Air preheater | |
JPH0719111A (en) | Heater for external combustion engine | |
JP3365862B2 (en) | Gas turbine device with air-cooled tube nest combustion type combustor | |
JP2002004941A (en) | Stirling cycle equipment | |
JPH01244151A (en) | High temperature heat exchanger for stirling engine | |
JPS6336052A (en) | High temperature heat exchanger of stirling engine | |
JPS6014150Y2 (en) | Counterflow type U-shaped heat exchanger | |
JPH0747945B2 (en) | Stirling engine | |
JPH05157388A (en) | Hot gas engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070322 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070403 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20070807 Free format text: JAPANESE INTERMEDIATE CODE: A02 |