JP2000026986A - Solid electrolyte type water electrolysis apparatus and water electrolysis method using the apparatus - Google Patents

Solid electrolyte type water electrolysis apparatus and water electrolysis method using the apparatus

Info

Publication number
JP2000026986A
JP2000026986A JP10196218A JP19621898A JP2000026986A JP 2000026986 A JP2000026986 A JP 2000026986A JP 10196218 A JP10196218 A JP 10196218A JP 19621898 A JP19621898 A JP 19621898A JP 2000026986 A JP2000026986 A JP 2000026986A
Authority
JP
Japan
Prior art keywords
water electrolysis
solid electrolyte
electrolysis
electrolyte membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10196218A
Other languages
Japanese (ja)
Inventor
Tsutomu Oi
勉 多井
Seiji Hirai
清司 平井
Akiko Miyake
明子 三宅
Yutaka Ishii
豊 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP10196218A priority Critical patent/JP2000026986A/en
Publication of JP2000026986A publication Critical patent/JP2000026986A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte type water electrolysis apparatus capable of efficiently executing water electrolysis with low voltage without entailing an increase of electrolytic voltage and a water electrolysis method using the apparatus. SOLUTION: The water electrolysis is effected at 60 to 120 deg.C by using the solid electrolyte type water electrolysis apparatus consisting of an electrolytic cell 1 constituted by plating a platinum group metal on both surfaces of a solid electrolyte membrane 2, disposing porous power feeders 3 on both sides of the solid electrolyte membrane 2 and disposing electrode plates 4 on the outer side of the respective porous power feeders 3 and using Ir or Ru as the platinum group metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型水電
解装置およびその装置を用いた水電解法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte type water electrolysis apparatus and a water electrolysis method using the apparatus.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】最初
に本発明の理解のために固体電解質膜を用いた水電解法
について説明する。例えば、図1に示すような電解セル
を備えた固体電解質型水電解装置により水電解を行うこ
とができる。図1において、電解セル1は、固体電解質
膜2と、その固体電解質膜2の両面に添設される多孔質
給電体3、3と、その多孔質給電体3、3の外側に配設
される電極板4、4とから構成されている。5は環状の
ガスケット、6は締結具である。固体電解質膜2は、プ
ロトン導電性材料からなる固体高分子電解質膜とし、カ
チオン交換膜(フッ素樹脂系スルホン酸カチオン膜であ
り、例えば、デュポン社製「ナフィオン117」)が好
ましい。固体電解質膜2の両面には白金族金属からなる
多孔質の金属薄膜がメッキされている。また、多孔質給
電体3は、チタン等からなる導電性のメッシュ状のもの
が用いられている。
2. Description of the Related Art First, a water electrolysis method using a solid electrolyte membrane will be described for understanding the present invention. For example, water electrolysis can be performed by a solid electrolyte type water electrolysis apparatus having an electrolysis cell as shown in FIG. In FIG. 1, an electrolytic cell 1 is provided with a solid electrolyte membrane 2, porous feeders 3, 3 attached to both surfaces of the solid electrolyte membrane 2, and disposed outside the porous feeders 3, 3. Electrode plates 4 and 4. 5 is an annular gasket, 6 is a fastener. The solid electrolyte membrane 2 is a solid polymer electrolyte membrane made of a proton conductive material, and is preferably a cation exchange membrane (a fluororesin sulfonic acid cation membrane, for example, “Nafion 117” manufactured by DuPont). On both surfaces of the solid electrolyte membrane 2, a porous metal thin film made of a platinum group metal is plated. The porous power supply 3 is made of a conductive mesh made of titanium or the like.

【0003】このような構造の電解セル1の上側が陽極
室、下側が陰極室となるように通電し、純水7を陽極室
に供給すれば、陽極室では、 2H20 →02 +4H+ +4e- の反応が起こり、酸素ガスが発生する。陽極室で発生し
たプロトンはプロトン導電性である固体電解質膜2内を
少量の水を伴って移動し、陰極室に到達する。陰極室で
は、この到達したプロトンに、 4H+ +4e- →2H2 の反応が起こり、水素ガスが発生する。このようにして
水電解が行われ、酸素ガスと水素ガスを発生させること
ができるが、このときの電解セル電圧は、次式のように
表される。
The upper side of the electrolytic cell 1 having such a structure is an anode.
The chamber is energized so that the lower side is the cathode chamber, and pure water 7 is
If supplied to the anode chamber, 2HTwo0 → 0Two+ 4H++ 4e- Reaction occurs, and oxygen gas is generated. Generated in the anode compartment
The protons flow through the proton conductive solid electrolyte membrane 2.
It travels with a small amount of water and reaches the cathode compartment. In the cathode compartment
Is the 4H++ 4e-→ 2HTwo  Reaction occurs, and hydrogen gas is generated. Like this
Water electrolysis is performed to generate oxygen gas and hydrogen gas
However, the electrolytic cell voltage at this time is
expressed.

【0004】 V=Vt+Va+Vc+IR ただし、Vは電解セル電圧、Vtは理論分解電圧、Va
は陽極側の過電圧、Vcは陰極側の過電圧、IRは固体
電解質膜の抵抗等のオーム損失を表す。
[0004] V = Vt + Va + Vc + IR where V is the electrolytic cell voltage, Vt is the theoretical decomposition voltage, Va
Is overvoltage on the anode side, Vc is overvoltage on the cathode side, IR is solid
It represents ohmic loss such as resistance of the electrolyte membrane.

【0005】水電解法における水素と酸素の製造コスト
を下げるためには、この電解セル電圧を低くすることが
必要である。電解セル電圧を決定する上記各電圧につい
て説明すると、以下の通りである。
In order to reduce the production cost of hydrogen and oxygen in the water electrolysis method, it is necessary to lower the voltage of the electrolytic cell. The respective voltages for determining the electrolysis cell voltage will be described below.

【0006】Vtは理論的に決まり、大気温度では1.
23Vであるが、電解温度が上昇すれば低下する。
[0006] Vt is theoretically determined, and at ambient temperature it is 1.
23 V, but decreases as the electrolysis temperature increases.

【0007】Vcは、ほぼ一定で0.1V程度である。
IRは電解セルの構造や電解セルに使用されている材料
や電解セルの組立方法などによって決まる。
Vc is almost constant and is about 0.1V.
IR is determined by the structure of the electrolytic cell, the material used for the electrolytic cell, the method of assembling the electrolytic cell, and the like.

【0008】Vaは固体電解質膜にメッキする白金族金
属の種類によって決まり、例えば、IrやRuは白金に
比べてVaを低下させることができる。しかしながら、
IrやRuは純水中に溶解するために電解セル電圧が上
昇することがあり、特にオン・オフの回数の多い水電解
装置の場合には短時間でメッキしたIrやRuが溶出し
てしまう。この状態で電解を続けると、IrやRuのメ
ッキ層が薄くなり、Vaが増加、すなわち電解セル電圧
が増加するので、水素・酸素発生電力費用が大幅に上昇
してしまう。
[0008] Va is determined by the type of platinum group metal to be plated on the solid electrolyte membrane. For example, Ir and Ru can reduce Va as compared with platinum. However,
Since Ir and Ru are dissolved in pure water, the voltage of the electrolytic cell may increase, and particularly in the case of a water electrolyzer having a large number of on / off times, plated Ir or Ru elutes in a short time. . If the electrolysis is continued in this state, the plating layer of Ir or Ru becomes thin, and Va increases, that is, the electrolytic cell voltage increases, so that the cost of hydrogen / oxygen generation power increases significantly.

【0009】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、電解
セル電圧の上昇を招くことなく、低電圧でしかも効率的
に水電解を行うことが可能な固体電解質型水電解装置お
よびその装置を用いた水電解法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to carry out water electrolysis efficiently at a low voltage without increasing the voltage of the electrolytic cell. An object of the present invention is to provide a solid electrolyte type water electrolysis device that can be performed and a water electrolysis method using the device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、固体電解質膜の両面に金属または酸化物を
メッキし、その固体電解質膜の両側に多孔質給電体を配
し、その各多孔質給電体の外側に電極板を配した電解セ
ルからなる固体電解質型水電解装置において、金属また
は酸化物が白金より低い陽極過電圧を有する白金族金属
もしくはその合金またはその酸化物であり、水電解用純
水の加熱手段を備えたことを特徴とする固体電解質型水
電解装置を第一の発明とし、上記第一の発明において、
白金族金属がIrまたはRuであることを特徴とする固
体電解質型水電解装置を第二の発明とし、上記第一また
は第二の発明において、固体電解質膜が固体高分子電解
質膜であることを特徴とする固体電解質型水電解装置を
第三の発明とし、固体電解質膜の両面に白金より低い陽
極過電圧を有する白金族金属もしくはその合金またはそ
の酸化物をメッキし、その固体電解質膜の両側に多孔質
給電体を配し、その各多孔質給電体の外側に電極板を配
した電解セルからなる固体電解質型水電解装置を用い
て、予め純水を高温に加熱した後、水電解を行うことを
特徴とする水電解法を第四の発明とし、上記第四の発明
において、白金族金属がIrまたはRuであることを特
徴とする水電解法を第五の発明とし、上記第四または第
五の発明において、水電解の温度が60〜120℃であ
ることを特徴とする水電解法を第六の発明とし、上記第
四、第五または第六の発明において、固体電解質膜が固
体高分子電解質膜であることを特徴とする水電解法を第
七の発明とする。
In order to achieve the above-mentioned object, the present invention provides a solid electrolyte membrane in which a metal or an oxide is plated on both sides, and a porous feeder is arranged on both sides of the solid electrolyte membrane. In a solid electrolyte type water electrolysis apparatus comprising an electrolytic cell having an electrode plate disposed outside each porous power supply, the metal or oxide is a platinum group metal or an alloy thereof or an oxide thereof having an anode overvoltage lower than platinum. The first invention is a solid electrolyte type water electrolysis apparatus characterized by comprising a heating means for pure water for water electrolysis, and in the first invention,
The second invention is a solid electrolyte type water electrolysis apparatus characterized in that the platinum group metal is Ir or Ru. In the first or second invention, it is preferable that the solid electrolyte membrane is a solid polymer electrolyte membrane. A solid electrolyte type water electrolysis device characterized by the third invention, a platinum group metal having a lower anode overvoltage than platinum or an alloy or oxide thereof is plated on both surfaces of the solid electrolyte membrane, and on both sides of the solid electrolyte membrane Using a solid electrolyte type water electrolysis apparatus comprising an electrolytic cell in which a porous feeder is disposed and an electrode plate disposed outside each porous feeder, pure water is heated to a high temperature in advance, and then water electrolysis is performed. A fourth aspect of the present invention is the water electrolysis method, wherein the platinum group metal is Ir or Ru in the fourth invention. In the invention of A sixth aspect of the present invention is a water electrolysis method characterized in that the temperature of electrolysis is 60 to 120 ° C., and in the fourth, fifth or sixth invention, the solid electrolyte membrane is a solid polymer electrolyte membrane. A featured water electrolysis method is a seventh invention.

【0011】電流密度を横軸に、電解セル電圧を縦軸に
とった場合の以上の各電圧の関係を図6に示す。このと
きの電解温度は25℃である。
FIG. 6 shows the relationship between the above voltages when the current density is plotted on the horizontal axis and the electrolytic cell voltage is plotted on the vertical axis. The electrolysis temperature at this time is 25 ° C.

【0012】Vcは一定であり、オーム損失は不可避的
に発生するものであるから、電解セル電圧を下げるため
には、電解温度を高くしてVtを低くするか、またはV
aが低い白金族金属(例えば、IrやRu)を固体電解
質膜にメッキする必要がある。
Since Vc is constant and ohmic loss inevitably occurs, in order to lower the electrolysis cell voltage, the electrolysis temperature must be increased to lower Vt, or Vt must be lowered.
It is necessary to plate the solid electrolyte membrane with a platinum group metal having a low a (for example, Ir or Ru).

【0013】そこで、PtよりVaの低いIrをメッキ
した固体電解質膜を組み込んだ電解セルを用いて電解温
度を30℃に保持し、電解電流密度1.4A/cm2
電解を続けると、図7に示すように、電解セル電圧は時
間経過とともに上昇した。電解電流密度を上記数値より
上げると、電解セル電圧の上昇速度は大きくなった。そ
こで、同じ電解電流密度で比較すると、純水温度が低い
場合は高い場合よりも電解セル電圧の上昇速度は大きく
なった。しかし、Ptにはこのような電解セル電圧の上
昇は見られなかった。
Therefore, when the electrolysis temperature is maintained at 30 ° C. and the electrolysis is continued at an electrolysis current density of 1.4 A / cm 2 using an electrolysis cell incorporating a solid electrolyte membrane plated with Ir having a lower Va than Pt, FIG. As shown in FIG. 7, the electrolysis cell voltage increased with time. When the electrolytic current density was increased from the above value, the rate of increase of the electrolytic cell voltage was increased. Therefore, when compared at the same electrolytic current density, the rate of increase in the electrolytic cell voltage was higher when the pure water temperature was lower than when it was higher. However, Pt did not show such an increase in the electrolytic cell voltage.

【0014】次に、IrよりVaの低いRuをメッキし
た固体電解質膜を組み込んだ電解セルを用いて水電解を
行うと、電解セル電圧の上昇はIrの場合よりも大きく
なった。
Next, when water electrolysis was performed using an electrolytic cell incorporating a solid electrolyte membrane plated with Ru having a lower Va than Ir, the increase in the electrolytic cell voltage was larger than that in the case of Ir.

【0015】すなわち、単にVaの低い白金族金属(I
rやRu)をメッキした固体電解質膜を用いるだけでは
電解セル電圧が上昇するので、電解セル電圧を低く抑え
るためには、Vaの低い白金族金属(IrやRu)をメ
ッキした固体電解質膜を用いるとともに電解温度を高く
して電解を行うことが必要であることが分かる。
That is, a platinum group metal having a low Va (I)
The use of a solid electrolyte membrane plated with (r or Ru) alone increases the voltage of the electrolytic cell. Therefore, in order to keep the voltage of the electrolytic cell low, a solid electrolyte membrane plated with a platinum group metal with low Va (Ir or Ru) must be used. It can be seen that it is necessary to perform electrolysis while increasing the electrolysis temperature while using.

【0016】一般的に電解を行う場合、電解セルに供給
した電気エネルギーがすべて電解に使用されるわけでは
なく、その一部は純水の昇温に消費される。このため、
水電解を継続していくと、純水の温度は徐々に上昇して
いくが、水電解装置が大きい場合、その上昇に長時間を
要する。
In general, when performing electrolysis, not all of the electric energy supplied to the electrolysis cell is used for electrolysis, and part of the electric energy is consumed for raising the temperature of pure water. For this reason,
As the water electrolysis is continued, the temperature of the pure water gradually increases. However, when the size of the water electrolyzer is large, it takes a long time to raise the temperature.

【0017】そこで、高電解電流密度で水電解を行う
と、純水の温度も短時間で上昇するが、電解セル電圧の
上昇も大きくなる。逆に、低電解電流密度で水電解を行
うと、電解セル電圧の上昇は少ないが、純水の昇温に長
時間を要し、効率的でない。そこで、本発明の固体電解
質型水電解装置の加熱手段を用いてあらかじめ電解用純
水を加熱し、電解温度を高温にした後に電解を開始する
と、電解セル電圧は低く保たれて、しかも電解を継続し
ても電圧は上昇することなく、低電圧で水電解を行うこ
とができる。そのためには、電解温度は60℃以上にす
るのが好ましいが、水電解装置を構成する機器や固体電
解質膜の耐熱性を考慮して、電解温度の上限は120℃
にするのが好ましい。
Therefore, when water electrolysis is performed at a high electrolysis current density, the temperature of pure water also rises in a short time, but the rise of the electrolysis cell voltage also increases. Conversely, when water electrolysis is performed at a low electrolysis current density, the increase in the electrolysis cell voltage is small, but it takes a long time to raise the temperature of pure water, which is not efficient. Therefore, when the pure water for electrolysis is heated in advance using the heating means of the solid electrolyte type water electrolysis apparatus of the present invention, and the electrolysis is started after the electrolysis temperature is raised, the electrolysis cell voltage is kept low, and the electrolysis is performed. Water electrolysis can be performed at a low voltage without increasing the voltage even if the continuation is continued. For this purpose, the electrolysis temperature is preferably set to 60 ° C. or higher, but the upper limit of the electrolysis temperature is set to 120 ° C. in consideration of the heat resistance of the equipment constituting the water electrolysis apparatus and the solid electrolyte membrane.
It is preferred that

【0018】例えば、電解温度を80℃に保持し、Ir
を固体電解質膜にメッキした水電解装置を用いて水電解
を行った場合の電解セル電圧の時間経過を図2に示す。
同図に示すように、電解初期には電解セル電圧(V)は
やや上昇するが、その後ほぼ一定値を保持する。すなわ
ち、Irは電解初期には溶出するが、その後溶出は停止
する。このように、電解温度を高くして電解を開始する
と、電解初期には電解電圧は少し上昇した後、電解温度
30℃の場合よりも低い電圧でほぼ一定値を維持するの
で、長時間高電解電流密度で水電解を行うことが可能に
なる。そのためには、電解セルに供給された電気エネル
ギーの一部を使って水電解装置内の純水を昇温するので
はなく、電気ヒーターなどの加熱手段を水電解装置に設
けて純水を昇温するのが好ましい。その加熱手段により
純水を昇温した後は、加熱手段の運転を停止することが
できる。水電解用電気エネルギーの一部が純水の昇温に
消費されるからである。
For example, while maintaining the electrolysis temperature at 80 ° C.,
FIG. 2 shows the time course of the electrolytic cell voltage when water electrolysis was carried out using a water electrolysis apparatus in which was plated on a solid electrolyte membrane.
As shown in the figure, the electrolysis cell voltage (V) slightly increases at the beginning of electrolysis, but thereafter keeps a substantially constant value. That is, Ir elutes at the beginning of electrolysis, but then stops eluting. As described above, when the electrolysis is started with the electrolysis temperature raised, the electrolysis voltage slightly rises at the beginning of electrolysis and then maintains a substantially constant value at a voltage lower than the case of the electrolysis temperature of 30 ° C. Water electrolysis can be performed at a current density. For this purpose, instead of using a part of the electric energy supplied to the electrolytic cell to raise the temperature of the pure water in the water electrolyzer, a heating means such as an electric heater is provided in the water electrolyzer to raise the pure water. It is preferred to warm. After the temperature of the pure water is raised by the heating means, the operation of the heating means can be stopped. This is because part of the electric energy for water electrolysis is consumed for raising the temperature of pure water.

【0019】[0019]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。本実施例においては、固体電解質膜として固体高
分子電解質膜を用いた。図3は本発明の固体高分子電解
質型水電解装置の一実施形態の全体フロー図である。図
3において、11は図1に示す電解セル1と同じもので
あり、電解セル11を有する電解タンク12からポンプ
13、電気ヒーター14および熱交換器15を経て再び
電解タンク12に至る純水の循環経路16が形成されて
いる。17は補給水の供給路である。また、電解セル1
1上部の陽極室からは、酸素ガスとともに純水ミストが
経路18を経て排出され、この酸素ガス中の純水ミスト
(湿分)は除湿器19において除かれる。また、電解セ
ル11下部の陰極室からは、水素ガスとともに純水が経
路20を経て排出され、この純水および湿分を含有する
水素ガスは水素ガス分離タンク21において、ガス中の
純水が分離されて経路22を経てポンプ13に送られ
る。さらに、水素ガス分離タンク21から経路23を経
て排出された水素ガス中の湿分は除湿器24において除
かれる。25は圧力調整弁、26はコントローラーであ
り、電解タンク12内の圧力と水素ガス分離タンク21
内の圧力差が一定以上になれば、コントローラー26に
より圧力調整弁25が開放される。
Embodiments of the present invention will be described below. In this example, a solid polymer electrolyte membrane was used as the solid electrolyte membrane. FIG. 3 is an overall flowchart of one embodiment of the solid polymer electrolyte type water electrolysis device of the present invention. In FIG. 3, reference numeral 11 denotes the same as the electrolytic cell 1 shown in FIG. 1, and pure water reaches the electrolytic tank 12 again from the electrolytic tank 12 having the electrolytic cell 11 via the pump 13, the electric heater 14, and the heat exchanger 15. A circulation path 16 is formed. 17 is a supply path of makeup water. Electrolytic cell 1
From the upper anode chamber, pure water mist is discharged together with oxygen gas through a passage 18, and the pure water mist (moisture) in the oxygen gas is removed by a dehumidifier 19. From the cathode chamber below the electrolytic cell 11, pure water is discharged together with hydrogen gas through a passage 20, and the pure water and the hydrogen gas containing moisture are removed from the pure water in the gas in a hydrogen gas separation tank 21. It is separated and sent to the pump 13 via the path 22. Further, moisture in the hydrogen gas discharged from the hydrogen gas separation tank 21 via the path 23 is removed by the dehumidifier 24. 25 is a pressure regulating valve, 26 is a controller, which controls the pressure in the electrolytic tank 12 and the hydrogen gas separation tank 21.
When the internal pressure difference becomes equal to or greater than a predetermined value, the controller 26 opens the pressure regulating valve 25.

【0020】以上のように構成される水電解装置によれ
ば、以下のようにして水電解を行うことができる。
According to the water electrolysis apparatus configured as described above, water electrolysis can be performed as follows.

【0021】まず、電気ヒーター14に通電し、ポンプ
13の運転を開始して電解タンク12内の純水をポンプ
13、電気ヒーター14および熱交換器15を経て電解
タンク12に至る循環経路16を循環させつつ昇温させ
る。図4は、その昇温曲線の一例を示す図であり、本発
明によれば、線Aに示すように純水を昇温させて、例え
ば80℃に達した時点で水電解を開始するので、低い電
解セル電圧を維持することができるのである。ところ
が、従来の水電解法では、線Bに示すように、水電解開
始時には水温は低く、電解を継続することにより純水温
度が高くなるというプロセスを経るので、電解セル電圧
が上昇するのである。
First, the electric heater 14 is energized, and the operation of the pump 13 is started so that the pure water in the electrolytic tank 12 flows through the pump 13, the electric heater 14 and the heat exchanger 15 to the circulation path 16 leading to the electrolytic tank 12. The temperature is raised while circulating. FIG. 4 is a diagram showing an example of the temperature rise curve. According to the present invention, the temperature of the pure water is raised as shown by the line A, and the water electrolysis is started when the temperature reaches, for example, 80 ° C. Therefore, a low electrolytic cell voltage can be maintained. However, in the conventional water electrolysis method, as shown by the line B, the water temperature is low at the start of water electrolysis, and the temperature of pure water increases through continuation of electrolysis, so that the electrolysis cell voltage increases.

【0022】このように、純水の温度が所定の温度(6
0〜120℃の範囲の所定温度)に達したら、電気ヒー
ター14への通電を停止する。次に、電解セル11に通
電し、水電解を開始する。水電解中は、電解用電気エネ
ルギーの一部により純水の温度は徐々に上昇するので、
この純水の温度をほぼ一定に保つため、熱交換器15に
は適宜冷水が通入されて循環経路16を循環する純水と
の間で間接的に熱交換が行われる。
As described above, the temperature of the pure water reaches the predetermined temperature (6
When the temperature reaches a predetermined temperature in the range of 0 to 120 ° C.), the power supply to the electric heater 14 is stopped. Next, electricity is supplied to the electrolytic cell 11 to start water electrolysis. During water electrolysis, the temperature of pure water gradually increases due to part of the electric energy for electrolysis,
In order to keep the temperature of the pure water substantially constant, cold water is appropriately introduced into the heat exchanger 15 and heat is indirectly exchanged with the pure water circulating in the circulation path 16.

【0023】このようにして水電解に供する純水の温度
を60〜120℃の範囲の所定温度に保持した状態で、
上記したようなプロセスに従って水電解が行われ、経路
18からは酸素ガスが排出され、経路20からは水素ガ
スが排出され、種々の用途に使用することができる。
With the temperature of the pure water to be subjected to water electrolysis maintained at a predetermined temperature in the range of 60 to 120 ° C.,
Water electrolysis is performed according to the above-described process, oxygen gas is discharged from the path 18, and hydrogen gas is discharged from the path 20, and can be used for various applications.

【0024】なお、水電解温度を80℃に設定する場
合、水素ガスと酸素ガスの発生量を安定させるために
は、電解温度を80±3℃程度に保つように、熱交換器
15による熱交換量をコントロールするのが好ましい。
なお、電解温度としては、60℃より80℃の方が好ま
しい。というのは、80℃の方が電流密度を高くできる
ため、水素および酸素ガスの発生量が増加し、水素およ
び酸素の発生効率が上昇するからである。一方、電解温
度が60℃未満の場合、IrとRuの溶出を防止して電
解するためには、電解電流を下げる必要があるが、電解
電流を下げると、水素発生量が低下するので好ましくな
い。
When the water electrolysis temperature is set to 80 ° C., in order to stabilize the generation amounts of hydrogen gas and oxygen gas, the heat exchanger 15 is controlled to maintain the electrolysis temperature at about 80 ± 3 ° C. It is preferable to control the exchange amount.
In addition, as electrolysis temperature, 80 degreeC is more preferable than 60 degreeC. This is because the current density can be increased at 80 ° C., so that the generation amounts of hydrogen and oxygen gas increase, and the generation efficiency of hydrogen and oxygen increases. On the other hand, when the electrolysis temperature is lower than 60 ° C., in order to prevent the elution of Ir and Ru and perform electrolysis, it is necessary to reduce the electrolysis current. .

【0025】図5は、本発明の固体高分子電解質型水電
解装置の別の実施形態の全体フロー図である。図5は、
図3の電気ヒーター14を熱水通入器27に代えたもの
で、電気ヒーター14による純水の昇温に代えて熱水と
純水との間接的な熱交換により純水の昇温を図るもので
ある。熱水通入器27に通入する熱水により純水の温度
を60〜120℃の範囲の所定温度に上昇させた後は熱
水の通入を停止し、熱交換器15へ適宜冷水を通入し、
循環経路16を循環する純水の温度を一定に保持するこ
とができる。この熱水通入器27に通入する水は特に制
限されるものでなく、例えば、一般工業用水を使用する
ことができ、この工業用水を熱水とするためには、各種
工業装置の廃熱を利用することができる。
FIG. 5 is an overall flow chart of another embodiment of the solid polymer electrolyte type water electrolysis apparatus of the present invention. FIG.
The electric heater 14 in FIG. 3 is replaced with a hot water inlet 27, and the temperature of pure water is raised by indirect heat exchange between hot water and pure water instead of the temperature rise of pure water by the electric heater 14. It is intended. After the temperature of the pure water is raised to a predetermined temperature in the range of 60 to 120 ° C. by the hot water flowing into the hot water inlet 27, the flow of the hot water is stopped, and the cold water is appropriately supplied to the heat exchanger 15. Pass through,
The temperature of the pure water circulating in the circulation path 16 can be kept constant. The water flowing into the hot water inlet 27 is not particularly limited, and, for example, general industrial water can be used. Heat can be used.

【0026】次に、図3または図5に示すような水電解
装置で水電解を行う場合の電気ヒーターまたは熱水通入
器の実際の容量について説明すると、水素発生量10N
3/hrの場合、純水の温度を10℃から80℃まで1
時間で昇温する場合、容量4kWの電気ヒーターを用い
ればよい。また、熱水通入器の場合、電解温度を80℃
にするためには、伝熱面積が約0.3m2 のものを用
い、約100℃の熱水を1トン/hr通入すればよい。こ
のように、電気ヒーターとして大容量のものを用いる必
要はなく、熱水通入器の伝熱面積も小さくてよい。ま
た、純水を所定温度に上昇させた後は、熱源としての電
気エネルギーや熱水は必要とせず、必要なエネルギーは
実質的に水電解用の電力だけであるから、ランニングコ
ストを低く抑えることができる。
Next, the actual capacity of an electric heater or a hot water passing device when performing water electrolysis with a water electrolyzer as shown in FIG. 3 or FIG. 5 will be described.
In the case of m 3 / hr, the temperature of pure water is increased from 10 ° C to 80 ° C by 1
When the temperature is raised over time, an electric heater having a capacity of 4 kW may be used. In the case of a hot water inlet, the electrolysis temperature is 80 ° C.
In order to achieve this, a heat transfer area of about 0.3 m 2 may be used, and hot water at about 100 ° C. may be passed at 1 ton / hr. Thus, it is not necessary to use a large-capacity electric heater, and the heat transfer area of the hot water inlet may be small. In addition, after raising the pure water to a predetermined temperature, electric energy or hot water as a heat source is not required, and the required energy is substantially only electric power for water electrolysis. Can be.

【0027】[0027]

【発明の効果】本発明の水電解装置および水電解法によ
れば、低電圧で水素と酸素を発生させることが可能であ
り、高電解電流密度で水電解を行っても電解電圧の上昇
を招くことはない。従って、水電解のランニングコスト
を大幅に低下させることができる。
According to the water electrolysis apparatus and the water electrolysis method of the present invention, it is possible to generate hydrogen and oxygen at a low voltage, and the electrolysis voltage is increased even if water electrolysis is performed at a high electrolysis current density. Never. Therefore, the running cost of water electrolysis can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体電解質膜ユニットの断面図である。FIG. 1 is a sectional view of a solid electrolyte membrane unit.

【図2】80℃で水電解を行なった場合の電解セル電圧
の時間経過を示す図である。
FIG. 2 is a diagram showing a time course of an electrolytic cell voltage when water electrolysis is performed at 80 ° C.

【図3】本発明の固体高分子電解質型水電解装置の一実
施形態の全体フロー図である。
FIG. 3 is an overall flow chart of one embodiment of a solid polymer electrolyte type water electrolysis device of the present invention.

【図4】本発明の水電解法における純水の昇温曲線と従
来の水電解法における純水の昇温曲線を比較する図であ
る。
FIG. 4 is a diagram comparing a temperature rise curve of pure water in the water electrolysis method of the present invention and a temperature rise curve of pure water in the conventional water electrolysis method.

【図5】本発明の固体高分子電解質型水電解装置の別の
実施形態の全体フロー図である。
FIG. 5 is an overall flowchart of another embodiment of the solid polymer electrolyte water electrolysis device of the present invention.

【図6】電流密度と電解セル電圧の関係を示す図であ
る。
FIG. 6 is a diagram showing a relationship between a current density and an electrolytic cell voltage.

【図7】30℃で水電解を行なった場合の電解セル電圧
の時間経過を示す図である。
FIG. 7 is a diagram showing a time course of an electrolytic cell voltage when water electrolysis is performed at 30 ° C.

【符号の説明】[Explanation of symbols]

1、11…電解セル 2…固体電解質膜 3…多孔質給電体 4…電極板 12…電解タンク 13…ポンプ 14…電気ヒーター 15…熱交換器 16…純水の循環経路 27…熱水通入器 DESCRIPTION OF SYMBOLS 1, 11 ... Electrolysis cell 2 ... Solid electrolyte membrane 3 ... Porous feeder 4 ... Electrode plate 12 ... Electrolysis tank 13 ... Pump 14 ... Electric heater 15 ... Heat exchanger 16 ... Circulation path of pure water 27 ... Hot water passage vessel

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K021 AA01 BA02 BB05 BC05 CA05 CA08 CA09 CA10 CA11 CA12 CA15 DB12 DB18 DB31 DB43 DC01 DC03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K021 AA01 BA02 BB05 BC05 CA05 CA08 CA09 CA10 CA11 CA12 CA15 DB12 DB18 DB31 DB43 DC01 DC03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質膜の両面に金属または酸化物
をメッキし、その固体電解質膜の両側に多孔質給電体を
配し、その各多孔質給電体の外側に電極板を配した電解
セルからなる固体電解質型水電解装置において、金属ま
たは酸化物が白金より低い陽極過電圧を有する白金族金
属もしくはその合金またはその酸化物であり、水電解用
純水の加熱手段を備えたことを特徴とする固体電解質型
水電解装置。
1. An electrolytic cell in which a metal or oxide is plated on both sides of a solid electrolyte membrane, porous feeders are arranged on both sides of the solid electrolyte membrane, and an electrode plate is arranged outside each of the porous feeders. In the solid electrolyte type water electrolysis apparatus comprising, the metal or oxide is a platinum group metal or an alloy thereof or an oxide thereof having an anode overvoltage lower than platinum, and provided with heating means for pure water for water electrolysis. Solid electrolyte type water electrolysis device.
【請求項2】 白金族金属がIrまたはRuであること
を特徴とする請求項1記載の固体電解質型水電解装置。
2. The solid electrolyte type water electrolysis apparatus according to claim 1, wherein the platinum group metal is Ir or Ru.
【請求項3】 固体電解質膜が固体高分子電解質膜であ
ることを特徴とする請求項1または2記載の固体電解質
型水電解装置。
3. The solid electrolyte type water electrolysis apparatus according to claim 1, wherein the solid electrolyte membrane is a solid polymer electrolyte membrane.
【請求項4】 固体電解質膜の両面に白金より低い陽極
過電圧を有する白金族金属もしくはその合金またはその
酸化物をメッキし、その固体電解質膜の両側に多孔質給
電体を配し、その各多孔質給電体の外側に電極板を配し
た電解セルからなる固体電解質型水電解装置を用いて、
予め純水を高温に加熱した後、水電解を行うことを特徴
とする水電解法。
4. A platinum group metal having a lower anode overvoltage than platinum, an alloy thereof or an oxide thereof is plated on both surfaces of the solid electrolyte membrane, and a porous feeder is disposed on both sides of the solid electrolyte membrane. Using a solid electrolyte type water electrolysis device consisting of an electrolytic cell with an electrode plate arranged outside the power feeder,
A water electrolysis method comprising heating pure water to a high temperature in advance and then performing water electrolysis.
【請求項5】 白金族金属がIrまたはRuであること
を特徴とする請求項4記載の水電解法。
5. The water electrolysis method according to claim 4, wherein the platinum group metal is Ir or Ru.
【請求項6】 水電解の温度が60〜120℃であるこ
とを特徴とする請求項4または5記載の水電解法。
6. The water electrolysis method according to claim 4, wherein the temperature of the water electrolysis is 60 to 120 ° C.
【請求項7】 固体電解質膜が固体高分子電解質膜であ
ることを特徴とする請求項4、5または6記載の水電解
法。
7. The water electrolysis method according to claim 4, wherein the solid electrolyte membrane is a solid polymer electrolyte membrane.
JP10196218A 1998-07-10 1998-07-10 Solid electrolyte type water electrolysis apparatus and water electrolysis method using the apparatus Pending JP2000026986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10196218A JP2000026986A (en) 1998-07-10 1998-07-10 Solid electrolyte type water electrolysis apparatus and water electrolysis method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10196218A JP2000026986A (en) 1998-07-10 1998-07-10 Solid electrolyte type water electrolysis apparatus and water electrolysis method using the apparatus

Publications (1)

Publication Number Publication Date
JP2000026986A true JP2000026986A (en) 2000-01-25

Family

ID=16354177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10196218A Pending JP2000026986A (en) 1998-07-10 1998-07-10 Solid electrolyte type water electrolysis apparatus and water electrolysis method using the apparatus

Country Status (1)

Country Link
JP (1) JP2000026986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020888A (en) * 2000-07-05 2002-01-23 Honda Motor Co Ltd Method for raising temperature in water electrolyzing system
JP2019183258A (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump and operation method of electrochemical hydrogen pump
DE102022132294A1 (en) 2022-02-02 2023-08-03 Toyota Jidosha Kabushiki Kaisha WATER ELECTROLYTIC CELL AND PROCESS OF PRODUCTION

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020888A (en) * 2000-07-05 2002-01-23 Honda Motor Co Ltd Method for raising temperature in water electrolyzing system
JP4711492B2 (en) * 2000-07-05 2011-06-29 株式会社神鋼環境ソリューション Method for raising water temperature in water electrolysis system
JP2019183258A (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump and operation method of electrochemical hydrogen pump
JP7122541B2 (en) 2018-04-16 2022-08-22 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump and method of operating the electrochemical hydrogen pump
DE102022132294A1 (en) 2022-02-02 2023-08-03 Toyota Jidosha Kabushiki Kaisha WATER ELECTROLYTIC CELL AND PROCESS OF PRODUCTION

Similar Documents

Publication Publication Date Title
JP7122541B2 (en) Electrochemical hydrogen pump and method of operating the electrochemical hydrogen pump
US5376470A (en) Regenerative fuel cell system
US5635039A (en) Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
EP3947779B1 (en) Electrolysis system with controlled thermal profile
CN109072459B (en) Alkaline water electrolysis device and driving method thereof
US5277994A (en) Variable pressure passive regenerative fuel cell system
JP4347972B2 (en) Water electrolysis equipment
US20090000956A1 (en) Production of Low Temperature Electrolytic Hydrogen
US9518331B2 (en) Hydrogen system and method of operation
US11171342B2 (en) System for regulating the temperature and pressure of a high-temperature electrolyser (SOEC) reversibly operating as a fuel cell stack (SOFC)
CA3107532A1 (en) Electrolysis unit and method for operating the electrolysis unit
EP3550056A1 (en) Hydrogen supply system
US5407756A (en) Anode assembly for a variable pressure passive regenerative fuel cell system
JP2012153965A (en) Method for operating high pressure water electrolysis apparatus
JP2001338672A (en) Home-use electric power supply system
JP2000026986A (en) Solid electrolyte type water electrolysis apparatus and water electrolysis method using the apparatus
CN216712260U (en) Electrolytic cell, electrolytic device stack and electrolytic system
JP2006299323A (en) Water electrolytic device
JP3991146B2 (en) Solid polymer water electrolyzer
JPH06260202A (en) Solid polyelectrolyte fuel cell power generating system
US6576356B1 (en) Preconditioning membranes of a fuel cell stack
JP3228883B2 (en) Operating method of hydrogen / oxygen generator and hydrogen / oxygen generator used for the same
JP3297250B2 (en) Electrolytic ozone generator
JPS63237363A (en) Methanol fuel cell
WO2023106075A1 (en) Water electrolysis device operation method and water electrolysis device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709