JP2000026846A - Aqueous solution composition for absorption type heat pump - Google Patents

Aqueous solution composition for absorption type heat pump

Info

Publication number
JP2000026846A
JP2000026846A JP10205876A JP20587698A JP2000026846A JP 2000026846 A JP2000026846 A JP 2000026846A JP 10205876 A JP10205876 A JP 10205876A JP 20587698 A JP20587698 A JP 20587698A JP 2000026846 A JP2000026846 A JP 2000026846A
Authority
JP
Japan
Prior art keywords
libr
aqueous solution
water
heat pump
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10205876A
Other languages
Japanese (ja)
Other versions
JP3801784B2 (en
Inventor
Takao Kashiwagi
孝夫 柏木
Hiroshi Kojima
弘 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP20587698A priority Critical patent/JP3801784B2/en
Publication of JP2000026846A publication Critical patent/JP2000026846A/en
Application granted granted Critical
Publication of JP3801784B2 publication Critical patent/JP3801784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To obtain a composition which relaxes a crystallization line without reducing the water-vapor absorption performance by adding calcium nitrate to an aqueous solution composition for an absorption type heat pump which includes lithium bromide as its absorbent component and uses water as its coolant. SOLUTION: Calcium nitrate is preferably added to lithium bromide in a mol ratio of 0.1-0.5 (mol of calcium nitrate when the total mol of lithium bromide and calcium is 1). At 275 K of crystallization temperature, for example, in LiBr aqueous solution, crystallization occurs at the concentration of 61%. When 0.2 mol of Ca(NO3)2 is added to 0.8 mol of LiBr, however, crystallization does not occur up to the high concentration of 71%. If the system contains LiBr as the main component, this inversion also can be applied to absorbents of LiBr-LiI system, LiBr-LiCl system and LiBr-LiI-LiCl system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式ヒートポン
プに使用される作動媒体組成物に関し、より具体的に
は、水を冷媒とし、吸収剤の成分として臭化リチウムを
含む吸収式ヒートポンプ用水溶液組成物に関する。な
お、本明細書中吸収式ヒートポンプの語は、特に断わら
ない限り、広義の意味すなわち得られる冷水を利用する
ための吸収式冷凍機と、得られる温水を利用するための
狭義の吸収式ヒートポンプの両方を意味するものとす
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a working medium composition used for an absorption heat pump, and more specifically to an aqueous solution for an absorption heat pump containing water as a refrigerant and lithium bromide as a component of an absorbent. Composition. Note that, in this specification, the term absorption heat pump has a broad meaning, that is, an absorption refrigerator for utilizing the obtained cold water and a narrow sense absorption heat pump for utilizing the obtained hot water, unless otherwise specified. Shall mean both.

【0002】[0002]

【従来の技術】吸収式ヒートポンプは、図1のとおり
(例えば、単効用形の場合)、基本的には、再生器、
凝縮器、蒸発器及び吸収器から成り、このうち蒸
発器及び吸収器は、所定の真空に保持される容器内
に収容されている。作動媒体として、水を冷媒とし、吸
収剤(LiBr等)を含む水溶液を使用する場合の操作
例について述べる。吸収器において水蒸気を吸収して
希釈された吸収液は、再生器において外部熱源により
加熱することにより吸収液中の水を蒸発する一方、吸収
液自体は濃縮され、水蒸気の吸収能が回復される。
2. Description of the Related Art An absorption heat pump is basically composed of a regenerator, as shown in FIG.
It comprises a condenser, an evaporator, and an absorber, of which the evaporator and the absorber are housed in a container maintained at a predetermined vacuum. An operation example in the case of using an aqueous solution containing water as a refrigerant and an absorbent (LiBr or the like) as a working medium will be described. The absorbing liquid diluted by absorbing water vapor in the absorber evaporates water in the absorbing liquid by heating with an external heat source in the regenerator, while the absorbing liquid itself is concentrated, and the absorbing ability of water vapor is restored. .

【0003】凝縮器では、再生器で蒸発した水蒸気
が外部からの冷却用流体(通常は水)との熱交換器によっ
て凝縮される。次いで、この凝縮水は、より低圧の蒸発
器へ送られ、ここで外部からの低温熱源(通常は水)
から熱を得て、再生器よりは、はるかに低温低圧で蒸
発、気化する。一方、再生器で濃縮された吸収液は吸
収器へ送られ、ここで蒸発器で蒸発、気化した冷媒
蒸気(水蒸気)を吸収して希釈され、その希釈吸収液は
再生器へ循環される。
[0003] In the condenser, water vapor evaporated in the regenerator is condensed by a heat exchanger with an external cooling fluid (usually water). This condensed water is then sent to a lower pressure evaporator, where an external cold heat source (usually water)
From the heat, which evaporates and evaporates at a much lower temperature and lower pressure than the regenerator. On the other hand, the absorbent concentrated in the regenerator is sent to the absorber, where it is diluted by absorbing the evaporated and vaporized refrigerant vapor (water vapor) in the evaporator, and the diluted absorbent is circulated to the regenerator.

【0004】ここでヒートポンプと外部との熱の授受に
ついてみると、次の4種類が同時に行われ、全体として
バランスしている。(1)再生器で外部から高温の熱
を受けること。(2)凝縮器で外部へやや高温の熱
(凝縮潜熱)を与えること。(3)蒸発器で外部から
低温の熱(蒸発潜熱)を汲み上げること(=ヒートポン
プの語の由来である)。(4)吸収器で外部へ中程度
の温度の熱(吸収熱)を与えること。
Here, regarding the transfer of heat between the heat pump and the outside, the following four types are performed simultaneously, and the balance is achieved as a whole. (1) Receiving high-temperature heat from outside with a regenerator. (2) Applying slightly high-temperature heat (condensation latent heat) to the outside with a condenser. (3) Pumping low-temperature heat (evaporation latent heat) from the outside with an evaporator (= derived from the term heat pump). (4) Applying medium temperature heat (absorption heat) to the outside with an absorber.

【0005】これが冷凍機(冷水機ともいう)としての
場合には、蒸発器で得られる冷熱を冷房に利用する。
同時に凝縮器、吸収器で発生する不要な温熱を冷却
水で除去しなければならない。すなわち、図1のような
吸収式ヒートポンプを冷水機として使う場合、冷やされ
た冷水を二次側へ送って利用する。温められた冷却水は
クーリングタワーへ送られる。
When this is used as a refrigerator (also referred to as a chiller), cold heat obtained from the evaporator is used for cooling.
At the same time, unnecessary heat generated in the condenser and absorber must be removed with cooling water. That is, when the absorption heat pump as shown in FIG. 1 is used as a water cooler, the cooled water is sent to the secondary side for use. The heated cooling water is sent to the cooling tower.

【0006】狭義のヒートポンプ(温水機ともいう)で
は、凝縮器、吸収器で得られる温熱を暖房に利用す
る。同時に蒸発器では温排水などから蒸発熱を与えて
やらなければならない。すなわち、図1のような吸収式
ヒートポンプを温水機として使う場合、温められた温水
を二次側へ送って利用する。低温熱源水から低温の熱を
汲み上げる。以上は、吸収式ヒートポンプのうちでも、
最も基本的な単効用形の一例であるが、二重効用形で
は、再生器で発生する冷媒蒸気の凝縮熱を利用して熱効
率を改善し、再生器での加熱量を大幅に少なくすること
ができる。
In a heat pump (also called a water heater) in a narrow sense, the heat obtained by a condenser and an absorber is used for heating. At the same time, the evaporator must provide heat of evaporation from hot wastewater. That is, when the absorption type heat pump as shown in FIG. 1 is used as a water heater, heated hot water is sent to the secondary side for use. Pumps low-temperature heat from low-temperature heat source water. Above, among the absorption heat pump,
This is one of the most basic single-effect types.In the double-effect type, heat efficiency is improved by utilizing the heat of condensation of refrigerant vapor generated in the regenerator, and the amount of heating in the regenerator is significantly reduced. Can be.

【0007】ところで、吸収式ヒートポンプに使用され
る作動媒体としては、これまで種々のものが提案されて
きてはいるが、我が国においては、現実には専ら水と臭
化リチウムとからなる系(「水ーLiBr」系)が使用され
ている。水ーLiBr系は、安定性、腐食性、価格など
に関して優れているため、従来から広く採用されてきた
が、結晶限界に基づく性能上の限界がある。通常使用さ
れる吸収液のLiBr濃度は60〜65wt%と高く、
液温も60℃以下であるため、冷房負荷の高い夏場等の
時期や緊急停止時に結晶化が起り、例えば再生器や吸
収器内壁への付着、これらを結ぶ配管の閉塞等により
運転不能になる危険がある。
[0007] By the way, various types of working medium have been proposed as the working medium used in the absorption heat pump. However, in Japan, actually, a system consisting exclusively of water and lithium bromide ("" Water-LiBr ”). The water-LiBr system has been widely used in the past because of its excellent stability, corrosiveness, price, and the like, but has a performance limit based on the crystal limit. The LiBr concentration of a commonly used absorbing solution is as high as 60 to 65 wt%,
Since the liquid temperature is also 60 ° C. or lower, crystallization occurs during the summer time when the cooling load is high or during an emergency stop, and the operation becomes impossible due to, for example, adhesion to the regenerator or the inner wall of the absorber and a blockage of a pipe connecting them. There is danger.

【0008】したがって、もし上記結晶限界が緩和さ
れ、すなわち吸収剤が高濃度でも結晶析出がないなら
ば、次のような多くの性能改善が期待できる。第1に、
吸収液の濃度幅を広げられること。それによって溶液の
循環量が減少し、溶液ポンプの小型化、省電力が図れ
る。また溶液熱交換器での濃溶液、稀溶液間の温度差が
広がるため、溶液熱交換器の小型化もしくは熱回収率が
向上し、延いては作業成績(cop)が向上する。第2
に、吸収器において吸収溶液の温度を高くできるので、
機械の大きな部分を占める吸収器の小型化が図れる。緩
和効果が大きければ空冷の可能性もでてくる。同じ理由
から、温水機として使う場合、より高温の温水が得られ
る。第3に、蒸発器の蒸発温度を低下できるため、冷水
機としてはより低温の冷水が得られ、温水機としてはよ
り低温の低温熱源を利用できる。
[0008] Therefore, if the above crystal limit is relaxed, that is, if there is no crystal precipitation even at a high concentration of the absorbent, the following many performance improvements can be expected. First,
The concentration range of the absorbing solution can be expanded. As a result, the circulation amount of the solution is reduced, and the size of the solution pump can be reduced and power consumption can be reduced. Further, since the temperature difference between the concentrated solution and the dilute solution in the solution heat exchanger is widened, the solution heat exchanger is reduced in size or the heat recovery rate is improved, and the work performance (cop) is further improved. Second
In addition, since the temperature of the absorbing solution can be increased in the absorber,
The absorber that occupies a large part of the machine can be downsized. If the mitigation effect is large, the possibility of air cooling comes out. For the same reason, when used as a water heater, higher temperature hot water is obtained. Third, since the evaporation temperature of the evaporator can be reduced, cold water of lower temperature can be obtained as a water heater, and a lower temperature heat source of lower temperature can be used as a water heater.

【0009】それらのため、結晶限界(晶析ライン)を
緩和する試み、提案が従来からいろいろと行われてきて
いるが、十分実用に耐えるものは未だ開発されるに至っ
ていない。例えば、この系の水溶液に臭化亜鉛や塩化亜
鉛を添加することが提案されている。しかしこれら臭化
亜鉛や塩化亜鉛を加えた系では、溶液自体が酸性とな
り、きわめて強い腐食性を示すだけではなく、10重量
%程度以下の希薄溶液では水酸化亜鉛の生成に伴う沈澱
物が生じてしまう。
For these reasons, various attempts have been made to relax the crystal limit (crystallization line), and various proposals have been made. However, those which can sufficiently withstand practical use have not yet been developed. For example, it has been proposed to add zinc bromide or zinc chloride to an aqueous solution of this system. However, in the system to which zinc bromide or zinc chloride is added, the solution itself becomes acidic, and not only exhibits extremely strong corrosiveness, but also forms a precipitate accompanying the formation of zinc hydroxide in a dilute solution of about 10% by weight or less. Would.

【0010】この点、特公昭61ー52738号公報に
おいては、上述水と臭化リチウムとからなる系につい
て、臭化リチウムにヨウ化リチウムを加え、その量的割
合につき、臭化リチウムを70〜99モル%、ヨウ化リ
チウムを1〜30モル%とすることにより、臭化リチウ
ム水溶液に比べて蒸気圧降下が大きく、また結晶化温度
が低くなり、この吸収液の使用によって吸収冷暖房機の
性能向上及び吸収液の固化などの不具合の発生を抑制す
ることが可能となったというものである。
In this regard, Japanese Patent Publication No. Sho 61-52738 discloses that in a system comprising water and lithium bromide, lithium iodide is added to lithium bromide, and the amount of lithium bromide is 70- By setting 99 mol% and lithium iodide to 1 to 30 mol%, the vapor pressure drop is larger and the crystallization temperature is lower than that of an aqueous solution of lithium bromide. It is possible to suppress the occurrence of problems such as improvement and solidification of the absorbing solution.

【0011】また、特公平5ー28749号公報では、
発生器、凝縮器、蒸発器及び吸収器よりなる吸収冷凍機
に使用される吸収液において、臭化リチウム、ヨウ化リ
チウム及び塩化リチウムが、重量比で臭化リチウム1:
ヨウ化リチウム0.1〜1.0:塩化リチウム0.05
〜0.50で混合された混合物を含む吸収剤を、冷媒と
しての水に溶解させた水溶液からなる吸収冷凍機用吸収
液が提案され、これにより高濃度で且つ晶析温度の低い
吸収液が提供できたとしている。さらに特許第2750
834号(特開平9ー14784号)ではハロゲン化セ
シウムを添加することで吸収液の結晶析出温度を低下さ
せている。
In Japanese Patent Publication No. 5-28749,
In an absorption liquid used for an absorption refrigerator including a generator, a condenser, an evaporator, and an absorber, lithium bromide, lithium iodide and lithium chloride contain lithium bromide in a weight ratio of 1:
Lithium iodide 0.1 to 1.0: lithium chloride 0.05
An absorption solution for an absorption refrigerator comprising an aqueous solution obtained by dissolving an absorbent containing a mixture mixed at ~ 0.50 in water as a refrigerant has been proposed, whereby an absorption solution having a high concentration and a low crystallization temperature has been proposed. It has been provided. Patent No. 2750
No. 834 (JP-A-9-14784) lowers the crystal deposition temperature of the absorbing solution by adding cesium halide.

【0012】[0012]

【発明が解決しようとする課題】本発明者は、水ーLi
Br系の吸収剤の組成についてさらに詳細に調査し、各
種観点から実測、検討を重ねたところ、水ーLiBr系
の吸収剤に硝酸カルシウムを混合することにより、水蒸
気吸収性能を低下させることなく、晶析ラインを有効に
緩和させ得ることを見い出し、本発明に到達するに至っ
たものである。
SUMMARY OF THE INVENTION The present inventor has proposed water-Li
The composition of the Br-based absorbent was investigated in more detail, and measured and examined from various viewpoints.By mixing calcium nitrate with the water-LiBr-based absorbent, without lowering the water vapor absorption performance, The present inventors have found that the crystallization line can be effectively relaxed, and have reached the present invention.

【0013】すなわち本発明は、吸収式ヒートポンプ用
の「水ーLiBr」系水溶液組成物に対し、硝酸カルシ
ウムという特定の成分を含有させることにより、水蒸気
吸収性能を低下させることなく、晶析ラインを緩和させ
てなる(すなわち吸収剤の溶解度を上げ、吸収液の結晶
析出温度を低下させてなる)、実用上きわめて有効な吸
収式ヒートポンプ用水溶液組成物を提供することを目的
とする。
[0013] That is, the present invention provides a water-LiBr aqueous solution composition for an absorption heat pump containing a specific component called calcium nitrate, so that the crystallization line can be formed without lowering the water vapor absorption performance. It is an object of the present invention to provide a practically extremely effective aqueous composition for an absorption heat pump, which is moderated (that is, the solubility of the absorbent is increased and the crystallization temperature of the absorbing liquid is lowered).

【0014】[0014]

【課題を解決するための手段】本発明は、水を冷媒と
し、吸収剤成分として臭化リチウムを含む吸収式ヒート
ポンプ用水溶液組成物であって、該組成物に硝酸カルシ
ウムを含有させてなることを特徴とする吸収式ヒートポ
ンプ用水溶液組成物を提供する。
SUMMARY OF THE INVENTION The present invention provides an aqueous solution composition for an absorption type heat pump containing water as a refrigerant and lithium bromide as an absorbent component, wherein the composition contains calcium nitrate. Provided is an aqueous solution composition for an absorption heat pump characterized by the following.

【0015】[0015]

【発明の実施の形態】本発明によれば、水を冷媒とし、
吸収剤成分として臭化リチウム(LiBr)を含む水溶
液組成物に硝酸カルシウム〔Ca(NO32〕を含有さ
せることにより、水蒸気吸収性能を低下させることなく
吸収液の結晶析出ラインを緩和させることができる。本
発明における硝酸カルシウムの添加割合は、臭化リチウ
ムに対して、モル比で好ましくは0.1〜0.5(臭化
リチウムと硝酸カルシウムとの合計モル数を1としたと
き、その中の硝酸カルシウムのモル数)の範囲で添加さ
れる。また、本発明の水溶液組成物は、臭化リチウムを
主成分とするものであれば、LiBrーLiI系、Li
BrーLiCl系、LiBrーLiIーLiCl系の吸
収剤にも適用される。
According to the present invention, water is used as a refrigerant,
Increasing calcium nitrate [Ca (NO 3 ) 2 ] in an aqueous solution composition containing lithium bromide (LiBr) as an absorbent component, thereby alleviating the crystal precipitation line of the absorbent without lowering the water vapor absorption performance. Can be. In the present invention, the addition ratio of calcium nitrate is preferably 0.1 to 0.5 in terms of a molar ratio with respect to lithium bromide (when the total number of moles of lithium bromide and calcium nitrate is 1, when the total mole number thereof is 1). (Number of moles of calcium nitrate). Further, the aqueous solution composition of the present invention may be a LiBr-LiI system, Li
It is also applicable to Br-LiCl-based and LiBr-LiI-LiCl-based absorbents.

【0016】[0016]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明が実施例に限定されないことはもち
ろんである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but it is needless to say that the present invention is not limited to the examples.

【0017】図2は、基本組成であるLiBr水溶液に
対して、各種成分を含有させた溶液に関する溶解度線を
比較した図である。横軸に濃度、縦軸に温度を示し、添
加成分としてCa(NO32、1,3ープロパンジオー
ル、LiCl+ZnCl2、エタノールアミンを含むL
iBr水溶液を示している。図2中、(1)LiBr+
Ca(NO32は、LiBrとCa(NO32をモル比
で0.8:0.2としているが、他の各成分の比率は下
記(2)〜(4)のとおりである。
FIG. 2 is a diagram comparing solubility lines of a solution containing various components with an aqueous LiBr solution as a basic composition. The concentration is shown on the horizontal axis, the temperature is shown on the vertical axis, and L containing Ca (NO 3 ) 2 , 1,3-propanediol, LiCl + ZnCl 2 , and ethanolamine as additive components.
An iBr aqueous solution is shown. In FIG. 2, (1) LiBr +
In Ca (NO 3 ) 2 , the molar ratio of LiBr and Ca (NO 3 ) 2 is 0.8: 0.2, but the ratios of other components are as shown in the following (2) to (4). .

【0018】(2)LiBr+1,3ープロパンジオー
ルは重量比でLiBr/1,3ープロパンジオール=3.
5〔Int J. Refrig. Vol.20, No.5,
pp.319ー325(1997)〕。(3)LiBr
+LiCl+ZnCl2は、重量比率でLiBr:Li
Cl:ZnCl2 =3:1:4〔Refrigerat
ion Vol.68, No.789〕。(4)LiBr+
エタノールアミンは重量比でLiBr/エタノールアミ
ン=3.5〔「Journal of Chemical
and Engineering Data」Vol.4
1, No.2(1996)〕。
(2) LiBr + 1,3-propanediol has a weight ratio of LiBr / 1,3-propanediol = 3.
5 [Int J. Refrig. Vol. 20, No. 5,
pp. 319-325 (1997)]. (3) LiBr
+ LiCl + ZnCl 2 is LiBr: Li in weight ratio
Cl: ZnCl 2 = 3: 1: 4 [Refrigerate
ion Vol. 68, No. 789]. (4) LiBr +
Ethanolamine was LiBr / ethanolamine = 3.5 by weight ratio [“Journal of Chemical”
and Engineering Data "Vol.4
1, No. 2 (1996)].

【0019】図2において、溶解度線の左側の領域が結
晶が析出せずに作動できる領域であるが、LiBr水溶
液の場合、濃度61%(mass%:以下同じ)では2
75K、濃度65%では306Kで結晶析出が始まって
しまい、作動温度領域に制限がある。これに対して、C
a(NO32、1,3ープロパンジオール、LiCl+
ZnCl2、エタノールアミンの各添加成分を含有させた
場合の溶解度線は何れも右方に大きくシフトし、作動温
度領域が緩和される。
In FIG. 2, the region on the left side of the solubility line is a region where the crystal can be operated without precipitation of crystals. However, in the case of LiBr aqueous solution, the concentration is 61% (mass%: the same applies hereinafter).
When the concentration is 75K and the concentration is 65%, crystal precipitation starts at 306K, and the operating temperature range is limited. In contrast, C
a (NO 3 ) 2 , 1,3-propanediol, LiCl +
In the case where ZnCl 2 and ethanolamine are added, the solubility lines are all shifted largely to the right, and the operating temperature range is relaxed.

【0020】しかし、1,3ープロパンジオールを含有
する場合には、これが有機化合物であるため安定性が悪
いし、ZnCl2 を含有する場合には、腐食性が大き
く、酸性溶液になってしまうため、炭素鋼等の鉄製材料
を腐食し、ステンレス鋼の場合でも相当の配慮が必要で
ある。さらにエタノールアミンを含有する場合には、有
機化合物であるため安定性が悪く、また粘性が大きくな
る可能性がある。
However, when 1,3-propanediol is contained, its stability is poor because it is an organic compound, and when it contains ZnCl 2 , it is highly corrosive and becomes an acidic solution. Therefore, iron materials such as carbon steel are corroded, and considerable consideration is required even in the case of stainless steel. Further, when ethanolamine is contained, it is an organic compound, so that the stability is poor and the viscosity may be increased.

【0021】ところが、本発明に係るCa(NO32
含有させた場合には、これが安定な無機化合物であるた
め、上記有機化合物のような欠点がなく、ZnCl2
ような腐食性の問題もないため添加成分としてきわめて
有効である。図2中、結晶析出温度275Kについて、
基本組成であるLiBr水溶液は濃度61%で結晶を析
出するが、Ca(NO32の場合には、濃度71%とい
う高濃度まで結晶析出がない。この事実は、例えば結晶
析出温度275Kの場合、Ca(NO32を含有させる
ことで、吸収剤の濃度を濃度71%という高濃度とし得
ることを意味している。
However, when Ca (NO 3 ) 2 according to the present invention is contained, since it is a stable inorganic compound, it does not have the drawbacks of the above-mentioned organic compounds and has the corrosive properties of ZnCl 2 . Since it has no problem, it is extremely effective as an additive component. In FIG. 2, for a crystal precipitation temperature of 275K,
LiBr aqueous solution, which is the basic composition, precipitates crystals at a concentration of 61%, but in the case of Ca (NO 3 ) 2 , no crystals precipitate up to a high concentration of 71%. This fact means that, for example, at a crystal deposition temperature of 275 K, the concentration of the absorbent can be as high as 71% by including Ca (NO 3 ) 2 .

【0022】図3は、LiBr+Ca(NO32混合塩
水溶液の溶解度線、すなわち基本組成であるLiBr水
溶液に対してCa(NO32の添加量を変えた場合の溶
解度線を示した図である。横軸に濃度、縦軸に温度を示
し、併せてLiBr水溶液及びCa(NO32水溶液に
ついても示している。図3から、基本組成LiBr水溶
液に対してCa(NO32を添加することで溶解度線が
右方へシフトし、結晶析出限界が大きく緩和されている
ことが明らかである。
FIG. 3 is a graph showing the solubility curve of the LiBr + Ca (NO 3 ) 2 mixed salt aqueous solution, that is, the solubility curve when the amount of Ca (NO 3 ) 2 added to the LiBr aqueous solution as the basic composition is changed. It is. The horizontal axis shows the concentration and the vertical axis shows the temperature, and also shows the LiBr aqueous solution and Ca (NO 3 ) 2 aqueous solution. From FIG. 3, it is clear that the solubility line is shifted to the right by adding Ca (NO 3 ) 2 to the aqueous solution of the basic composition LiBr, and the crystal precipitation limit is greatly relaxed.

【0023】例えば290Kでは、LiBr水溶液では
濃度55%までで限度であるが、LiBr9モルに対し
てCa(NO32を1モル添加した場合、溶液濃度66
%まで緩和することができる。LiBrに対するCa
(NO32の添加量を増加させるに伴い作動濃度は更に
緩和され、70%以上の濃度とすることができる。例え
ば同じく290Kで、LiBr8モルに対してCa(N
32を2モル添加した場合、溶液濃度72%強まで緩
和することができる。
For example, at 290K, the concentration of LiBr aqueous solution is limited to 55%, but when 1 mol of Ca (NO 3 ) 2 is added to 9 mol of LiBr, the solution concentration becomes 66%.
%. Ca for LiBr
With an increase in the amount of (NO 3 ) 2 added, the working concentration is further relaxed, and can be increased to 70% or more. For example, at 290 K, Ca (N
When 2 mol of O 3 ) 2 is added, the solution concentration can be relaxed to a little over 72%.

【0024】図4は温度280Kにおける、LiBr+
Ca(NO32混合塩水溶液の溶解度を示すグラフ図で
ある。図3で云えば温度280Kの線Aに相当してい
る。図4中、横軸はCa(NO32のモル混合比、縦軸
は溶液濃度であり、混合比=0はLiBr水溶液の場
合、混合比=1はCa(NO32水溶液の場合である。
FIG. 4 shows LiBr + at a temperature of 280K.
Ca (NO 3) is a graph showing the solubility of 2 mixed salt solution. In FIG. 3, it corresponds to the line A at a temperature of 280K. In FIG. 4, the horizontal axis represents the molar mixing ratio of Ca (NO 3 ) 2 , and the vertical axis represents the solution concentration. The mixing ratio = 0 is for the LiBr aqueous solution, and the mixing ratio = 1 is for the Ca (NO 3 ) 2 aqueous solution. It is.

【0025】図4のとおり、LiBr水溶液に対してC
a(NO32を含有させることにより、溶質〔LiBr
+Ca(NO32〕の溶解度を上げることができる。C
a(NO32〕の含有割合を増加させるに伴い、溶液濃
度が増加して晶析ラインが改善され、モル比0.1で6
5.4%、モル比0.5で75%の溶解度を示してい
る。以降、Ca(NO32〕の含有割合を増加させるに
伴い徐々に低下するが、Ca(NO32量、モル比0.
5で69%、モル比0.7でモル比0.1の場合と同等
の溶解度を示している。
As shown in FIG. 4, C
a (NO 3 ) 2 , solute [LiBr
+ Ca (NO 3 ) 2 ]. C
a (NO 3 ) 2 ], the crystallization line was improved by increasing the solution concentration, and the molar ratio of 0.1
A solubility of 5.4% and a molar ratio of 0.5 indicates 75%. Thereafter, it gradually decreases as the content ratio of Ca (NO 3 ) 2 ] increases, but the amount of Ca (NO 3 ) 2 and the molar ratio are 0.1.
5 shows a solubility equivalent to 69%, and a molar ratio of 0.7 shows the same solubility as in the case of a molar ratio of 0.1.

【0026】これを、吸収剤としてのLiBrを主体と
する水溶液でる点、水蒸気吸収性能を低下させることな
く〔すなわち、溶質全重量(kg)当りの水蒸気吸収性
能を低下させることなく〕溶解度を改善する必要がある
点等を合わせて考慮すると、図4の事実はLiBrに対
してCa(NO32を好ましくは0.1〜0.5(モル
比)程度の範囲で含有させることにより結晶晶析ライン
を改善し緩和させ得ることを示している。このように、
本発明におけるCa(NO32添加による結晶晶析ライ
ンの緩和効果は、有効な優れた効果であることが明らか
である。
This is because an aqueous solution mainly composed of LiBr as an absorbent improves the solubility without lowering the water vapor absorption performance (ie, without lowering the water vapor absorption performance per total weight of solute (kg)). Considering the points that need to be performed, the fact of FIG. 4 shows that the inclusion of Ca (NO 3 ) 2 in LiBr preferably in the range of about 0.1 to 0.5 (molar ratio) It shows that the crystallization line can be improved and relaxed. in this way,
It is clear that the effect of relaxing the crystal crystallization line by adding Ca (NO 3 ) 2 in the present invention is an effective and excellent effect.

【0027】[0027]

【発明の効果】本発明によれば、吸収式ヒートポンプに
おいて使用する、LiBr系、LiBrーLiI系及び
LiBrーLiIーLiCl系の吸収剤水溶液におい
て、水蒸気吸収性能を低下させることなく、高濃度でも
結晶析出を回避し、晶析ラインを有効に緩和させること
ができる。これにより前述のとおりの種々の利点を得る
ことができる。
According to the present invention, in the aqueous solution of the LiBr-based, LiBr-LiI-based, and LiBr-LiI-LiCl-based absorbents used in the absorption heat pump, even if the water-absorbing performance is not reduced, even if the concentration is high. Crystal precipitation can be avoided and the crystallization line can be effectively relaxed. Thereby, various advantages as described above can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の吸収式ヒートポンプ(単効用形)の概略
図。
FIG. 1 is a schematic diagram of a conventional absorption heat pump (single-effect type).

【図2】基本組成であるLiBr水溶液に対して、各種
成分を含有させた溶液に関する溶解度線を比較した図。
FIG. 2 is a diagram comparing solubility lines of a solution containing various components with an aqueous LiBr solution as a basic composition.

【図3】LiBr+Ca(NO32混合塩水溶液の溶解
度線を示した図。
FIG. 3 is a diagram showing a solubility curve of a LiBr + Ca (NO 3 ) 2 mixed salt aqueous solution.

【図4】温度280Kにおける、LiBr+Ca(NO
32混合塩水溶液の溶解度を示すグラフ図。
FIG. 4 LiBr + Ca (NO) at a temperature of 280 K
3 ) Graph showing the solubility of two mixed salt aqueous solutions.

【符号の説明】 再生器 凝縮器 蒸発器 吸収器[Explanation of symbols] Regenerator Condenser Evaporator Absorber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水を冷媒とし、吸収剤成分として臭化リチ
ウムを含む吸収式ヒートポンプ用水溶液組成物であっ
て、該組成物に硝酸カルシウムを含有させてなることを
特徴とする吸収式ヒートポンプ用水溶液組成物。
1. An aqueous solution composition for an absorption heat pump, comprising water as a refrigerant and lithium bromide as an absorbent component, wherein the composition contains calcium nitrate. Aqueous composition.
【請求項2】上記臭化リチウムに対する硝酸カルシウム
の割合がモル比で0.1〜0.5である請求項1記載の
吸収式ヒートポンプ用水溶液組成物。
2. The aqueous solution composition for an absorption heat pump according to claim 1, wherein the molar ratio of calcium nitrate to lithium bromide is 0.1 to 0.5.
JP20587698A 1998-07-06 1998-07-06 Absorption-type heat pump aqueous solution composition Expired - Fee Related JP3801784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20587698A JP3801784B2 (en) 1998-07-06 1998-07-06 Absorption-type heat pump aqueous solution composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20587698A JP3801784B2 (en) 1998-07-06 1998-07-06 Absorption-type heat pump aqueous solution composition

Publications (2)

Publication Number Publication Date
JP2000026846A true JP2000026846A (en) 2000-01-25
JP3801784B2 JP3801784B2 (en) 2006-07-26

Family

ID=16514202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20587698A Expired - Fee Related JP3801784B2 (en) 1998-07-06 1998-07-06 Absorption-type heat pump aqueous solution composition

Country Status (1)

Country Link
JP (1) JP3801784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063103A (en) * 2010-09-17 2012-03-29 Nagoya Univ Micro adsorbent dispersing absorption liquid, micro adsorbent dispersing latent heat accumulating material, and heat exchanger-type absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063103A (en) * 2010-09-17 2012-03-29 Nagoya Univ Micro adsorbent dispersing absorption liquid, micro adsorbent dispersing latent heat accumulating material, and heat exchanger-type absorber

Also Published As

Publication number Publication date
JP3801784B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP3078837B2 (en) Steam absorbent composition
JPS592477B2 (en) Absorption liquid for absorption refrigerators
US3478530A (en) Absorption refrigeration system
JP4101373B2 (en) Heat absorption system
US5108638A (en) Absorbent solution for use with absorption refrigeration apparatus
JP3801784B2 (en) Absorption-type heat pump aqueous solution composition
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
JP2950522B2 (en) Mixed absorption liquid and absorption heat conversion device using the same
US11466189B2 (en) Absorption cycle apparatus and related method
JPS60118785A (en) Absorbing solution for absorption refrigerator
JP2708857B2 (en) Absorption refrigerator
JPS6114282A (en) Medium for absorption type refrigerator
JP2000319646A (en) Absorbing solution for absorption refrigerating machine and absorption refrigerating machine
JPS5827300B2 (en) Refrigerant for absorption refrigerators
JPH11304276A (en) Absorption refrigerating machine
JPH02169967A (en) Absorption system refrigerating machine and liquid absorbent
JPH0528751B2 (en)
JP2668063B2 (en) Absorbent composition for absorption air conditioner
JPS63187071A (en) Lean solution composition
JPH03174487A (en) Absorbent liquid for absorption refrigerating machine
JPS60159568A (en) Absorbing solution
JPS6241564A (en) Refrigeration composition for absorption refrigerator
JPH0528750B2 (en)
JPH07280379A (en) Aqueous solution composition for absorption type heat pump
JPH0528752B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees