JPS6033421A - Air preheater - Google Patents

Air preheater

Info

Publication number
JPS6033421A
JPS6033421A JP58142451A JP14245183A JPS6033421A JP S6033421 A JPS6033421 A JP S6033421A JP 58142451 A JP58142451 A JP 58142451A JP 14245183 A JP14245183 A JP 14245183A JP S6033421 A JPS6033421 A JP S6033421A
Authority
JP
Japan
Prior art keywords
heat transfer
air
inner cylinder
cylinder
transfer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58142451A
Other languages
Japanese (ja)
Other versions
JPS6219652B2 (en
Inventor
Hidetaka Hokubo
浦久保 秀隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP58142451A priority Critical patent/JPS6033421A/en
Publication of JPS6033421A publication Critical patent/JPS6033421A/en
Publication of JPS6219652B2 publication Critical patent/JPS6219652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To provide the outer boundary film of heat transmission pipe with an increased coefficient of heat transfer for thereby improving its heat transfer, by improving the opening of buffle plate in its configuration and heat transmission pipes in their arraying structures. CONSTITUTION:A buffle plate 11 has an opening 34 formed at the center thereof for insertion of inner cylinder 5, and a through-hole 35 for the passage of heat transfer pipe 8 therethrough. The through-hole 35 is formed slightly larger in diameter than the outer diameter of heat transmission pipe 8 including a spiral fin 13, so that the heat transmission pipe 8 may be lightly engaged into the hole 35. The buffle plate 11 is inserted into and welded to an inner cylinder 5, engaging lightly with an outer cylinder 9. The spiral fin 13 of heat transfer pipe 8 is secured to the outer peripheral surface of heat transfer pipe 8 by a high frequency welding, but is not provided at the upper portion of heat transfer pipe 8, i.e., above the uppermost buffle plate 11 in order to prevent a low-temperature corrosion by sulfuric oxides contained in a combustion gas flowing through the heat transfer pipe 8.

Description

【発明の詳細な説明】 本発明は石油精製及び石油化学プラントに用いる燃焼用
機器に用いられる空気予熱器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air preheater used in combustion equipment used in petroleum refining and petrochemical plants.

昨今の省資源化、燃料費用の大巾な上昇に伴い各種の工
業炉等の燃焼用機器はその熱効率を限界まで向上させる
ことが要求される。
BACKGROUND OF THE INVENTION With the recent trend toward resource conservation and the dramatic rise in fuel costs, combustion equipment such as various industrial furnaces are required to improve their thermal efficiency to the limit.

一般に工業炉等の燃焼用機器の熱効率を向上させる手段
の一つとして従来より熱回収用の熱交換器即ち空気予熱
器の使用が知られている。
In general, the use of a heat exchanger for heat recovery, that is, an air preheater, has been known as one of the means for improving the thermal efficiency of combustion equipment such as industrial furnaces.

この空気予熱器は工業炉等の燃焼用機器から排・出され
る高温の燃焼ガスと炉に送る燃焼用空気を熱交換即ち燃
焼ガスの余熱を利用して燃焼用空気を予熱するもので、
伝熱面の形状等によりユングストローム形、シェルアン
ドチューブ形、プレート形等種々の形式がある。
This air preheater exchanges heat between the high-temperature combustion gas discharged from combustion equipment such as industrial furnaces and the combustion air sent to the furnace. In other words, it preheats the combustion air using the residual heat of the combustion gas.
There are various types depending on the shape of the heat transfer surface, such as Jungstrom type, shell and tube type, and plate type.

このような空気予熱器を使用すれば燃焼ガスの熱損失を
減少させると共に燃焼用空気温度を高めて燃焼効率を増
加し、過剰空気量を少なくさせ工業炉全体の熱効率を向
上させることができる。
If such an air preheater is used, it is possible to reduce the heat loss of the combustion gas, raise the temperature of the combustion air to increase the combustion efficiency, reduce the amount of excess air, and improve the thermal efficiency of the entire industrial furnace.

しかしながらこのような従来の空気予熱器においては、
燃焼ガスが伝熱部を流通する時に流通抵抗を受けて大き
な圧力損失を生じる欠点がある。
However, in such a conventional air preheater,
There is a drawback that when the combustion gas flows through the heat transfer section, it encounters flow resistance and a large pressure loss occurs.

このため、通風ファンを設けて燃焼ガスを強制的に吸引
する必要がある。このような通風ファンの取付に伴って
通常、地上に設置される空気予熱器と工業炉及び該通風
ファンとを接続するダクト工事が必要となり、空気予熱
器付設に係る工事が複雑なものとなり、これらの工事費
用だけでも通常工業炉システム全体の価格のかなりの部
分を占める。又、上記燃焼ガスの吸引通風ファンの駆動
用動力費も無視できないものである。
Therefore, it is necessary to provide a ventilation fan to forcibly suck in the combustion gas. The installation of such a ventilation fan usually requires duct construction to connect the air preheater installed on the ground with the industrial furnace and the ventilation fan, making the construction work related to the installation of the air preheater complicated. These construction costs alone typically account for a significant portion of the price of the entire industrial furnace system. Furthermore, the power cost for driving the combustion gas suction ventilation fan cannot be ignored.

更に、従来の空気予熱器では燃焼ガスの全量が管形、板
形等の伝熱部を流れるため、工業炉の最大負荷時に合せ
てその設計をせざるを得なかった。
Furthermore, in conventional air preheaters, the entire amount of combustion gas flows through a tube-shaped, plate-shaped heat transfer section, etc., so the design had to be made in accordance with the maximum load of the industrial furnace.

この結果、通常極めて短い最大負荷以外の大部分の通常
運転時においては燃焼ガス吸引用及び燃焼用空気押込用
の通風ファンと共に不当に大きな能力を持つことになり
極めて不経済であった。
As a result, during most normal operations other than the maximum load, which is usually extremely short, the exhaust fan has an unreasonably large capacity together with the ventilation fan for sucking combustion gas and forcing air for combustion, which is extremely uneconomical.

このような実情に鑑み、従来燃焼用機器の負荷に応じて
環状空間からなる空気予熱室の伝熱部への燃焼ガス流量
を調節し得る空気予熱部と燃焼用機器本体とを有機的に
結合し、燃焼用機器システムの燃焼用空気−燃焼−燃焼
ガス系の圧力損失を小さく抑え得ると共に、熱応力の発
生が少ない該空気予熱部を燃焼用機器の通常の煙道ダク
ト又は煙突の一部として使用し、燃焼ガスの吸引通路フ
ァン並びにこれに付帯するダクト工事等を不要とすると
共に、動力の節減を図った空気予熱器が案出されている
In view of these circumstances, the air preheating section, which can adjust the flow rate of combustion gas to the heat transfer section of the air preheating chamber consisting of an annular space according to the load of the combustion equipment, has been organically combined with the combustion equipment main body. The air preheating section, which can suppress the pressure loss in the combustion air-combustion-combustion gas system of the combustion equipment system and generate less thermal stress, is installed in the normal flue duct or part of the chimney of the combustion equipment. An air preheater has been devised that is used as a combustion gas suction passage fan, eliminates the need for associated ductwork, and saves power.

この空気予熱器は、燃焼用機器の燃焼ガスが流通する内
筒と、該内筒外周に配設され、前記燃焼用機器に供給す
る燃焼用空気の導入口と送出口とを有する外筒と、の間
に該燃焼用空気が流通する環状空間からなる空気予熱室
を形成する一方、前記内筒内にガス流量調節用のダンパ
を設けると共に前記空気予熱室内に、前記内筒の外周縦
方向に沿ってこれを取り巻くよう列状に複数配設され、
かつ前記ダンパをバイパスして該円筒内のダンパの上流
部と下流部とを連通する外周面に多数のフィンを備えた
伝熱パイプを設けた構成である。
This air preheater includes an inner cylinder through which combustion gas from a combustion device flows, and an outer cylinder disposed around the outer circumference of the inner cylinder and having an inlet and an outlet for combustion air to be supplied to the combustion device. , an air preheating chamber consisting of an annular space through which the combustion air flows, and a damper for regulating gas flow rate is provided in the inner cylinder, and a damper is provided in the air preheating chamber in the longitudinal direction of the outer periphery of the inner cylinder. Multiple lines are arranged around this along the
In addition, a heat transfer pipe having a large number of fins is provided on the outer circumferential surface of the cylinder, bypassing the damper and communicating the upstream and downstream parts of the damper in the cylinder.

ところで、かかる従来の空気予熱器における伝熱パイプ
の配列構造は第1図IA1〜(C)に示すようになって
いる。
Incidentally, the arrangement structure of heat transfer pipes in such a conventional air preheater is as shown in FIG. 1A1-(C).

尚、これらの図において、35は内筒、36は外筒、3
7はダンパ、38は伝熱パイプである。
In addition, in these figures, 35 is an inner cylinder, 36 is an outer cylinder, 3
7 is a damper, and 38 is a heat transfer pipe.

即ち、第1図IAIに示したものは、伝熱パイプ38と
して縦フィン39を使用したもので、空気を内筒35と
外筒36との間を伝熱パイプ38が延びる方向に流すよ
うにしたものである。
That is, the one shown in FIG. 1 IAI uses vertical fins 39 as the heat transfer pipe 38, and allows air to flow between the inner cylinder 35 and the outer cylinder 36 in the direction in which the heat transfer pipe 38 extends. This is what I did.

しかし、このタイプの空気予熱器においては、伝熱パイ
プ38を多重に配列した場合、フィン39側を流れる空
気の速度が低下するため、フィン39と空気の間の境膜
伝熱係数が著しく低下するという欠点がある。
However, in this type of air preheater, when the heat transfer pipes 38 are arranged in multiple layers, the speed of the air flowing on the fin 39 side decreases, so the film heat transfer coefficient between the fins 39 and the air decreases significantly. There is a drawback that it does.

又、第1図(Bl及び+C1に示したものは、内筒35
と外筒36との間の空間の略軸直角な面に軸方向に所定
間隔をもって複数配設されて該空間を軸方向に複数の室
に区画するパンフルプレート41を設け、バッフルプレ
ー)41に夫々に、その外周部の切欠線に基づいて切欠
かれた開口部42を上下に隣接するパンフルプレート4
1毎交互に相反する位置に位置するように設け、空気を
バッフルプレート41によって区画された室に順次流通
させるようにしたものである。そして、第1図IB)の
ものは内筒35と外筒36との間の空間全域にスパイラ
ルフィン40を使用した伝熱パイプ38を配設し、第1
図telのものは同様の伝熱パイプ38を空間のパンフ
ルプレート41の開口部42をいずれも通らない部位に
配設したものである。
In addition, the one shown in FIG. 1 (Bl and +C1 is the inner cylinder 35
A plurality of baffle plates 41 are provided at predetermined intervals in the axial direction on a surface substantially perpendicular to the axis of the space between the outer cylinder 36 and the outer cylinder 36, and divide the space into a plurality of chambers in the axial direction. The openings 42 cut out based on the notch line on the outer periphery of the upper and lower adjacent panful plates 4 are respectively
The baffle plates 41 are arranged so that each baffle plate 41 is alternately located at opposite positions, and air is sequentially circulated through the chambers partitioned by the baffle plates 41. In the case of FIG. 1 IB), a heat transfer pipe 38 using spiral fins 40 is disposed throughout the space between the inner cylinder 35 and the outer cylinder 36, and the first
In the one shown in Fig. tel, a similar heat transfer pipe 38 is arranged in a part of the space that does not pass through any opening 42 of a panful plate 41.

ところで、内筒35と外筒36との間を流れる空気は強
制うず巻運動を行う結果、もし伝熱パイプ3Bの配設が
ないならば内筒35と外筒36との間の空間の外周部分
を流れる空気は速度が早く、内周部分を流れる空気速度
が遅い。周知の事実であるが、空気速度の早いほど空気
と伝熱パイプ38間の熱伝達率が良くなるため、配列さ
れている伝熱パイプ38を最も効果的に伝熱に関与させ
るためには、前記外周部分と内周部分のすべての部分で
空気速度が等しいことが望ましい。
By the way, as a result of the forced spiral movement of the air flowing between the inner cylinder 35 and the outer cylinder 36, if the heat transfer pipe 3B is not provided, the outer circumference of the space between the inner cylinder 35 and the outer cylinder 36 will change. The air flowing through this section has a high velocity, and the air flowing through the inner circumferential section has a low velocity. It is a well-known fact that the higher the air velocity, the better the heat transfer coefficient between the air and the heat transfer pipes 38. Therefore, in order to make the arranged heat transfer pipes 38 participate in heat transfer most effectively, It is desirable that the air velocity be equal in all parts of the outer circumferential portion and the inner circumferential portion.

しかしながら、第1図1cIに示したものではバッフル
プレート41の開口部42を単なる直線状の切欠で形成
したため、伝熱パイプ38は外周部分と内周部分で同じ
数量しか配列できず、上述のような効果を望むことはで
きない。
However, in the case shown in FIG. 1cI, since the opening 42 of the baffle plate 41 is formed by a simple linear notch, the heat transfer pipes 38 can only be arranged in the same number on the outer circumference and the inner circumference. You cannot expect such an effect.

更に、第1図1cIに示したものにおいて、伝熱パイプ
38の配列数量を多く取るべく開口部42を小さなもの
とした場合、空気側の圧力損失が大きなものとなるとい
う不都合がある。又、逆にこの圧力損失を小さなものに
しようとした場合開口部42を大きくしなければならず
、この結果伝熱パイプ38の配列数量を多く取ることが
できないといった不都合が生じる。
Furthermore, in the case shown in FIG. 1cI, if the openings 42 are made small in order to increase the number of heat transfer pipes 38 arranged, there is a disadvantage that the pressure loss on the air side becomes large. On the other hand, if the pressure loss is to be reduced, the opening 42 must be made larger, resulting in the inconvenience that a large number of heat transfer pipes 38 cannot be arranged.

又、第1図1cIに示すように、開口部42部分にも伝
熱パイプ38を配列した場合、伝熱パイプ38にスパイ
ラルフィン40を採用しているがため、次のような問題
が生じる。
Further, as shown in FIG. 1cI, when the heat transfer pipes 38 are also arranged in the opening 42 portion, the following problem occurs because the spiral fins 40 are adopted as the heat transfer pipes 38.

即ち、開口部42を流れる空気は伝熱パイプ38を横切
る流れとはならず、伝熱パイプ38に添った流れとなる
。周知の事実であるが、スパイラルフィン40の場合、
横切る空気流れに対しては伝熱に効果的に作用するが、
平行な流れには効果的に作用しない。
That is, the air flowing through the opening 42 does not flow across the heat transfer pipe 38, but flows along the heat transfer pipe 38. As is a well-known fact, in the case of spiral fin 40,
It acts effectively on heat transfer for cross-crossing airflow, but
It does not work effectively on parallel flows.

そして、伝熱パイプ38の内部には高温の燃焼ガスが流
れているため、スパイラルフィン40が効果的に働かな
い場合、伝熱パイプ38の冷却が行われず、伝熱パイプ
がオーバーヒートして焼損することになる。
Since high-temperature combustion gas flows inside the heat transfer pipe 38, if the spiral fins 40 do not work effectively, the heat transfer pipe 38 will not be cooled and the heat transfer pipe will overheat and burn out. It turns out.

本発明は以上のような従来の実情に鑑み、内円筒と外円
筒との間の空間をバッフルプレートを用いて区画し、か
つスパイラルフィン付の伝熱パイプを前記空間のパンフ
ルプレート開口部をいずれも通らない部位に配設する構
成の空気予熱器において、パンフルプレートの開口部形
状と伝熱パイプの配列構造の改良により、前記空間の内
周部分より外周部分の伝熱パイプ配列数を多くでき、配
列されているすべての伝熱パイプを効果的に伝達に関与
させることができると共に、空気側の圧力損失をできる
だけ小さくできる開口部面積でありながら配列数を多く
取ることができ、以上の結果伝熱パイプの管外境膜伝熱
係数を大きなものとして熱伝達を良好なものとできる空
気予熱器を提供するものである。
In view of the above-mentioned conventional circumstances, the present invention divides a space between an inner cylinder and an outer cylinder using a baffle plate, and connects a heat transfer pipe with a spiral fin to a pan full plate opening in the space. In an air preheater configured to be installed in a location where neither of them passes through, by improving the opening shape of the panful plate and the arrangement structure of the heat transfer pipes, the number of heat transfer pipes arranged in the outer circumference of the space is reduced compared to the inner circumference of the space. It is possible to effectively involve all the heat transfer pipes in the array in the transmission, and it is possible to have a large number of arrays while maintaining the opening area that minimizes the pressure loss on the air side. As a result, the present invention provides an air preheater that can improve heat transfer by increasing the heat transfer coefficient of the outer membrane of the heat transfer pipe.

以下、本発明の一実施例を第2図〜第7図に基づいて説
明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 2 to 7.

第2図(Al、 (Bl、 iclにおいて、1は図示
しない炉本体からの燃焼ガスが流通する煙道を構成する
図示しない炉本体側のコニカル状の煙道ダクト部及びコ
ニカル状の煙突に取付けられた空気予熱器、5は燃焼ガ
スが流通する内円筒、6は内円筒5の煙道5Aの略中央
に配設されたガス流量調節用のダンパである。このダン
パ6は適宜回動することにより煙道5Aを絞ることがで
きるようになっており、水平位置に位置させた時には煙
道5Aを塞8はダンパ6をバイパスして該ダンパ6の上
流と下流を連通ずる外周面にスパイラルフィン13を備
えてなる伝熱パイプ、9は伝熱パイプ8が配列された内
円筒5外周に配設され、該内円筒5外周との間に炉本体
の燃焼部に至る燃焼用空気が流通される環状の空気予熱
室9Aを構成する外円筒である。
In Figure 2 (Al, (Bl, icl), 1 is attached to a conical flue duct and a conical chimney on the side of the furnace body (not shown), which constitutes a flue through which combustion gas from the furnace body (not shown) flows. 5 is an inner cylinder through which combustion gas flows, and 6 is a damper for adjusting the gas flow rate arranged approximately in the center of the flue 5A of the inner cylinder 5.This damper 6 is rotated as appropriate. This makes it possible to narrow down the flue 5A, and when the flue 5A is placed in a horizontal position, the flue 5A is blocked by a spiral 8 on the outer peripheral surface that bypasses the damper 6 and communicates the upstream and downstream sides of the damper 6. A heat transfer pipe 9 comprising fins 13 is arranged on the outer periphery of the inner cylinder 5 in which the heat transfer pipes 8 are arranged, and combustion air that reaches the combustion part of the furnace body flows between the outer periphery of the inner cylinder 5 and the outer periphery of the inner cylinder 5. This is an outer cylinder that constitutes an annular air preheating chamber 9A.

該外円筒9は図の上端及び下端外周部の相対する位置に
夫々空気導入口9a及び空気送出口9bを備え、燃焼用
空気が空気予熱室9A内を煙道5Aの燃焼ガス流と逆方
向に流通し得るようになっている。10は外円筒9外周
面に固着された保温材である。
The outer cylinder 9 is provided with an air inlet 9a and an air outlet 9b at opposing positions on the outer periphery of the upper and lower ends in the figure, respectively, so that combustion air flows through the air preheating chamber 9A in a direction opposite to the flow of combustion gas in the flue 5A. It is now possible to distribute it. 10 is a heat insulating material fixed to the outer peripheral surface of the outer cylinder 9.

そして、外円筒9の空気導入口9aには外部空気を吸込
む図示しない通風ファンからの送風ダクトを接続し、空
気送出口9bには図示しない空気送出用ダクトを接続し
て、該ダクトを炉本体の燃焼用空気供給部に接続する。
A ventilation duct from a ventilation fan (not shown) for sucking outside air is connected to the air introduction port 9a of the outer cylinder 9, and an air delivery duct (not shown) is connected to the air delivery port 9b. Connect to the combustion air supply of the

11は空気予熱室9A内の略軸直角な面に軸方向に所定
間隔をもって2以上配設されて該空気予熱室9A内を軸
方向に3以上の室に区画するバッフルプレートで、本実
施例においては3つ用意され4つの室12A〜12Dに
区画している。14はパンフルプレート11夫々に、前
記内円筒5外周上の一点から該点を通る法線を対称線と
して外円筒9内周に7字形に延びる一対の切欠線に基づ
いて切欠かれて形成された開口部で、上下に隣接するバ
ッフルプレート11毎交互に相反する位置に位置するよ
うに設けられている。
Reference numeral 11 denotes two or more baffle plates that are disposed at a predetermined interval in the axial direction on a surface substantially perpendicular to the axis in the air preheating chamber 9A to partition the air preheating chamber 9A into three or more chambers in the axial direction. In this case, three chambers are prepared and divided into four chambers 12A to 12D. 14 is formed by notching in each of the panful plates 11 based on a pair of notch lines extending from a point on the outer circumference of the inner cylinder 5 to the inner circumference of the outer cylinder 9 in a figure 7 shape with the normal line passing through the point as a line of symmetry. The openings are provided so as to be alternately located at opposite positions for each of the vertically adjacent baffle plates 11.

ここで、前記伝熱パイプ8は空気′P熱室9A内のバッ
フルプレート開口部14をいずれも通らない部位に、内
円筒5の外周縦方向に沿ってこれを取り巻くように、か
つ内円筒5外周面から外円筒9内周面に行くに従って徐
々に数が増大するように複数同心状に配列されている。
Here, the heat transfer pipe 8 is installed in a portion of the air 'P heat chamber 9A that does not pass through any of the baffle plate openings 14, so as to surround the inner cylinder 5 along the outer periphery in the longitudinal direction. A plurality of them are concentrically arranged so that the number gradually increases from the outer peripheral surface to the inner peripheral surface of the outer cylinder 9.

′ 次に、上述した各空気予熱器構成体の詳細構造について
説明する。
'Next, the detailed structure of each air preheater structure mentioned above will be explained.

第2図fA)、 IBIにおいて、外円筒9の上端部と
下端部には上部管板15と下部管板16が夫々設けられ
ている。これら上部管板15及び下部管板16には内円
筒5及び各伝熱パイプ8の貫通固定孔17.18が開設
され、これら内円筒5上端部と各伝熱パイプ8が貫通さ
れて溶接により固定されている。
In FIG. 2fA), IBI, an upper tube sheet 15 and a lower tube sheet 16 are provided at the upper and lower ends of the outer cylinder 9, respectively. Penetration fixing holes 17 and 18 for the inner cylinder 5 and each heat transfer pipe 8 are formed in these upper tube sheet 15 and lower tube sheet 16, and the upper end of these inner cylinder 5 and each heat transfer pipe 8 are penetrated and welded. Fixed.

そして、上部管板15は外円筒9上端面に固定取付され
る。一方、下部管板16は熱による伝熱パイプ8の伸び
と外円筒9の伸びの差を吸収するため、外円筒9とは固
定せず該外円筒9との間をバッキングによりシールして
浮動するようになっている。
The upper tube plate 15 is fixedly attached to the upper end surface of the outer cylinder 9. On the other hand, in order to absorb the difference between the elongation of the heat transfer pipe 8 and the elongation of the outer cylinder 9 due to heat, the lower tube plate 16 is not fixed to the outer cylinder 9 but is floated by sealing between the outer cylinder 9 and the outer cylinder 9 with a backing. It is supposed to be done.

これを第3図に示すと、図中、19は下部管板16外周
部下面にネジ等の固定具によって固定された環状のバン
キングケースで、外円筒9内周面との間に環状の空間2
0を画成する。21はこの環状空間20に充填されたバ
ンキングである。
This is shown in FIG. 3. In the figure, 19 is an annular banking case fixed to the lower surface of the outer periphery of the lower tube plate 16 with a fixing device such as a screw, and there is an annular space between it and the inner periphery of the outer cylinder 9. 2
Define 0. 21 is a banking that fills this annular space 20.

ダンパ6の支軸22は、第4図(Al、 IBIに示す
ように、該ダンパ6の直径方向に設けられたパイプ体2
3に嵌挿されて、該パイプ体23にネジ等の固定具によ
り固定取付される。又、支軸22の両側部分は内円筒5
及び外円筒9に1iiffl支持されるスリーブチュー
ブ24に回転自由に嵌挿されており、このスリーブチュ
ーブ24は外円筒9外周壁においてスリーブサポートラ
グ25によって固定される。これを第5図(Al−(D
lに示すと、スリーブサポートラグ25は所遊の間隔を
もって離間する一対のフランジ板26、’27相互を4
つのリブ28で固定した構成で゛あり、一方のフランジ
板部をもって外円筒9外周壁にネジ等の固定具並びに溶
接により固定されると共に、両フランジ板26.27に
設けられたスリーブチューブ支持孔26A、’27Aに
スリーブチューブ24が嵌入されて溶接固定される。
The support shaft 22 of the damper 6 is connected to a pipe body 2 provided in the diametrical direction of the damper 6, as shown in FIG.
3 and is fixedly attached to the pipe body 23 with a fixing tool such as a screw. Also, both sides of the support shaft 22 are formed into an inner cylinder 5.
It is rotatably fitted into a sleeve tube 24 supported by the outer cylinder 9, and this sleeve tube 24 is fixed by a sleeve support lug 25 on the outer peripheral wall of the outer cylinder 9. This is shown in Figure 5 (Al-(D
As shown in FIG.
One flange plate is fixed to the outer peripheral wall of the outer cylinder 9 by fixing devices such as screws or welding, and sleeve tube support holes provided in both flange plates 26 and 27. The sleeve tube 24 is fitted into 26A and 27A and fixed by welding.

また、スリーブチューブ2Aと内円筒5との雪道状態は
遊嵌状態となるように第5図(0)に示すように内円筒
5に峻けた■通゛孔29を長孔に形成してあり、この貫
通孔29とスリーブチューブ24との曲には石綿30が
介装されている。更に、反リーブサポートラグ25の外
側フランジ板27には軸受31がネジ等の固定具により
固定支持され、こ□の軸受31にスリーブチューブ24
を挿通してきた支軸22端部が支持されるようになって
いる。゛ 又、第4図+AI、 IBIに示すように、ダンパ6の
パイプ体23を間に挾んだ各半円周部にはダンパ6によ
って内円筒5内□の煙道5Aを閉じた時、確実なシール
を行うためのリング状部材を2分した形状の一対のシー
ル板32が夫々装備される。このシール板32は第4図
’+1?l’に示すように、ダンパ6の半円周部°夫々
の相反矛る端面に溶接により固定され、ダンパ6を閉状
態にした時内円筒5丙周壁の相対向する位置に張り出す
ように固定さ゛れた弁座33に次に、バッフルプレート
11は第6図に示すように、中心に内円筒5に嵌挿され
る開口部34を有すると共に、伝熱パイプ8が貫通され
る貫通(孔i5を有しており、この貫通孔35は該伝熱
パイプ8のスパイラルフィシ13を含む外径寸法よりや
や大径に形成され、伝熱パイプ8が遊嵌状態となる。そ
して、このバッフルプレー目1は内円筒5に嵌挿されて
溶接により固定され、外円筒9とは遊嵌状態となる。″
゛ 伝熱パイプ8のスパイラルフィン13は、該伝熱バイブ
8外周晶に高周波溶接によって固着されるが、伝熱パイ
プ8を流れる燃焼ガス中に含まれる硫黄酸化物による低
温腐食を防ぐため、伝熱パイプ8上部即ち最上位置のバ
ッフルプレート11より上方の部分には設けていない。
In addition, in order to ensure that the sleeve tube 2A and the inner cylinder 5 are loosely fitted in the snow-covered state, a long through hole 29 is formed in the inner cylinder 5 as shown in FIG. 5(0). Asbestos 30 is interposed between the through hole 29 and the sleeve tube 24. Further, a bearing 31 is fixedly supported on the outer flange plate 27 of the anti-leave support lug 25 with a fixing device such as a screw, and the sleeve tube 24 is attached to this bearing 31.
The end portion of the support shaft 22 that has been inserted through the support shaft 22 is supported.゛Also, as shown in Fig. 4+AI and IBI, when the flue 5A in the inner cylinder 5 is closed by the damper 6, the pipe body 23 of the damper 6 is placed in each semicircular part between them. A pair of seal plates 32 each having a shape of a ring-shaped member divided into two are provided to ensure reliable sealing. This seal plate 32 is '+1' in Fig. 4? As shown in 1', they are fixed by welding to the opposing end faces of the semi-circumferential portion of the damper 6, so that when the damper 6 is in the closed state, they protrude to opposing positions on the circumferential wall of the inner cylinder 5. Next to the fixed valve seat 33, the baffle plate 11 has an opening 34 in the center to be fitted into the inner cylinder 5, as shown in FIG. The through hole 35 is formed to have a slightly larger diameter than the outer diameter of the heat transfer pipe 8 including the spiral fin 13, and the heat transfer pipe 8 is loosely fitted therein. The eye 1 is fitted into the inner cylinder 5 and fixed by welding, and is loosely fitted into the outer cylinder 9.
゛The spiral fins 13 of the heat transfer pipe 8 are fixed to the outer periphery of the heat transfer vibe 8 by high frequency welding. It is not provided in the upper part of the heat pipe 8, that is, in the part above the baffle plate 11 at the uppermost position.

次に、かかる空気予熱器構成体の組立手順について説明
する。
Next, a procedure for assembling such an air preheater structure will be explained.

(1)内円筒5、上・下部管板15.16、伝熱パイプ
8及びパンフルプレート11をすべて溶接固定して一体
の構成体に組立てる。
(1) The inner cylinder 5, upper and lower tube plates 15, 16, heat transfer pipe 8, and panful plate 11 are all welded and fixed to form an integral structure.

(2)予め第2図(C1のC−C線で示すように、縦方
向に2分割した外円筒9を(1)で組立てた構造体の両
側から被せて、外円筒9の2分割体9 C,9D夫々に
形成されたフランジ9c、9d相互をボルトをもって固
定すると共に、上部管板15と外円筒9上端部とをボル
トをもって固定する。
(2) As shown in FIG. 2 (C1 line C-C), cover the structure assembled in (1) with the outer cylinder 9, which has been divided into two in the vertical direction, from both sides. Flanges 9c and 9d formed on 9C and 9D are fixed to each other with bolts, and the upper tube plate 15 and the upper end of the outer cylinder 9 are fixed with bolts.

(3)ダンパ6用のスリーブチューブ24とパイプ体2
3とを一体にした単一のパイプ体を内円筒5及び外円筒
9に差し込み、スリーブサポートラグ25を前記パイプ
体の外円筒9外周壁からの突出端部に嵌挿し、該スリー
ブサポートラグ25の内側フランジ板26を外円筒9外
周壁に固定具によって固定する。
(3) Sleeve tube 24 and pipe body 2 for damper 6
3 is inserted into the inner cylinder 5 and outer cylinder 9, and the sleeve support lug 25 is inserted into the end of the pipe body protruding from the outer circumferential wall of the outer cylinder 9. The inner flange plate 26 is fixed to the outer circumferential wall of the outer cylinder 9 using a fixture.

(4)スリーブサポートラグ5と外円筒9及びパイプ体
とスリーブサポートラグ25とを溶接固定する。
(4) Weld and fix the sleeve support lug 5 and the outer cylinder 9 and the pipe body and the sleeve support lug 25.

(5)内円筒5の内部からダンパ6の直径長さ分だけパ
イプ体23を切断し、パイプ体23とスリーブチューブ
24とを分割して形成する。
(5) The pipe body 23 is cut from the inside of the inner cylinder 5 by the diameter length of the damper 6, and the pipe body 23 and the sleeve tube 24 are formed separately.

+61 +51のパイプ体23を構成部品の一つとして
予め形成したダンパ6を内円筒5内に入れ、外円筒9の
外側から支軸22をスリーブチューブ24とパイプ体2
3に挿入する。
A pre-formed damper 6 with the pipe body 23 of +61 +51 as one of the components is placed in the inner cylinder 5, and the support shaft 22 is connected to the sleeve tube 24 and the pipe body 2 from the outside of the outer cylinder 9.
Insert into 3.

(7)ダンパ6をパイプ体23をもって支軸22に固定
具によって固定し、該支軸22の端部に軸受31を取付
ける。
(7) Fix the damper 6 to the support shaft 22 with the pipe body 23 using a fixture, and attach the bearing 31 to the end of the support shaft 22.

(8)支軸22がスリーブチューブ24に当らない位置
で軸受31をろリープサポートラグ25の外側フランジ
板27に固定具によって固定する。
(8) Fix the bearing 31 to the outer flange plate 27 of the filter support lug 25 using a fixture at a position where the support shaft 22 does not touch the sleeve tube 24.

次にかかる構成の空気予熱器の作用について説明する。Next, the operation of the air preheater having such a configuration will be explained.

炉本体の煙道ダクトから供給される燃焼ガス(略200
℃)の一部は伝熱パイプ8に流入し、他部はダンパ6に
向けて流れ、夫々伝熱パイプ8内及び煙道5Aを通って
伝熱パイプ8と内円筒5の上端部に至り、ここで合流し
、煙突を介して外部に排出される。
Combustion gas supplied from the flue duct of the furnace body (approximately 200
℃) flows into the heat transfer pipe 8, the other part flows toward the damper 6, passes through the heat transfer pipe 8 and the flue 5A, and reaches the upper end of the heat transfer pipe 8 and the inner cylinder 5. , where they join together and are discharged to the outside through the chimney.

一方、通風ファンを作動すると、外部空気は送風ダクト
を介して外円筒9の空気導入口9aがら空気予熱室9A
内の最上部の室12Aに強制的に導入される。該室12
A内に導入された空気は伝熱パイプ8を横切って流れ、
最上部のパンフルブレー目1の開口部14を通って2段
目の室12Bに導入され、同様に伝熱パイプ8を横切っ
て流些、同様に3段目の室12C及び最下部の室12D
に各開口部14を通って流れていき、この間に空気と伝
熱パイプ8内並びに煙道5Aを流れる燃焼ガスとの間に
伝熱パイプ8及び内円筒5の外壁を介して熱交換が行わ
れる。従って、空気予熱室9Aを流通する空気は加熱さ
れ最適な温度の郷焼用空気となって、空気送出口9bか
ら炉本体の燃焼用空気供給部に供給され、炉本体内にお
いて被加熱物の加熱等の炉の目的がなされると共に、燃
焼ガスが炉本体から排出され、前記空気予熱器に導入さ
れるわけである。
On the other hand, when the ventilation fan is activated, external air flows through the air duct into the air preheating chamber 9A through the air inlet 9a of the outer cylinder 9.
The liquid is forcibly introduced into the uppermost chamber 12A within the chamber. The room 12
The air introduced into A flows across the heat transfer pipe 8,
It is introduced into the second stage chamber 12B through the opening 14 of the uppermost pan full brake eye 1, and similarly flows across the heat transfer pipe 8, and similarly flows into the third stage chamber 12C and the lowermost chamber 12D.
During this time, heat exchange takes place between the air and the combustion gas flowing in the heat transfer pipe 8 and the flue 5A via the heat transfer pipe 8 and the outer wall of the inner cylinder 5. be exposed. Therefore, the air flowing through the air preheating chamber 9A is heated and becomes air for grilling at the optimum temperature, and is supplied from the air outlet 9b to the combustion air supply section of the furnace body, and the air to be heated is heated in the furnace body. While the purpose of the furnace, such as heating, is accomplished, combustion gases are exhausted from the furnace body and introduced into the air preheater.

ここで、ダンパ6の作用・効果について説明する。Here, the action and effect of the damper 6 will be explained.

ダンパ6を操作し、その回転角度を変化させることによ
り煙道5Aにおける燃焼ガス流通面積を変化させれば、
煙道5A及び伝熱パイプ8を夫々流れる燃焼ガス流量の
割合が変化する。そして、特に、ダンパ6を前述したよ
うに2点鎖線で示す水平位置に位置させれば、煙道5A
が塞がれ燃焼ガスの全量が伝熱パイプ8内を流れるわけ
である。
If the combustion gas circulation area in the flue 5A is changed by operating the damper 6 and changing its rotation angle,
The ratio of the flow rate of combustion gas flowing through the flue 5A and the heat transfer pipe 8 changes. In particular, if the damper 6 is positioned in the horizontal position shown by the two-dot chain line as described above, the flue 5A
is blocked, and the entire amount of combustion gas flows through the heat transfer pipe 8.

従って、炉の極めて短い最大負荷時には、ダンパ6を操
作して煙道5Aを適宜開き燃焼ガスの一部が該煙道5A
を通過するようにして、伝熱パイプ8内を流通する燃焼
ガス量を減らせば、当該空気予熱器における燃焼ガスの
圧力損失を小さく抑えることができる。
Therefore, during the extremely short maximum load of the furnace, the damper 6 is operated to open the flue 5A as appropriate and a portion of the combustion gas flows into the flue 5A.
By reducing the amount of combustion gas flowing through the heat transfer pipe 8, the pressure loss of the combustion gas in the air preheater can be kept small.

、又、響の最大負荷時以外の大部分の通常運転時におい
ては、ダンパ6を操作して煙道5Aを絞り、該煙道5A
を流れる燃焼ガス量を少なく抑えて伝熱パイプ8内を流
れる燃焼ガス量を増大させることにより、効果的な熱回
収を図ることが可能になる。
Also, during most normal operations other than when the Hibiki is at its maximum load, the damper 6 is operated to throttle the flue 5A.
By suppressing the amount of combustion gas flowing through the heat transfer pipe 8 and increasing the amount of combustion gas flowing inside the heat transfer pipe 8, effective heat recovery can be achieved.

かかる構成の空気予熱器によれば、パンフルプレート1
1に扇形状の開口部14を形成すると共に、空気予熱室
9A内のいずれの開口部を通らない部位に、内円筒5の
外周縦方向に沿ってこれを取り巻くように、かつ内円筒
5外周面から外円筒9内周面に行くに従って数が増大す
るように複数同心状に配列される外周面にスパイラルフ
ィン13を備えた伝熱パイプ8を設けた構成により、次
のような利点を有する。
According to the air preheater having such a configuration, the panful plate 1
A fan-shaped opening 14 is formed in the air preheating chamber 9A, and a fan-shaped opening 14 is formed in the area of the air preheating chamber 9A that does not pass through any of the openings. The structure in which a plurality of heat transfer pipes 8 having spiral fins 13 are arranged concentrically on the outer circumferential surface such that the number increases from the surface to the inner circumferential surface of the outer cylinder 9 has the following advantages. .

+11空気予熱室9A内の外周部分に内周部分、Lりも
多くの伝熱パイプ8を配列できる結果、強制うず巻運動
により外周部分を高速で流れようとする空気に多くの抵
抗を与えることができ、外周部分と内周部分で略同−の
空気速度とすることができるから、配列されている伝熱
パイプ8を全て最も効果的に伝熱に関与させることがで
きる。
+11 As a result of being able to arrange as many heat transfer pipes 8 as possible in the outer circumferential portion and the inner circumferential portion of the air preheating chamber 9A, a large amount of resistance is provided to the air that attempts to flow at high speed in the outer circumferential portion due to forced spiral motion. Since the air velocity can be made substantially the same in the outer circumferential portion and the inner circumferential portion, all of the arranged heat transfer pipes 8 can be most effectively involved in heat transfer.

この場合、伝熱パイプ8の配列円周数が多いほどこの効
果は大きくなる。
In this case, the larger the number of circumferences of the heat transfer pipes 8 arranged, the greater this effect becomes.

(2)第1図(Blに示した直線状の切欠からなる開口
部を設けたものと比較して、扇形状開口部では同一の開
口面積に対して、より多くの伝熱パイプ8を配列するこ
とができ、空気側の圧力損失を小さなものにしながら伝
熱パイプ8の配列数量を多く採れる利点がある。
(2) Compared to the opening with the linear cutout shown in Figure 1 (Bl), the fan-shaped opening allows more heat transfer pipes 8 to be arranged for the same opening area. This has the advantage that a large number of heat transfer pipes 8 can be arranged while minimizing pressure loss on the air side.

第7図に示したグラフは、本発明による空気予熱器と第
1図iAl、 (B)に示した空気予熱器との性能を比
較するグラフで、1周配列の場合の管外境膜伝熱係数を
100とした時の配列数の増加による該係数の変化を表
している。
The graph shown in FIG. 7 compares the performance of the air preheater according to the present invention and the air preheater shown in FIG. When the thermal coefficient is set to 100, it represents the change in the coefficient due to an increase in the number of arrays.

尚、比較する空気予熱器は伝熱パイプの本数。In addition, the number of heat transfer pipes in the air preheater being compared.

伝熱面積、外円筒及び内円筒の形状は共に同一のものと
する。又、空気予熱器に供給される空気の量、温度条件
は各配列円周数において同一である。
The heat transfer area and the shapes of the outer cylinder and inner cylinder are both the same. Further, the amount of air supplied to the air preheater and the temperature conditions are the same for each arrangement circumference.

グラフから明らかなように、本発明による空気予熱器は
管外境膜伝熱係数の値が従来のものと比べて大きく、効
率の良い熱伝達が行えるのは明らかである。
As is clear from the graph, the air preheater according to the present invention has a larger value of the outer membrane heat transfer coefficient than the conventional one, and it is clear that efficient heat transfer can be performed.

以上説明したように本発明によれば、内円筒と外円筒と
の間の空間をバッフルプレートを用いて区画し、かつス
パイラルフィン付の伝熱パイプを前記空間のパンフルプ
レート開口部をいずれも通らない部位に配設する構成の
空気予熱器において、バッフルプレートの開口部形状と
伝熱パイプの配列構造の改良により、前記空間の内周部
分より外周部分の伝熱パイプ配列数を多くでき、配列さ
れているすべての伝熱パイプを効果的に伝達に関与させ
ることができると共に、空気側の圧力損失をできるだけ
小さくできる開口部面積でありながら配列数を多(取る
ことができ、以上の結果伝熱パイプの管外境膜伝熱係数
を大きなものとして熱伝達を良好なものとできる空気予
熱器を提供できるものである。
As explained above, according to the present invention, the space between the inner cylinder and the outer cylinder is divided using a baffle plate, and the heat transfer pipe with spiral fins is connected to the opening of the pan full plate in the space. In an air preheater configured to be disposed in a part where the heat transfer pipes do not pass through, by improving the opening shape of the baffle plate and the arrangement structure of the heat transfer pipes, the number of heat transfer pipes arranged in the outer circumference part of the space can be greater than that in the inner circumference part, All the arranged heat transfer pipes can be effectively involved in the transfer, and the opening area can minimize the pressure loss on the air side while allowing for a large number of arrangements. It is possible to provide an air preheater that can improve heat transfer by increasing the heat transfer coefficient of the outer membrane of a heat transfer pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Al−(C1は従来の空気予熱器のパンフルプ
レート形状及び伝熱パイプ配列構造を示す概略的な横断
面図、第2図[Al−(C1は本発明に係る空気予熱器
の一実施例を示す図で、(Alは正面縦断面図、(Bl
は平面図、Ic)は+Al中A−A矢視断面図、第3図
(Atは第2図(AlにおけるB部拡大図、同図(Bl
は同図IAI中C矢視図、第4図(A)はダンパの構造
を示す平面図、同図+Blは側面図、第5図[Alはス
リーブチューブ構造を示す平面図、同図IBIは正面断
面図、同図(C1は同図(Blの右側面図、同図(Di
は左側面図、第6図はバッフルプレートの平面図、第7
図は本発明装置の効果を説明するグラフで、1周配列の
場合の管外境膜伝熱係数を100とした時の配列数の増
加による管外境膜伝熱係数の変化を示す。 1・・・空気予熱器 5・・・内円筒 5A・・・煙道
6・・・ダンパ 8・・・伝熱パイプ 9・・・外円筒
9A・・・空気予熱室 11・・・バッフルプレート1
3・・・スパイラルフィン 14・・・開口部特許出願
人 株式会社 新潟鉄工所 代理人 弁理士 笹 島 富二雄 \7 0 τ−1 淋 第3図(A) 第2図(C,) 110−
FIG. 1 (Al-(C1 is a schematic cross-sectional view showing the pan-full plate shape and heat transfer pipe arrangement structure of a conventional air preheater; FIG. 2 is an air preheater according to the present invention. (Al is a front longitudinal sectional view, (Bl
Ic) is a plan view, Ic) is a sectional view taken along the arrow A-A in +Al, and Figure 3 (At is an enlarged view of part B in Figure 2 (Al);
4(A) is a plan view showing the structure of the damper, FIG. 5 (A) is a plan view showing the structure of the damper, FIG. Front sectional view, same figure (C1 is the same figure (Bl right side view, same figure (Di
is a left side view, Figure 6 is a plan view of the baffle plate, and Figure 7 is a left side view.
The figure is a graph explaining the effect of the device of the present invention, and shows the change in the outer membrane heat transfer coefficient as the number of arrays increases, assuming that the outer membrane heat transfer coefficient in the case of one round arrangement is 100. 1... Air preheater 5... Inner cylinder 5A... Flue 6... Damper 8... Heat transfer pipe 9... Outer cylinder 9A... Air preheating chamber 11... Baffle plate 1
3... Spiral fin 14... Opening patent applicant Niigata Iron Works Co., Ltd. Agent Patent attorney Fujio Sasashima\7 0 τ-1 Hinoki Figure 3 (A) Figure 2 (C,) 110-

Claims (1)

【特許請求の範囲】[Claims] 燃焼用機器の燃焼ガスが流通する内円筒と、該内円筒外
周に配設され、前記燃焼用機器に供給する燃焼用空気の
導入口と導出口とを外周壁に有する外筒と、の間に該燃
焼用空気が流通する環状空間からなる空気予熱室を形成
する一方、前記内円筒内にガス流量調節用ダンパを設け
ると共に前記空気予熱室内の略軸直角な面に軸方向に所
定間隔をもって2以上配設されて該空気予熱室内を軸方
向に3以上の室に区画するバッフルプレートを設け、該
パンフルプレート夫々に、前記内円部外周上の一点から
咳点を通る法線を対称線として外円筒内周に■字形に延
びる一対の切欠線に基づいて切欠かれた扇形状の開口部
を上下に隣接するパンフルプレート毎交互に相反する位
置に位置するように設け、空気予熱室内のバッフルプレ
ート切欠部をいずれも通らない部位に、内円筒の夕)周
繞方向に沿ってこれを取り巻くように、かつ内円筒外周
面から外円筒内周面に行くに従って徐々に数が増大する
ように複数同心状に配列されると共に前記ダンパをバイ
パスして内円筒内のダンパの上流部と下流部とを連通す
る外周面にスパイラルフィンを備えた伝熱パイプを設け
たことを特徴とする空気予熱器。
Between an inner cylinder through which combustion gas of a combustion device flows, and an outer cylinder arranged on the outer periphery of the inner cylinder and having an inlet and an outlet for combustion air supplied to the combustion device on the outer peripheral wall. an air preheating chamber consisting of an annular space through which the combustion air flows, and a damper for regulating gas flow rate is provided in the inner cylinder, and a damper is provided in the inner cylinder at a predetermined interval in the axial direction on a surface substantially perpendicular to the axis of the air preheating chamber. Two or more baffle plates are arranged to divide the air preheating chamber into three or more chambers in the axial direction, and each of the baffle plates is symmetrical with respect to a normal line passing from a point on the outer circumference of the inner circular part to the cough point. Fan-shaped openings cut out based on a pair of notch lines extending in the shape of a letter ■ on the inner periphery of the outer cylinder are provided so as to be positioned alternately in opposite positions in each vertically adjacent panful plate. The number of baffle plates gradually increases from the outer circumferential surface of the inner cylinder to the inner circumferential surface of the outer cylinder so as to surround it along the circumferential direction of the inner cylinder in a portion that does not pass through any of the baffle plate notches. A plurality of heat transfer pipes are arranged in a concentric manner as shown in FIG. Air preheater.
JP58142451A 1983-08-05 1983-08-05 Air preheater Granted JPS6033421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142451A JPS6033421A (en) 1983-08-05 1983-08-05 Air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142451A JPS6033421A (en) 1983-08-05 1983-08-05 Air preheater

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP59274563A Division JPS60211222A (en) 1984-12-28 1984-12-28 Air preheater
JP59274564A Division JPS60211221A (en) 1984-12-28 1984-12-28 Method for fitting damper for air preheater

Publications (2)

Publication Number Publication Date
JPS6033421A true JPS6033421A (en) 1985-02-20
JPS6219652B2 JPS6219652B2 (en) 1987-04-30

Family

ID=15315612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142451A Granted JPS6033421A (en) 1983-08-05 1983-08-05 Air preheater

Country Status (1)

Country Link
JP (1) JPS6033421A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62941U (en) * 1985-06-19 1987-01-07
WO2006006827A1 (en) * 2004-07-13 2006-01-19 Tmt Engineering Co., Ltd. Heat recovering ventilation apparatus of rotary
CN102313469A (en) * 2011-09-30 2012-01-11 茂名重力石化机械制造有限公司 Assembled and welded plate fin type air preheater
CN105180687A (en) * 2015-10-16 2015-12-23 华中科技大学 Double-shell-pass shell-and-tube heat exchanger with baffle rods
CN105737650A (en) * 2016-03-07 2016-07-06 南京航空航天大学 Spirally slotted hole plate heat exchanger and heat exchange method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62941U (en) * 1985-06-19 1987-01-07
WO2006006827A1 (en) * 2004-07-13 2006-01-19 Tmt Engineering Co., Ltd. Heat recovering ventilation apparatus of rotary
US7865074B2 (en) 2004-07-13 2011-01-04 Tmt Engineering Co., Ltd. Heat recovering ventilation apparatus of rotary
CN102313469A (en) * 2011-09-30 2012-01-11 茂名重力石化机械制造有限公司 Assembled and welded plate fin type air preheater
CN105180687A (en) * 2015-10-16 2015-12-23 华中科技大学 Double-shell-pass shell-and-tube heat exchanger with baffle rods
CN105180687B (en) * 2015-10-16 2017-07-07 华中科技大学 A kind of double-shell side pipe shell-type baffle-rod heat exchanger
CN105737650A (en) * 2016-03-07 2016-07-06 南京航空航天大学 Spirally slotted hole plate heat exchanger and heat exchange method thereof

Also Published As

Publication number Publication date
JPS6219652B2 (en) 1987-04-30

Similar Documents

Publication Publication Date Title
US4850857A (en) Apparatus for the combustion of oxidizable substances suspended in a carrier gas
JP3822279B2 (en) EGR gas cooling device
US4342359A (en) Universal flue stack heat exchanger
US2368732A (en) Cooler for engines
JP2751991B2 (en) Heat exchanger
CN109539258B (en) Low NOx radiant tube combustion system of adjustable flue gas reflux volume
JPS6033421A (en) Air preheater
US5273210A (en) Room heating arrangement
US3735810A (en) Plate heat exchanger
US4117883A (en) Heat retriever
JPH0275805A (en) Axial symmetry aslant flow once-through boiler
US3712286A (en) Gas or oil fired heat exchanger for forced air heating unit
US4791887A (en) Boiler with rotatable heat exchanger
JPS61161333A (en) Air preheater
WO2022160663A1 (en) Integrated pressure-bearing condensation boiler
JPH0222848B2 (en)
CA2262694A1 (en) Semi-modular pinrack seal
JPS60211222A (en) Air preheater
JPH0235896B2 (en)
JPS5855333Y2 (en) industrial furnace
JPH10185489A (en) Egr gas cooler
JPS6115426Y2 (en)
JPH01147253A (en) Hot air heating device
JPH0330717Y2 (en)
JPH0655063U (en) Heat pipe type heat exchanger