JP2000024428A - Porous plastic filter - Google Patents

Porous plastic filter

Info

Publication number
JP2000024428A
JP2000024428A JP19684098A JP19684098A JP2000024428A JP 2000024428 A JP2000024428 A JP 2000024428A JP 19684098 A JP19684098 A JP 19684098A JP 19684098 A JP19684098 A JP 19684098A JP 2000024428 A JP2000024428 A JP 2000024428A
Authority
JP
Japan
Prior art keywords
rubber
elastomer
filter
thermoplastic elastomer
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19684098A
Other languages
Japanese (ja)
Other versions
JP3638794B2 (en
Inventor
Yosuke Egawa
洋介 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP19684098A priority Critical patent/JP3638794B2/en
Publication of JP2000024428A publication Critical patent/JP2000024428A/en
Application granted granted Critical
Publication of JP3638794B2 publication Critical patent/JP3638794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filter excellent in heat resistance and strength without lowering elasticity modulus by using a thermoplastic elastomer having a soft phase for generating entropy elasticity and a rigid phase for preventing plastic deformation in the molecule, and also showing the property of an elastomer at the normal temperature and capable of plastic deformation at high temperature. SOLUTION: As a material for porous plastic filter, the thermoplastic elastomer having the soft phase for generating entropy elasticity and the rigid phase for preventing plastic deformation and showing the property of the elastomer at the normal temperature and capable of plastic deformation at high temperatures, and showing viscoelasticity behavior having a rubber like flat part in a broad range in a high temperature range higher than m.p., is used. Preferably, the elastomer having the rubber like flat part in the temperature range over 20 deg.C is suited. Since a polyolefin base elastomer is less in elasticity modulus change at the rubber like flat part and high in flatness, the polyolefin base one is preferable selected. The fine particles to be sintered having 10-120 μm average particle size are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体や気体等の流
体中に含まれる微粒子を分離ろ過するための多孔質プラ
スチックフィルタに関する。
[0001] The present invention relates to a porous plastic filter for separating and filtering fine particles contained in a fluid such as a liquid or a gas.

【0002】[0002]

【従来の技術】従来、液体や気体等の流体中に含まれる
サブミクロン〜10μm程度の微粒子を分離ろ過するた
めの多孔質フィルタが多数知られている。
2. Description of the Related Art Hitherto, a large number of porous filters have been known for separating and filtering fine particles of submicron to about 10 μm contained in fluids such as liquids and gases.

【0003】例えば、ポリエチレンやポリプロピレン等
のポリオレフィン系材料の微小粒子を、金型内に充填
し、材料の融点近傍まで加熱し、粒子表面のみを焼結成
形した多孔質フィルタがある。しかしながら、この種の
材料は結晶性樹脂であるため、粘弾性挙動としては、融
点以上で急激に弾性率が低下し、しかもゴム状平坦部が
ほとんど認められないので、フィルタを構成する材料が
微小粒子の場合、少しの温度上昇で流動し、ラプラス原
理により粒子間空隙の閉塞が起こりやすく、気孔率およ
び気孔径のコントロールが難しくなる。従って、上記多
孔質フィルタは、比較的粒径の大きな粒子による焼結成
形を余儀なくされ、必然的に気孔径が大きくなり、フィ
ルタとしての用途は自ずと限定される。
For example, there is a porous filter in which fine particles of a polyolefin-based material such as polyethylene or polypropylene are filled in a mold, heated to a temperature near the melting point of the material, and only the particle surface is sintered and formed. However, since this type of material is a crystalline resin, the viscoelastic behavior is such that the elastic modulus sharply decreases above the melting point, and almost no rubber-like flat part is observed. In the case of particles, the particles flow with a slight temperature rise, and the voids between the particles are likely to be blocked by the Laplace principle, making it difficult to control the porosity and the pore diameter. Therefore, the porous filter is inevitably subjected to sinter molding with particles having a relatively large particle size, and the pore size is inevitably increased, and its use as a filter is naturally limited.

【0004】また、微孔径の多孔質体を成形しにくいと
いう上記課題を解決するために、ポリエチレンの中でも
超高分子量ポリエチレンが多孔質フィルタ成形材料とし
て多く用いられている。超高分子量ポリエチレンは、特
異な粘弾性挙動を示し、分子量が数百万と非常に高いた
め、結晶性高分子材料にも関わらず、融点以上の広い温
度範囲でゴム状平坦部が認められる。このゴム状平坦部
の温度域で焼結成形を行うと、結晶の融解は起こってい
るが、材料自体はある程度の弾性率を有しているため、
粒子間空隙の閉塞が起こることなく容易に多孔質体の焼
結成形が可能である。ただし、この多孔質フィルタに
は、60℃程度の雰囲気下までしか連続使用できないと
いう、耐熱性(測定法については後記する)不足の問題
がある。
In order to solve the above-mentioned problem that it is difficult to form a porous body having a fine pore diameter, among polyethylenes, ultra-high molecular weight polyethylene is often used as a material for forming a porous filter. Ultra-high molecular weight polyethylene exhibits a unique viscoelastic behavior and a very high molecular weight of several millions, so that a rubber-like flat portion is observed in a wide temperature range of the melting point or higher regardless of the crystalline polymer material. When sintering is performed in the temperature range of this rubber-like flat part, melting of the crystal occurs, but the material itself has a certain elastic modulus,
Sinter molding of the porous body can be easily performed without blocking of the interparticle voids. However, this porous filter has a problem of insufficient heat resistance (the measurement method will be described later), which can be continuously used only in an atmosphere of about 60 ° C.

【0005】一方、耐熱性を改善するために、非晶性樹
脂のポリサルホン(ガラス転移温度190℃)やポリエ
ーテルスルホン(ガラス転移温度225℃)の微小粒子
を、金型内に充填し、これら材料のガラス転移温度近傍
の200〜270℃の温度まで加熱し、焼結成形した多
孔質フィルタが提案されている。確かに、耐熱性はポリ
サルホンで150℃、ポリエーテルスルホンで180℃
程度でフィルタ用には十分である。しかし、上記両材料
とも、多孔質体を形成するのに有利なゴム状平坦部が、
たかだか205〜225℃(PS)および240〜26
0℃(PES)の範囲と狭いので、比較的粒径の大きな
粒子を用いた焼結成形を余儀なくされ、多孔質フィルタ
として、細かい塵を分離できるようにし、捕集性能を向
上させためには、焼結した基材粒子の表面に、微粒子の
ポリテトラフロオロエチレン(以下「PTFE」と記
す)を、接着剤とともに、直接的に被着して気孔径を小
さくする方法が採られていた。
On the other hand, in order to improve heat resistance, fine particles of an amorphous resin such as polysulfone (glass transition temperature 190 ° C.) and polyether sulfone (glass transition temperature 225 ° C.) are filled in a mold. A porous filter has been proposed which is heated to a temperature of 200 to 270 ° C. near the glass transition temperature of a material and sintered and molded. Certainly, the heat resistance is 150 ° C for polysulfone and 180 ° C for polyether sulfone.
The degree is enough for the filter. However, both of the above materials have a rubber-like flat portion that is advantageous for forming a porous body,
At most 205-225 ° C (PS) and 240-26
Since it is as narrow as 0 ° C. (PES), sinter molding using particles having a relatively large particle size is inevitable, and as a porous filter, it is possible to separate fine dust and improve collection performance. A method has been adopted in which fine polytetrafluoroethylene (hereinafter referred to as "PTFE") is applied directly to the surface of sintered base particles together with an adhesive to reduce the pore diameter. .

【0006】このような方法で得られる多孔質フィルタ
では、PTFEが粘着性に乏しく、上記多孔質基材と被
着されたPTFEとの界面での接着性が不十分で、ろ過
や逆洗の際に多孔質基材からPTFE粒子が脱落しやす
い。結果として、払い落し性能の低下や、フィルタ表面
での捕集性能の低下を招き、また脱落したPTFE粒子
が捕集した微粒子中に混入する等の問題があった。さら
に、上記材料はガラス転移点温度が高く、しかも、ガラ
ス転移温度以下では脆いという特性を有し、150℃や
180℃というフィルタの使用温度は該ガラス転移温度
以下となるため、壊れやすいものとなる。
[0006] In the porous filter obtained by such a method, the PTFE has poor tackiness, the adhesion at the interface between the porous base material and the PTFE adhered is insufficient, and filtration and backwashing are not possible. At this time, the PTFE particles are likely to fall off the porous substrate. As a result, there has been a problem in that the wiping performance is reduced, the collecting performance on the filter surface is reduced, and the dropped PTFE particles are mixed into the collected fine particles. Further, the above-mentioned material has a high glass transition temperature, and has a property that it is brittle below the glass transition temperature, and since the operating temperature of the filter such as 150 ° C. or 180 ° C. is below the glass transition temperature, it is fragile. Become.

【0007】[0007]

【発明が解決しようとする課題】本発明は、プラスチッ
ク微小粒子を焼結成形した微粒子分離用多孔質フィルタ
における、上記のような問題の解決、すなわち焼結温度
付近で弾性率の急激な低下がなく、連続使用に耐える耐
熱性を有し、しかも、使用環境下で脆くなったり、壊れ
やすくなることのない技術の提供を課題とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in a porous filter for separating fine particles obtained by sintering and molding plastic fine particles, that is, a rapid decrease in the elastic modulus near the sintering temperature. It is another object of the present invention to provide a technology that has heat resistance enough to withstand continuous use and that is not brittle or fragile in a use environment.

【0008】[0008]

【課題を解決するための手段】本発明者は、鋭意検討の
結果、多孔質体の成形に有利なゴム状平坦部が広く、使
用環境下で柔軟性があり、しかも、例えば硬質相として
ポリプロピレンと、軟質相としてエチレン−プロピレン
ゴムとからなるポリオレフィン系熱可塑性エラストマー
等、材料の選択によっては140℃程度の環境下で使用
できる、多孔質フィルタ用原料を見いだした。
Means for Solving the Problems As a result of diligent studies, the present inventor has found that a rubber-like flat portion which is advantageous for forming a porous body is wide and flexible in use environment, and for example, polypropylene as a hard phase. And a raw material for a porous filter that can be used in an environment of about 140 ° C. depending on the selection of materials, such as a polyolefin-based thermoplastic elastomer composed of ethylene-propylene rubber as a soft phase.

【0009】本発明の要旨とするところは、分子中にエ
ントロピー弾性を発現する軟質相と塑性変形を防止する
ための硬質相とを有し、常温ではエラストマーの性質を
示し、かつ高温では塑性変形が可能となり、融点以上の
高温域において広い温度範囲にわたるゴム状平坦部を有
する粘弾性挙動を示す、熱可塑性エラストマーから構成
されたことを特徴とする微粒子分離用多孔質プラスチッ
クフィルタに存する。
The gist of the present invention is to have a soft phase exhibiting entropy elasticity in a molecule and a hard phase for preventing plastic deformation, exhibit the properties of an elastomer at normal temperature, and exhibit plastic deformation at high temperature. And a viscoelastic behavior having a rubber-like flat portion over a wide temperature range in a high temperature range not lower than the melting point.

【0010】また、本発明の別の要旨は、上記の要旨に
加え、焼結される粒子が、ポリオレフィン系の熱可塑性
エラストマーから構成されている点、および、焼結され
る粒子の平均粒径が10〜120μmである点にある。
Another aspect of the present invention, in addition to the above aspects, is that the particles to be sintered are made of a polyolefin-based thermoplastic elastomer, and that the average particle size of the particles to be sintered is Is 10 to 120 μm.

【0011】[0011]

【発明の実施の形態】本発明の多孔質プラスチックフィ
ルタを構成する材料としては、分子中にエントロピー弾
性を発現する軟質相と塑性変形を防止するための硬質相
を有し、常温ではエラストマーの性質を示し、かつ高温
では塑性変形が可能であり、融点以上の高温域において
広い範囲にわたるゴム状平坦部を有する粘弾性挙動を示
す、熱可塑性エラストマーであれば特に限定されるもの
ではなく、好ましくは20℃を超え、特に好ましくは4
0℃以上の温度範囲にわたるゴム状平坦部を有するもの
が多孔質フィルタを成形する上では好適である。
BEST MODE FOR CARRYING OUT THE INVENTION The material constituting the porous plastic filter of the present invention has a soft phase exhibiting entropy elasticity in a molecule and a hard phase for preventing plastic deformation. Shows, and can be plastically deformed at high temperature, showing a viscoelastic behavior having a rubber-like flat portion over a wide range in a high temperature range above the melting point, is not particularly limited as long as it is a thermoplastic elastomer, preferably Above 20 ° C., particularly preferably 4
Those having a rubber-like flat portion over a temperature range of 0 ° C. or more are suitable for forming a porous filter.

【0012】ここで、粘弾性挙動は、通常、横軸に温
度、縦軸に弾性率をとった図表によって示されるが、図
1は後記実施例1に示すポリオレフィン系熱可塑性エラ
ストマー(融点163℃、ガラス転移温度−10℃)の
例であり、常温では108 dyne/cm2 のオーダー
の弾性率を有し、温度150℃までは昇温により若干低
下するが107 dyne/cm2 のオーダーを保つ。弾
性率は、温度が150℃を超えると急激に低下するが、
融点以上の高温域において160℃あたりから、約2×
106 dyne/cm2 で一定となり、この例では、2
50℃まで約90℃の広い温度範囲にわたるゴム状平坦
部を有していることがわかる。なお、一般に、ゴムの粘
弾性挙動として、ガラス転移温度以上の高温域に平坦部
(ゴム状領域)が認められることから、ゴム状平坦部の
名称で呼ばれる。
Here, the viscoelastic behavior is usually shown by a table in which the horizontal axis shows temperature and the vertical axis shows elastic modulus. FIG. 1 shows a polyolefin-based thermoplastic elastomer (melting point: 163 ° C.) shown in Example 1 described later. , A glass transition temperature of -10 ° C), and has an elastic modulus on the order of 10 8 dyne / cm 2 at room temperature, and slightly decreases to a temperature of 150 ° C. by increasing the temperature, but is on the order of 10 7 dyne / cm 2 . Keep. The elastic modulus drops sharply when the temperature exceeds 150 ° C,
Approximately 2 ×
It is constant at 10 6 dyne / cm 2 , and in this example, 2
It can be seen that it has a rubbery flat over a wide temperature range of about 90 ° C up to 50 ° C. In general, a flat portion (rubber-like region) is recognized as a viscoelastic behavior of rubber in a high-temperature region equal to or higher than the glass transition temperature, and thus is referred to as a rubber-like flat portion.

【0013】本発明におけるフィルタ構成材料として、
具体的には、ポリオレフィン系、ポリウレタン系、ポリ
スチレン系、ポリエステル系、ポリアミド系、塩素化ポ
リエチレン系、ポリ塩化ビニル系、フッ素系等の熱可塑
性エラストマーが挙げられ、使用環境等により適宜材料
を選択することができる。
[0013] As a filter constituting material in the present invention,
Specific examples include thermoplastic elastomers such as polyolefin-based, polyurethane-based, polystyrene-based, polyester-based, polyamide-based, chlorinated polyethylene-based, polyvinyl chloride-based, and fluorine-based thermoplastics. be able to.

【0014】ポリオレフィン系熱可塑性エラストマー
は、ブレンドまたはアロイのポリマー構造を有し、硬質
相としてはポリプロピレンやポリエチレン等があり、軟
質相としてはエチレン−プロピレンゴム、アクリルゴ
ム、ブチルゴム、天然ゴム等がある。また、ポリウレタ
ン系熱可塑性エラストマーは、ブロックのポリマー構造
を有し、硬質ブロックとしては4,4’−ジフェニルメ
タンジイソシアネートやトルエンジイソシアネート等が
あり、軟質ブロックとしてはポリカプロラクトングリコ
ール、ポリ(エチレン1,4アジペート)グリコール、
(ヘキサンジオール1,6カーボネート)グリコール等
がある。
The polyolefin-based thermoplastic elastomer has a blended or alloyed polymer structure, and the hard phase includes polypropylene and polyethylene, and the soft phase includes ethylene-propylene rubber, acrylic rubber, butyl rubber, natural rubber, and the like. . Further, the polyurethane-based thermoplastic elastomer has a block polymer structure, and hard blocks include 4,4′-diphenylmethane diisocyanate and toluene diisocyanate, and soft blocks include polycaprolactone glycol and poly (ethylene 1,4 adipate). ) Glycol,
(Hexanediol 1,6 carbonate) glycol and the like.

【0015】ポリスチレン系熱可塑性エラストマーは、
ブロックのポリマー構造を有し、硬質ブロックとして
は、ポリスチレン等があり、軟質ブロックとしては、ポ
リブタジエン、ポリイソプレン、水素添加ポリブタジエ
ン等がある。ポリエステル系熱可塑性エラストマーは、
ブロックのポリマー構造を有し、硬質ブロックとして
は、ポリエステル等があり、軟質ブロックとしては、ポ
リエーテル等がある。ポリアミド系熱可塑性エラストマ
ーは、ブロックのポリマー構造を有し、硬質ブロックと
しては、ポリアミド等があり、軟質ブロックとしては、
ポリエステル、ポリエーテル等がある。塩素化ポリエチ
レン系熱可塑性エラストマーは、マルチブロックまたは
ランダムのポリマー構造を有し、硬質相としては、ポリ
エチレン等があり、軟質相としては、塩素化ポリエチレ
ン等がある。ポリ塩化ビニル系熱可塑性エラストマー
は、ブレンドのポリマー構造を有し、硬質相としては、
結晶ポリ塩化ビニル等があり、軟質相としては、ニトリ
ルゴム等がある。また、フッ素系熱可塑性エラストマー
は、ブロックまたはグラフトのポリマー構造を有し、硬
質相としては、フッ素樹脂等があり、軟質相としては、
フッ素ゴム等がある。
[0015] The polystyrene-based thermoplastic elastomer is
The hard block includes a polystyrene and the like, and the soft block includes a polybutadiene, a polyisoprene, a hydrogenated polybutadiene and the like. Polyester-based thermoplastic elastomers
The hard block includes a polyester or the like, and the soft block includes a polyether or the like. Polyamide-based thermoplastic elastomer has a block polymer structure, as a hard block, there is a polyamide or the like, as a soft block,
Examples include polyester and polyether. The chlorinated polyethylene thermoplastic elastomer has a multi-block or random polymer structure, and the hard phase includes polyethylene and the like, and the soft phase includes chlorinated polyethylene and the like. The polyvinyl chloride-based thermoplastic elastomer has a polymer structure of a blend, and as a hard phase,
There is crystalline polyvinyl chloride and the like, and as the soft phase there is nitrile rubber and the like. Further, the fluorine-based thermoplastic elastomer has a block or graft polymer structure, as the hard phase, there is a fluororesin or the like, as the soft phase,
There is fluororubber and the like.

【0016】これら各種の熱可塑性エラストマー材料の
なかでは、ゴム状平坦部における弾性率変化が特に少な
く平坦性が高いので、安定した品質のものが得られる点
から、ポリオレフィン系のものを選択するのが好まし
い。特に、硬質相としてポリプロピレンを含むものが好
ましい。硬質相由来の融点が150℃以上と比較的高い
点が、フィルターの耐熱性向上に好影響を及ぼしている
と考えられる。
Among these various kinds of thermoplastic elastomer materials, a polyolefin-based material is selected from the viewpoint that a stable quality can be obtained because the elasticity change in the rubber-like flat portion is particularly small and the flatness is high. Is preferred. In particular, those containing polypropylene as the hard phase are preferred. It is considered that the fact that the melting point derived from the hard phase is relatively high at 150 ° C. or higher has a favorable effect on the improvement of the heat resistance of the filter.

【0017】本発明の多孔質プラスチックフィルタにお
いて、焼結される微小粒子の粒径としては、平均粒径が
10〜120μmのものが好結果をもたらす。平均粒径
が10μm未満では、粒子を成形金型内に均一に充填し
にくい等、粉体の取扱性に問題があり、粒径が120μ
mを超えるものでは微粒子分離用フィルタとしての十分
な捕集性能を発現できにくい。実際には、分離すべき流
体中の微粒子の大きさによって、適切な気孔径となるよ
うに、焼結される熱可塑性エラストマー微小粒子の平均
粒径が選択される。また、均一な気孔径を必要とする場
合は、微小粒子の平均粒径だけでなく、粒径の分布の狭
いものがよい。そのような微小粒子を得るためには、例
えば粒子の分級や篩分が行われることもある。
In the porous plastic filter of the present invention, a fine particle having an average particle diameter of 10 to 120 μm yields good results. If the average particle size is less than 10 μm, there is a problem in powder handling such as difficulty in uniformly filling the particles into a molding die.
If it exceeds m, it is difficult to exhibit sufficient collection performance as a filter for separating fine particles. In practice, depending on the size of the fine particles in the fluid to be separated, the average particle size of the thermoplastic elastomer fine particles to be sintered is selected so as to have an appropriate pore size. When a uniform pore size is required, not only the average particle size of the fine particles but also a narrow particle size distribution is preferable. In order to obtain such fine particles, for example, classification or sieving of the particles may be performed.

【0018】また、熱可塑性エラストマー微小粒子の焼
結は、材料の融点以上の高温域にある弾性率の一定な範
囲、すなわちゴム状平坦部内の温度で行われる。好まし
くは、このゴム状平坦部における弾性率は、106 〜1
8 dyne/cm2 の範囲内にあるのがよい。なぜな
ら、焼結成形時の材料の弾性率が高すぎると、粒子相互
間の融着が行われず、また、低すぎると流動して、融着
した粒子が気孔を閉塞してしまうからである。
The sintering of the thermoplastic elastomer fine particles is carried out in a certain range of the elastic modulus in a high temperature range higher than the melting point of the material, that is, at a temperature in the rubber-like flat portion. Preferably, the elastic modulus in the rubber-like flat portion is 10 6 to 1
0 8 good that is in the range of dyne / cm 2. This is because if the elastic modulus of the material at the time of sintering is too high, fusion between the particles is not performed, and if it is too low, the particles flow and the fused particles block the pores.

【0019】本発明の多孔質プラスチックフィルタの焼
結成形方法には、特に制限はなく、通常は、いわゆる型
内焼結法による。すなわち、筒状等の内表面形状を有す
る外型とその内部に挿入した同様の外表面形状を有する
内型とよりなる成形金型を用い、外型内表面と内型外表
面の間隙部に形成されるキャビティ内に、熱可塑性エラ
ストマー微小粒子を充填した後、成形金型ともどもこれ
を加熱する静的成形法のほか、(1)先端部に成形型を
有する温度調整が可能なシリンダ内に往復運動するピス
トン(プランジャーともいう)を内蔵したラム式押出機
を用いて行うラム押出法、(2)先端部に成形型を有す
る温度調整が可能なシリンダ内にスクリューを内蔵した
射出成形機を用いて行う射出成形法、(3)先端部に成
形型を有する温度調整が可能なシリンダ内にスクリュー
を内蔵した押出成形機を用いて行う押出成形法などの動
的成形法がある。
The method of sintering and molding the porous plastic filter of the present invention is not particularly limited, and is usually a so-called in-mold sintering method. That is, using a molding die consisting of an outer mold having an inner surface shape such as a cylindrical shape and an inner mold having a similar outer surface shape inserted therein, the gap between the inner surface of the outer mold and the outer surface of the inner mold is used. After filling the formed cavity with the thermoplastic elastomer microparticles, the molding die is heated together with the molding die. In addition to (1) a temperature-adjustable cylinder having a molding die at the tip end A ram extrusion method using a ram type extruder with a reciprocating piston (also called a plunger), (2) an injection molding machine with a molding die at the tip and a screw inside a temperature-adjustable cylinder And (3) a dynamic molding method such as an extrusion molding method using an extruder having a screw inside a temperature-adjustable cylinder having a molding die at the tip.

【0020】これら静的成形法や動的成形法等の方法か
ら、最終的な多孔質体の形状など、要求に応じて適宜選
択すればよい。
From the methods such as the static molding method and the dynamic molding method, the shape of the final porous body may be appropriately selected according to requirements.

【0021】[0021]

【実施例】以下、本発明を実施例により詳細に説明す
る。また、実施例で使用した材料の物性の測定は、次の
様にして行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. The measurement of physical properties of the materials used in the examples was performed as follows.

【0022】[実施例]ポリプロピレン(硬質相)40
wt%とエチレンープロピレンゴム(軟質相)25wt
%、その他成分(潤滑剤等)35wt%からなるポリオ
レフィン系熱可塑性エラストマーのペレット(融点16
3℃、ガラス転移温度−10℃)を機械粉砕し、平均粒
径98μmの多孔質フィルター用微小粒子を得た。金型
は筒状表面を有する内型と外型を組み合わせ、両型間の
空隙に、上記微小粒子を振動充填し、粒子を充填した金
型を160〜200℃の温度で30〜60分加熱し、い
わゆる型内焼結法に従って焼結成形を行い、内径50m
m、外径56mm、長さ1200mmの筒状の多孔質フ
ィルタを得た。
[Example] Polypropylene (hard phase) 40
wt% and ethylene-propylene rubber (soft phase) 25 wt%
%, And other components (lubricant etc.) 35 wt% of a polyolefin thermoplastic elastomer pellet (melting point 16
(3 ° C., glass transition temperature −10 ° C.) was mechanically pulverized to obtain fine particles for a porous filter having an average particle diameter of 98 μm. The mold is a combination of an inner mold and an outer mold having a cylindrical surface, and the gap between the two molds is vibration-filled with the above-mentioned fine particles, and the mold filled with the particles is heated at a temperature of 160 to 200 ° C. for 30 to 60 minutes. Then, sinter molding is performed according to the so-called in-mold sintering method, and the
m, a cylindrical porous filter having an outer diameter of 56 mm and a length of 1200 mm were obtained.

【0023】[フィルタの評価]−110℃における耐
熱性 上記実施例において得られた筒状多孔質体を集塵装置に
設置し、炭酸カルシウム(平均粒径:5μm)を25g
/m3 含む110℃の含塵空気を送り込み、ろ過風速1
m/minで連続1週間稼働させ、運転時の差圧、多孔
質フィルタ通過後の粉塵濃度、およびフィルタの変形状
態を観察した。その結果を下の表に示す。なお、多孔質
フィルタ表面に堆積する粉塵を払い落とす方法として
は、通常の逆洗方式を用いた。
[Evaluation of Filter] Heat resistance at -110 ° C. The tubular porous body obtained in the above example was placed in a dust collector, and 25 g of calcium carbonate (average particle size: 5 μm) was placed.
Feeding a 110 ° C. air containing dust, including / m 3, filtered wind speed 1
The system was operated continuously at m / min for one week, and the differential pressure during operation, the dust concentration after passing through the porous filter, and the deformation state of the filter were observed. The results are shown in the table below. In addition, as a method of removing dust accumulated on the surface of the porous filter, a normal backwashing method was used.

【0024】 [0024]

【0025】上の表に示したとおり、実施例の場合、運
転時の差圧が200mmAq以下、粉塵濃度も0.1m
g/m3 以下と良好な結果となり、連続運転の間多孔質
フィルタの破損トラブル等は発生しなかった。
As shown in the above table, in the case of the embodiment, the differential pressure during operation was 200 mmAq or less and the dust concentration was 0.1 m
g / m 3 or less, a good result was obtained, and no trouble such as breakage of the porous filter occurred during continuous operation.

【0026】[比較例]上記実施例において、ポリオレ
フィン系熱可塑性エラストマーに代えて、超高分子量ポ
リエチレン(融点140℃)を使用したほかは、実施例
と全く同様にして多孔質フィルタを得た。また、実施例
と同様に、フィルタの耐熱性を評価したところ、1週間
稼働後、大変形を起こして実用性がなかった。
Comparative Example A porous filter was obtained in the same manner as in the above example, except that ultrahigh molecular weight polyethylene (melting point 140 ° C.) was used instead of the polyolefin-based thermoplastic elastomer. When the heat resistance of the filter was evaluated in the same manner as in the example, after operating for one week, a large deformation occurred, and the filter was not practical.

【0027】[0027]

【発明の効果】本発明によれば、成形に有利なゴム状平
坦部が広い温度範囲にわたり、材料の選択によっては1
40℃程度の環境下で連続使用できる、熱可塑性エラス
トマー材料を使用しているため、焼結される粒子が10
〜120μmの微小粒子であっても、容易に所望の気孔
径および気孔率を有する多孔質体の焼結成形が可能であ
り、PTFE微粒子の被着等の後工程がなくても、流体
中の微粒子の高捕集性能を有する多孔質プラスチックフ
ィルタを提供することができる。
According to the present invention, a rubber-like flat portion which is advantageous for molding can be formed over a wide temperature range and, depending on the material selection, can be reduced to one.
Since a thermoplastic elastomer material that can be used continuously in an environment of about 40 ° C. is used, particles to be sintered are 10
Even if the particles are fine particles of up to 120 μm, it is possible to easily form a porous body having a desired pore diameter and porosity by sintering. It is possible to provide a porous plastic filter having high performance of collecting fine particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 材料の粘弾性挙動を示す図表。FIG. 1 is a chart showing the viscoelastic behavior of a material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】分子中にエントロピー弾性を発現する軟質
相と塑性変形を防止するための硬質相を有し、常温では
エラストマーの性質を示し、かつ高温では塑性変形が可
能となり、融点以上の高温域において広い温度範囲にわ
たるゴム状平坦部を有する粘弾性挙動を示す、熱可塑性
エラストマーの粒子を焼結成形してなることを特徴とす
る微粒子分離用多孔質プラスチックフィルタ。
1. It has a soft phase exhibiting entropy elasticity in a molecule and a hard phase for preventing plastic deformation, exhibits the properties of an elastomer at room temperature, enables plastic deformation at high temperature, and enables high temperature above melting point. A porous plastic filter for separating fine particles, comprising sintering and molding particles of a thermoplastic elastomer exhibiting viscoelastic behavior having a rubber-like flat portion over a wide temperature range in a region.
【請求項2】焼結される粒子が、20℃を超える温度範
囲にわたるゴム状平坦部を有する熱可塑性エラストマー
から構成されていることを特徴とする請求項1記載の微
粒子分離用多孔質プラスチックフィルタ。
2. The porous plastic filter for separating fine particles according to claim 1, wherein the particles to be sintered are made of a thermoplastic elastomer having a rubber-like flat portion over a temperature range exceeding 20 ° C. .
【請求項3】焼結される粒子が、ポリオレフィン系の熱
可塑性エラストマーから構成されていることを特徴とす
る請求項1または2記載の微粒子分離用多孔質プラスチ
ックフィルタ。
3. The porous plastic filter for separating fine particles according to claim 1, wherein the particles to be sintered are made of a polyolefin-based thermoplastic elastomer.
【請求項4】焼結される粒子の平均粒径が10〜120
μmであること特徴とする請求項1記載の微粒子分離用
多孔質プラスチックフィルタ。
4. The sintered particles have an average particle size of 10 to 120.
The porous plastic filter for separating fine particles according to claim 1, wherein the thickness of the porous plastic filter is μm.
JP19684098A 1998-07-13 1998-07-13 Porous plastic filter Expired - Fee Related JP3638794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19684098A JP3638794B2 (en) 1998-07-13 1998-07-13 Porous plastic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19684098A JP3638794B2 (en) 1998-07-13 1998-07-13 Porous plastic filter

Publications (2)

Publication Number Publication Date
JP2000024428A true JP2000024428A (en) 2000-01-25
JP3638794B2 JP3638794B2 (en) 2005-04-13

Family

ID=16364544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19684098A Expired - Fee Related JP3638794B2 (en) 1998-07-13 1998-07-13 Porous plastic filter

Country Status (1)

Country Link
JP (1) JP3638794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021539A3 (en) * 2006-08-18 2008-04-10 Porex Corp Sintered polymeric materials and applications thereof
US8690981B2 (en) 2011-06-15 2014-04-08 Porex Corporation Sintered porous plastic liquid barrier media and applications thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021539A3 (en) * 2006-08-18 2008-04-10 Porex Corp Sintered polymeric materials and applications thereof
US8141717B2 (en) 2006-08-18 2012-03-27 Porex Corporation Sintered polymeric materials and applications thereof
US8690981B2 (en) 2011-06-15 2014-04-08 Porex Corporation Sintered porous plastic liquid barrier media and applications thereof

Also Published As

Publication number Publication date
JP3638794B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
CN101580598B (en) Porous polytetrafluoroethylene membrane and method of producing the same, and filter medium
JP5154784B2 (en) filter
CN101518951A (en) Methods of making a mixture for a ptfe membrane with inorganic materials, and compositions related thereto
JP2001527474A (en) Sintered porous plastic product and method of manufacturing the same
KR20190062168A (en) Method for preparing porous fluorine resin film
CN110982203A (en) PTFE porous material, preparation method, product and application thereof
JP3638794B2 (en) Porous plastic filter
US20110117348A1 (en) Method for manufacturing resin film for thin film-capacitor and the film therefor
JP2004202326A (en) Filter element and its production method
JP4778170B2 (en) Fluororesin porous body and method for producing the same
JP4645792B2 (en) Method for producing porous filter
JP2000119432A (en) Manufacture of olefinic porous film
JP6172666B2 (en) Porous polytetrafluoroethylene membrane and method for producing the same
JP2002011314A (en) Plastic filter for water cleaner prefilter, its production method, and cleaner prefilter
JP3681575B2 (en) Porous plastic filter
JPH07171318A (en) Sintered filter made of plastic
JP3718313B2 (en) Porous plastic filter
JPH09313834A (en) Porous plastic filter for separating fine particle
JP3559109B2 (en) Method for producing porous body made of ultra-high molecular weight polyethylene
Birkar et al. Injection molding of thermoplastic elastomers for microstructured substrates
US7795346B2 (en) Sintered porous high melt-flow index materials and methods of making same
JPH08323571A (en) Suction locking device
JPWO2019220694A1 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane
JP2814599B2 (en) For cartridge filter
JPH11291317A (en) Manufacture of ultrahigh molecular weight polyethylene porous body

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120121

LAPS Cancellation because of no payment of annual fees