JP2000023370A - Solar light power generation system - Google Patents

Solar light power generation system

Info

Publication number
JP2000023370A
JP2000023370A JP10185104A JP18510498A JP2000023370A JP 2000023370 A JP2000023370 A JP 2000023370A JP 10185104 A JP10185104 A JP 10185104A JP 18510498 A JP18510498 A JP 18510498A JP 2000023370 A JP2000023370 A JP 2000023370A
Authority
JP
Japan
Prior art keywords
circuit
detection
ground fault
voltage
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10185104A
Other languages
Japanese (ja)
Other versions
JP3804276B2 (en
Inventor
Kiyoshi Goto
潔 後藤
Yoichi Kunimoto
洋一 国本
Hiroaki Koshin
博昭 小新
Chukichi Mukai
忠吉 向井
Hirotada Higashihama
弘忠 東浜
Hiroaki Yuasa
裕明 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18510498A priority Critical patent/JP3804276B2/en
Publication of JP2000023370A publication Critical patent/JP2000023370A/en
Application granted granted Critical
Publication of JP3804276B2 publication Critical patent/JP3804276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To provide a solar light power generation system which has constant detection level for a grounding in a DC cableway and thereby can prevent erroneous detection of a ground. SOLUTION: A distributed power supply equipment 2 converts a DC voltage from a solar battery 1 to specified AC voltage and then supplies power to a load 4 in linkage with a commercial power system 3. A DC cableway for connecting the solar battery 1, and the distributed power supply 2 is passed through a through-hole 12 formed in a detection core 11 of a zero-phase current transformer 10. A ground detection circuit 9 detects the ground current in a DC cableway 21 from the output of a secondary winding wound around the detection core 11. When the ground detection circuit 9 detects a ground, a control circuit 8 stops the generation of power by the distributed power supply 2, based on the detection signal of the ground detection circuit 9. After that, when the distributed power supply 2 restarts power generation, a demagnetizing circuit 15 causes damped oscillating current to flow into the DC cableway 21 and passing through the through-hole 12 of the detection core 11 to eliminate the residual magnetism of the detection core 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池を電源と
し、太陽電池の直流電圧を交流電圧に変換して供給する
太陽光発電システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system that uses a solar cell as a power source and converts a DC voltage of the solar cell into an AC voltage and supplies the AC voltage.

【0002】[0002]

【従来の技術】従来より、太陽電池からなる直流電源を
用いた数kW程度の小容量の分散電源を備え、分散電源
と商用電力系統とを連系して、負荷に電力を供給する太
陽光発電システムが提供されている(例えば特開平9−
285015号公報参照)。
2. Description of the Related Art Conventionally, a distributed power supply having a small capacity of about several kW using a DC power supply composed of a solar cell is provided, and a distributed power supply is connected to a commercial power system to supply power to a load. A power generation system has been provided (for example,
285015).

【0003】従来の太陽光発電システムは、図5に示す
ように、多数の太陽電池セルを配列してパネル状とし、
太陽エネルギーを直流電圧に直接変換する太陽電池1
と、太陽電池1の直流電力を交流電力に変換し、解列開
閉器14を介して商用電力系統3と連系し配電線に接続
された各種家電製品などの負荷4に電力供給する分散電
源2とを備えている。
As shown in FIG. 5, a conventional photovoltaic power generation system arranges a large number of solar cells to form a panel.
Solar cell 1 that directly converts solar energy into DC voltage
And a distributed power supply that converts the DC power of the solar cell 1 into AC power, and that is connected to the commercial power system 3 via the disconnecting switch 14 and supplies power to the load 4 such as various home appliances connected to the distribution line. 2 is provided.

【0004】分散電源2では、太陽電池1の出力電圧を
昇圧回路5が所定の直流電圧に昇圧し、昇圧回路5の直
流電圧をインバータ回路6が交流電圧に変換した後、フ
ィルタ回路7がインバータ回路6の出力電圧を略正弦波
状の交流電圧に変換し、解列開閉器14を介して負荷4
に供給する。分散電源2には、昇圧回路5およびインバ
ータ回路6の出力電圧や、解列開閉器14のオン・オフ
を制御する制御回路8と、直流電路21の地絡を検出す
る地絡検出回路9とが設けられており、地絡検出回路9
が直流電路21の地絡を検出すると、制御回路8は地絡
検出回路9の検出信号に基づいて昇圧回路5およびイン
バータ回路6の出力を停止させるとともに、解列開閉器
14をオフする。
In the distributed power supply 2, the booster circuit 5 boosts the output voltage of the solar cell 1 to a predetermined DC voltage, and the inverter circuit 6 converts the DC voltage of the booster circuit 5 into an AC voltage. The output voltage of the circuit 6 is converted into a substantially sinusoidal AC voltage, and the load 4
To supply. The distributed power supply 2 includes a control circuit 8 for controlling the output voltages of the booster circuit 5 and the inverter circuit 6 and on / off of the parallel-off switch 14, a ground fault detection circuit 9 for detecting a ground fault of the DC power line 21. Is provided, and a ground fault detection circuit 9 is provided.
When the control circuit 8 detects a ground fault in the DC circuit 21, the control circuit 8 stops the outputs of the booster circuit 5 and the inverter circuit 6 based on the detection signal of the ground fault detection circuit 9 and turns off the paralleling switch 14.

【0005】ここで、地絡検出回路9は、磁性材料より
形成された検出コア11の貫通孔12内に太陽電池1と
昇圧回路5との間を接続する直流電路21が挿通された
電流センサとしての零相変流器10の出力から直流電路
21の地絡を検出する。例えば、負極側の直流電路21
が地絡すると、太陽電池1→昇圧回路5→インバータ回
路6のスイッチング素子61(又は62)→フィルタ回
路7のインダクタL1(又はL2)→解列開閉器14→
商用電力系統3→地絡抵抗Rg→太陽電池1の経路(図
5中に実線および破線の矢印で示す)で地絡電流Irが
流れ、正極側の直流電路21に流れる電流と負極側の直
流電路21に流れる電流との間に地絡電流Irの分だけ
差が発生するから、この電流の差に応じた出力が検出コ
ア11に巻回された二次巻線(図示せず)に発生する。
而して、地絡検出回路9は零相変流器10の出力と所定
の判定値との大小関係を比較し、零相変流器10の出力
が判定値よりも大きくなると、直流電路21の地絡が発
生したと判断して、制御回路8に検出信号を出力する。
Here, the ground fault detecting circuit 9 is a current sensor in which a direct current path 21 connecting the solar cell 1 and the boosting circuit 5 is inserted into a through hole 12 of a detecting core 11 formed of a magnetic material. The ground fault of the DC electric circuit 21 is detected from the output of the zero-phase current transformer 10. For example, the DC circuit 21 on the negative electrode side
When the ground fault occurs, the solar cell 1 → the booster circuit 5 → the switching element 61 (or 62) of the inverter circuit 6 → the inductor L1 (or L2) of the filter circuit 7 → the disconnecting switch 14 →
A ground fault current Ir flows through a route from the commercial power system 3 → ground fault resistance Rg → solar cell 1 (indicated by solid and broken arrows in FIG. 5), and a current flowing through the DC power path 21 on the positive side and a DC current on the negative side Since a difference is generated between the current flowing through the electric circuit 21 and the ground fault current Ir, an output corresponding to the current difference is generated in a secondary winding (not shown) wound around the detection core 11. I do.
Thus, the ground fault detection circuit 9 compares the magnitude relationship between the output of the zero-phase current transformer 10 and a predetermined judgment value. When the output of the zero-phase current transformer 10 becomes larger than the judgment value, the DC power line 21 And outputs a detection signal to the control circuit 8.

【0006】[0006]

【発明が解決しようとする課題】上記構成の太陽光発電
システムでは、地絡検出回路9が、直流電路21の絶縁
性能の劣化などによって流れる比較的電流値の小さい地
絡電流Irを検出して、検出信号を発生できるように、
地絡検出回路9の判定値は小さい値に設定されている。
しかしながら、事故などによって直流電路21が地絡
し、直流電路21に比較的大きな電流値の地絡電流Ir
が流れると、零相変流器10の検出コア11が着磁され
て、検出コア11に残留磁気が残るため、零相変流器1
0の出力がオフセットして、地絡検出回路9が地絡を検
出するときの検出レベルが変動するという問題があり、
地絡検出回路9が誤動作する虞があった。
In the photovoltaic power generation system having the above configuration, the ground fault detection circuit 9 detects the ground fault current Ir having a relatively small current value flowing due to the deterioration of the insulation performance of the DC circuit 21 or the like. , So that it can generate a detection signal,
The judgment value of the ground fault detection circuit 9 is set to a small value.
However, the DC line 21 is grounded due to an accident or the like, and the ground line current Ir having a relatively large current value is supplied to the DC line 21.
Flows, the detection core 11 of the zero-phase current transformer 10 is magnetized, and residual magnetism remains in the detection core 11, so that the zero-phase current transformer 1
There is a problem that the output of 0 is offset and the detection level when the ground fault detection circuit 9 detects the ground fault fluctuates.
There is a possibility that the ground fault detection circuit 9 malfunctions.

【0007】本発明は上記問題点に鑑みて為されたもの
であり、その目的とするところは、直流電路の地絡を検
出する地絡検出回路の誤動作を無くした太陽光発電シス
テムを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a photovoltaic power generation system which eliminates a malfunction of a ground fault detection circuit for detecting a ground fault in a DC circuit. It is in.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明では、太陽電池の直流電圧を所定の
交流電圧に変換する電力変換手段を具備し解列開閉器を
介して商用電力系統と連系し負荷に電力を供給する分散
電源を備えた太陽光発電システムにおいて、分散電源
に、磁性材料からなる検出コアの貫通孔内に直流電路が
挿通された電流センサと、検出コアに巻回された巻線の
出力から直流電路に流れる地絡電流を検出する地絡検出
回路と、地絡検出回路が地絡電流を検出すると解列開閉
器を開極させる制御回路と、少なくとも地絡電流検出後
に制御回路が解列開閉器を再投入する際に検出コアを消
磁する消磁回路とを設けて成ることを特徴とし、例えば
直流電路が地絡し直流電路に比較的大きな地絡電流が流
れて、検出コアが着磁したとしても、地絡電流検出後の
解列開閉器の再投入時に消磁回路が検出コアを消磁する
ことによって、検出コアの残留磁気を消磁することがで
き、地絡検出回路の検出レベルを一定に保つことができ
る。
In order to achieve the above object, according to the first aspect of the present invention, there is provided a power conversion means for converting a DC voltage of a solar cell into a predetermined AC voltage, and the power conversion means is provided via a parallel disconnect switch. In a photovoltaic power generation system that includes a distributed power supply that supplies power to a load in connection with a commercial power system, the distributed power supply includes a current sensor in which a DC power path is inserted into a through hole of a detection core made of a magnetic material, and a detection sensor. A ground-fault detection circuit that detects a ground-fault current flowing in the DC circuit from the output of the winding wound on the core, a control circuit that opens the disconnecting switch when the ground-fault detection circuit detects the ground-fault current, And a degaussing circuit for degaussing the detection core when the control circuit turns on the disconnection switch at least after the detection of the ground fault current. Current flows and the detection core arrives. Even if this happens, the degaussing circuit degauss the detection core when the disconnection switch is turned on again after the detection of the ground fault current, so that the residual magnetism of the detection core can be demagnetized, and the detection level of the ground fault detection circuit is kept constant Can be kept.

【0009】請求項2の発明では、請求項1の発明にお
いて、消磁回路は、太陽電池の出力電圧により充電され
るコンデンサと、検出コアの貫通孔に挿通される直流電
路にコンデンサを介して接続される第1のインダクタと
を備え、コンデンサに蓄積された電荷を第1のインダク
タを介して直流電路に放出することにより、直流電路に
減衰振動電流を流して検出コアを消磁することを特徴と
し、検出コアの貫通孔に挿通された直流電路に減衰振動
電流を流すことによって、検出コアの残留磁気を消磁す
ることができる。
According to a second aspect of the present invention, in the first aspect, the degaussing circuit is connected via a capacitor to a capacitor charged by an output voltage of the solar cell and to a direct current path inserted into a through hole of the detection core. A first inductor, and discharging the electric charge accumulated in the capacitor to the DC circuit via the first inductor, thereby causing an attenuated oscillating current to flow in the DC circuit to demagnetize the detection core. The residual magnetism of the detection core can be demagnetized by passing an attenuated oscillating current through the direct current path inserted into the through hole of the detection core.

【0010】請求項3の発明では、請求項1の発明にお
いて、消磁回路は検出コアに巻回された巻線に検出コア
を消磁するための減衰振動電流を流すことを特徴とし、
検出コアに巻回された巻線に減衰振動電流を流すことに
よって、検出コアの残留磁気を消磁することができる。
According to a third aspect of the present invention, in the first aspect of the present invention, the degaussing circuit is characterized in that a damped oscillating current for degaussing the detection core flows through a winding wound around the detection core.
By passing the damped oscillating current through the winding wound around the detection core, the remanence of the detection core can be demagnetized.

【0011】請求項4の発明では、請求項2の発明にお
いて、電力変換手段は太陽電池の直流電圧を所定の電圧
値に昇圧する昇圧回路を備え、昇圧回路は、太陽電池の
直流出力端間に接続された第2のインダクタおよび第2
のスイッチング素子の直列回路と、第2のインダクタ及
び第2のスイッチング素子の接続点にアノードが接続さ
れたダイオードと、ダイオードを介して第2のスイッチ
ング素子の両端間に接続された平滑用の第2のコンデン
サとから構成され、第2のインダクタが減衰振動電流を
流すための第1のインダクタを兼用することを特徴と
し、昇圧回路を構成する第2のインダクタが減衰振動電
流を流すための第1のインダクタを兼用しているので、
部品点数を減らして、分散電源の小型化を図ることがで
きる。
According to a fourth aspect of the present invention, in the second aspect of the present invention, the power conversion means includes a booster circuit for boosting the DC voltage of the solar cell to a predetermined voltage value, and the booster circuit is connected between the DC output terminals of the solar cell. And a second inductor connected to
Series circuit of a switching element, a diode having an anode connected to a connection point of the second inductor and the second switching element, and a smoothing second element connected between both ends of the second switching element via the diode. And a second inductor, wherein the second inductor also serves as a first inductor for flowing a damped oscillating current, and wherein the second inductor constituting the booster circuit is used for flowing a damped oscillating current. Since the same inductor is used,
The number of components can be reduced, and the size of the distributed power supply can be reduced.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。 (実施形態1)本実施形態の太陽光発電システムは、図
1に示すように、多数の太陽電池パネルを配列してパネ
ル状とし、太陽エネルギーを直流電圧に直接変換する太
陽電池1と、太陽電池1の直流電力を交流電力に変換
し、解列開閉器14を介して商用電力系統3と連系し配
電線に接続された各種家電製品などの負荷4に電力供給
する分散電源2とから構成される。
Embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) As shown in FIG. 1, a solar power generation system according to the present embodiment includes a solar cell 1 that arranges a large number of solar cell panels into a panel shape, and directly converts solar energy into a DC voltage. The DC power of the battery 1 is converted into AC power, and the distributed power supply 2 is connected to the commercial power system 3 via the disconnecting switch 14 and supplies power to the load 4 such as various home appliances connected to the distribution line. Be composed.

【0013】分散電源2は、太陽電池1の出力電圧を所
定の直流電圧に昇圧する昇圧回路5と、第1のスイッチ
ング素子たる4個のIGBT61〜64をブリッジ接続
して構成され、昇圧回路5の出力電圧をIGBT61〜
64でスイッチングすることにより交流電圧に変換する
インバータ回路6と、インダクタL1,L2およびコン
デンサC1,C2からなりインバータ回路6の出力電圧
を平滑して略正弦波状の交流電圧を出力するフィルタ回
路7と、昇圧回路5およびインバータ回路6の出力を制
御する例えば1チップのマイクロコンピュータから構成
される制御回路8と、磁性材料からなる検出コア11の
貫通孔12内に太陽電池1と昇圧回路5との間を接続す
る直流電路21が挿通された電流センサたる零相変流器
10と、検出コア11に巻回された二次巻線(図示せ
ず)の出力から直流電路21の地絡を検出する地絡検出
回路9と、制御回路8の出力信号に応じてオン・オフ
し、分散電源2から負荷4への電力供給をオン・オフす
る解列開閉器14とで構成される。ここに、昇圧回路5
およびインバータ回路6から電力変換手段が構成され
る。なお図示は省略するが、インバータ回路6と商用電
力系統3との間には系統保護のため解列開閉器14とは
別に手動復帰型のブレーカを設けられ、単相3線式の商
用電力系統3と負荷4との間には負荷4を保護するため
に主幹開閉器や分岐開閉器が設けられている。
The distributed power supply 2 is constructed by connecting a booster circuit 5 for boosting the output voltage of the solar cell 1 to a predetermined DC voltage and four IGBTs 61 to 64 as first switching elements in a bridge manner. Output voltage of IGBT 61 to
An inverter circuit 6 for converting to an AC voltage by switching at 64; a filter circuit 7 comprising inductors L1 and L2 and capacitors C1 and C2 for smoothing the output voltage of the inverter circuit 6 and outputting a substantially sinusoidal AC voltage; , A control circuit 8 composed of, for example, a one-chip microcomputer for controlling the outputs of the booster circuit 5 and the inverter circuit 6, and the solar cell 1 and the booster circuit 5 in the through hole 12 of the detection core 11 made of a magnetic material. A ground fault in the DC circuit 21 is detected from an output of a zero-phase current transformer 10 as a current sensor in which a DC circuit 21 connecting the DC circuit 21 is inserted and a secondary winding (not shown) wound around the detection core 11. And a parallel-off switch 14 that turns on and off according to the output signal of the control circuit 8 and turns on and off the power supply from the distributed power supply 2 to the load 4. It is made. Here, the booster circuit 5
And the inverter circuit 6 constitute a power conversion means. Although not shown, a manual return type breaker is provided between the inverter circuit 6 and the commercial power system 3 separately from the disconnecting switch 14 for system protection, and a single-phase three-wire commercial power system is provided. A main switch and a branch switch are provided between the load 3 and the load 4 to protect the load 4.

【0014】昇圧回路5は、太陽電池1の出力端子間に
接続された第2のインダクタ51および第2のスイッチ
ング素子たるIGBT52の直列回路と、第2のインダ
クタ51およびIGBT52の接続点にアノードが接続
されたダイオード53と、IGBT52の両端間にダイ
オード53を介して接続される第2のコンデンサ54
と、IGBT52に逆並列接続されたダイオード55と
で構成される一石式の昇圧チョッパ回路からなる。
The booster circuit 5 has a series circuit of a second inductor 51 connected between output terminals of the solar cell 1 and an IGBT 52 as a second switching element, and an anode connected to a connection point between the second inductor 51 and the IGBT 52. A connected diode 53 and a second capacitor 54 connected between both ends of the IGBT 52 via the diode 53
And a diode 55 connected antiparallel to the IGBT 52.

【0015】インバータ回路6は、IGBT61,63
の直列回路と、IGBT62,64の直列回路とを第2
のコンデンサ54と並列に接続し、各IGBT61〜6
4とそれぞれ逆並列にダイオード65〜68を接続して
構成され、これら4個のIGBT61〜64を用いて昇
圧回路5の直流電圧をスイッチングすることにより、昇
圧回路5の直流電圧を交流電圧に変換して出力する。I
GBT62,64の接続点と、IGBT61,63の接
続点とは、それぞれ、フィルタ回路7のインダクタL
1,L2を介して、解列開閉器14の電圧線側の接点に
接続され、解列開閉器14の電圧線側の接点と接地線側
の接点との間はフィルタ回路7のコンデンサC1,C2
を介して接続されており、インバータ回路6の出力波形
はフィルタ回路7によって平滑されて略正弦波状の波形
となり、解列開閉器14を介して負荷4に供給される。
The inverter circuit 6 includes IGBTs 61 and 63
And the series circuit of IGBTs 62 and 64
IGBTs 61 to 6
4 are connected in reverse-parallel with diodes 65 to 68, respectively. The DC voltage of the booster circuit 5 is converted into an AC voltage by switching the DC voltage of the booster circuit 5 using these four IGBTs 61 to 64. And output. I
The connection point between the GBTs 62 and 64 and the connection point between the IGBTs 61 and 63 are respectively connected to the inductor L of the filter circuit 7.
1, L2, is connected to a contact on the voltage line side of the disconnecting switch 14, and a capacitor C1 of the filter circuit 7 is provided between the contact on the voltage line side of the disconnecting switch 14 and the contact on the ground line side. C2
The output waveform of the inverter circuit 6 is smoothed by the filter circuit 7 to become a substantially sinusoidal waveform, and is supplied to the load 4 via the disconnecting switch 14.

【0016】ところで、太陽電池1の出力電圧は日射量
に応じて絶えず変化し、例えば0Vから300Vまで変
化する。制御回路8は太陽電池1の出力電圧をモニタし
ており、夜間や光量不足などで太陽電池1の出力電圧が
例えば150V未満の場合は解列開閉器14をオフし
て、分散電源2を商用電力系統3と切り離す。一方、太
陽電池1の出力電圧が例えば150V以上の場合は、昇
圧回路5が太陽電池1の出力電圧をIGBT52により
スイッチングして、太陽電池1の出力電圧を商用電源の
実効値電圧の略1.4倍に相当する直流電圧(例えば1
00V単相三線式の場合は140×2=280V)まで
昇圧して、インバータ回路6に出力する。ここで、IG
BT52は制御回路8から制御電極(ゲート)に入力さ
れる制御信号によってオン・オフされる。制御回路8は
昇圧回路5の出力電圧を図示しない検出手段により検出
しており、昇圧回路5の出力電圧に応じて例えばIGB
T52のオンデューティを変化させ、昇圧回路5の出力
を略一定に制御する。
The output voltage of the solar cell 1 constantly changes in accordance with the amount of solar radiation, for example, from 0V to 300V. The control circuit 8 monitors the output voltage of the solar cell 1, and when the output voltage of the solar cell 1 is lower than 150 V, for example, at night or when the amount of light is insufficient, the disconnection switch 14 is turned off and the distributed power source 2 is commercialized. Disconnect from power system 3. On the other hand, when the output voltage of the solar cell 1 is, for example, 150 V or more, the booster circuit 5 switches the output voltage of the solar cell 1 by the IGBT 52 so that the output voltage of the solar cell 1 is approximately equal to the effective voltage of the commercial power supply. A DC voltage equivalent to four times (for example, 1
In the case of the 00V single-phase three-wire system, the voltage is boosted to 140 × 2 = 280V) and output to the inverter circuit 6. Where IG
The BT 52 is turned on / off by a control signal input from the control circuit 8 to a control electrode (gate). The control circuit 8 detects the output voltage of the booster circuit 5 by detecting means (not shown).
The output of the booster circuit 5 is controlled to be substantially constant by changing the on-duty of T52.

【0017】また、制御回路8はIGBT61〜64の
制御電極(ゲート)に制御信号を夫々出力し、昇圧回路
5の直流電圧を略正弦波状の交流電圧に変換して商用電
力系統3に出力させる。図2(a)〜(c)に示すよう
に、制御回路8では、基準となる三角波状の基準発振信
号Vsと、基準発振信号Vsに比べて周波数の低い正弦
波状の指令信号Veとの大小関係を比較し、指令信号V
eの電圧値に比べて基準発振信号Vsの電圧値が高い期
間のみ信号レベルがハイになるパルス信号S1と、指令
信号Veの電圧値に比べて基準発振信号Vsの電圧値が
低い期間のみ信号レベルがハイになるパルス信号S2と
を発生する。
The control circuit 8 outputs control signals to the control electrodes (gates) of the IGBTs 61 to 64, respectively, converts the DC voltage of the booster circuit 5 into a substantially sinusoidal AC voltage, and outputs the converted voltage to the commercial power system 3. . As shown in FIGS. 2A to 2C, in the control circuit 8, the magnitude of a triangular-wave-shaped reference oscillation signal Vs as a reference and a sine-wave-shaped command signal Ve having a lower frequency than the reference oscillation signal Vs is determined. Compare the relationship, and
The pulse signal S1 in which the signal level is high only during the period when the voltage value of the reference oscillation signal Vs is higher than the voltage value of e, and the signal only during the period when the voltage value of the reference oscillation signal Vs is lower than the voltage value of the command signal Ve A pulse signal S2 having a high level is generated.

【0018】而して、制御回路8は、ブリッジ接続され
たIGBT61〜64の内で対角に配置されたIGBT
61,64にパルス信号S1を出力するとともに、残り
のIGBT62,63にパルス信号S2を出力して、一
対のIGBT61,64と他の一対のIGBT62,6
3とを交互にオン・オフし、昇圧回路5の直流電圧を交
流電圧に変換する。ここに、制御回路8はパルス信号S
1,S2のパルス幅を変調してPWM制御を行うことに
より、一対のIGBT61,64のオン期間と、他の一
対のIGBT62,63のオン期間とを変化させ、イン
バータ回路6の出力を制御する。なお、制御回路8はフ
ィルタ回路7の出力電圧の位相が商用電力系統3の電圧
位相に略一致するようにインバータ回路6の出力を制御
している。
Thus, the control circuit 8 includes the IGBTs 61 to 64 connected diagonally in the bridge-connected IGBTs.
A pulse signal S1 is output to 61 and 64, and a pulse signal S2 is output to the remaining IGBTs 62 and 63, so that a pair of IGBTs 61 and 64 and another pair of IGBTs 62 and 6 are output.
3 are alternately turned on and off to convert the DC voltage of the booster circuit 5 into an AC voltage. Here, the control circuit 8 outputs the pulse signal S
By performing PWM control by modulating the pulse widths of S1 and S2, the ON period of the pair of IGBTs 61 and 64 and the ON period of the other pair of IGBTs 62 and 63 are changed to control the output of the inverter circuit 6. . The control circuit 8 controls the output of the inverter circuit 6 so that the phase of the output voltage of the filter circuit 7 substantially matches the voltage phase of the commercial power system 3.

【0019】また、分散電源2では、地絡検出回路9が
直流電路21の地絡を検出すると、制御回路8が地絡検
出回路9の検出信号に基づいて昇圧回路5およびインバ
ータ回路6の出力を停止するとともに、解列開閉器14
をオフして、分散電源2の連系を停止する。例えば直流
電路21の負極側が地絡すると、太陽電池1→昇圧回路
5→IGBT61(又は62)→インダクタL1(又は
L2)→解列開閉器14→商用電力系統3→地絡抵抗R
g→太陽電池1の経路(図1中に実線および破線の矢印
で示す)で地絡電流Irが流れ、正極側の直流電路21
に流れる電流と負極側の直流電路21に流れる電流との
間に地絡電流Irの分だけ差が発生するから、この電流
の差に応じた出力が検出コア11に巻回された二次巻線
に発生する。而して、地絡検出回路9は零相変流器10
の出力と所定の判定値との大小関係を比較し、零相変流
器10の出力が判定値よりも大きくなると、直流電路2
1の地絡が発生したと判断して、制御回路8に地絡の検
出信号を出力する。そして、地絡検出回路9が地絡を検
出すると、制御回路8は地絡検出回路9の検出信号に基
づいて昇圧回路5およびインバータ回路6の出力を停止
させるとともに、解列開閉器14をオフして、商用電力
系統3と系統を分離する。
In the distributed power supply 2, when the ground fault detection circuit 9 detects a ground fault in the DC power line 21, the control circuit 8 outputs the outputs of the booster circuit 5 and the inverter circuit 6 based on the detection signal of the ground fault detection circuit 9. Is stopped, and the disconnection switch 14
Is turned off, and the interconnection of the distributed power supply 2 is stopped. For example, when the negative electrode side of the DC circuit 21 is grounded, the solar cell 1 → the booster circuit 5 → the IGBT 61 (or 62) → the inductor L1 (or L2) → the disconnect switch 14 → the commercial power system 3 → the ground fault resistance R
g → a ground fault current Ir flows along the path of the solar cell 1 (indicated by solid and broken arrows in FIG. 1), and the DC power path 21 on the positive electrode side
A difference is generated between the current flowing through the detection core 11 and the current flowing through the DC power path 21 on the negative side, and an output corresponding to the difference in the current is wound around the detection core 11. Occurs on lines. Thus, the ground fault detection circuit 9 is connected to the zero-phase current transformer 10.
Is compared with a predetermined judgment value, and when the output of the zero-phase current transformer 10 becomes larger than the judgment value, the DC circuit 2
It is determined that the first ground fault has occurred, and a ground fault detection signal is output to the control circuit 8. When the ground fault detection circuit 9 detects a ground fault, the control circuit 8 stops the output of the booster circuit 5 and the inverter circuit 6 based on the detection signal of the ground fault detection circuit 9 and turns off the parallel-off switch 14. Then, the commercial power system 3 and the system are separated.

【0020】ところで、直流電路21が地絡すると、比
較的大きな地絡電流Irが直流電路21に流れるため、
この地絡電流Irによって零相変流器10の検出コア1
1が着磁し、検出コア11の残留磁気によって地絡検出
回路9の検出レベルが変化してしまう。そこで、本実施
形態の太陽光発電システムでは、検出コア11の残留磁
気を消磁するための消磁回路15を設けている。
When the DC circuit 21 is grounded, a relatively large ground fault current Ir flows through the DC circuit 21.
The detection core 1 of the zero-phase current transformer 10 is generated by the ground fault current Ir.
1 is magnetized, and the detection level of the ground fault detection circuit 9 changes due to the residual magnetism of the detection core 11. Therefore, in the photovoltaic power generation system of the present embodiment, a degaussing circuit 15 for degaussing the residual magnetism of the detection core 11 is provided.

【0021】消磁回路15は、負極側の直流電路21に
おける検出コア11に対して太陽電池1側の部位に一端
が接続された第1のインダクタ19と、第1のインダク
タ19の他端に一端が接続された第1のコンデンサ18
と、第1のコンデンサ18の他端に一端が接続された抵
抗17と、正極側又は負極側の直流電路21における検
出コア11に対して昇圧回路5側の部位と抵抗17の他
端との間をそれぞれ接続するスイッチ16a,16bと
から構成される。スイッチ16a,16bは制御回路8
によってそれぞれオン・オフされ、制御回路8がスイッ
チ16aをオンすると、第1のコンデンサ18が太陽電
池1の出力電圧によって充電される。そして、地絡検出
後に制御回路8が昇圧回路5およびインバータ回路6を
再起動するとともに解列開閉器14を再投入する際に、
制御回路8がスイッチ16bをオンし、第1のコンデン
サ18に蓄積された電荷を第1のインダクタ19を介し
て放出し、検出コア11の貫通孔12に挿通された直流
電路21に減衰振動電流を流しており、この減衰振動電
流によって検出コア11の残留磁気を消磁した後、地絡
検出回路9は地絡の検出を行う。
The degaussing circuit 15 includes a first inductor 19 having one end connected to a portion on the solar cell 1 side with respect to the detection core 11 in the negative-side DC circuit 21, and one end connected to the other end of the first inductor 19. Is connected to the first capacitor 18
A resistor 17 having one end connected to the other end of the first capacitor 18, and a portion of the DC circuit 21 on the positive electrode side or the negative electrode side on the side of the booster circuit 5 with respect to the detection core 11 and the other end of the resistor 17. And switches 16a and 16b for connecting between them. The switches 16a and 16b are connected to the control circuit 8
When the control circuit 8 turns on the switch 16a, the first capacitor 18 is charged by the output voltage of the solar cell 1. When the control circuit 8 restarts the booster circuit 5 and the inverter circuit 6 and turns on the parallel-off switch 14 again after the detection of the ground fault,
The control circuit 8 turns on the switch 16b, discharges the electric charge accumulated in the first capacitor 18 through the first inductor 19, and causes the DC electric path 21 inserted through the through hole 12 of the detection core 11 to generate an attenuated oscillating current. After the residual magnetism of the detection core 11 is demagnetized by the damped oscillation current, the ground fault detection circuit 9 detects the ground fault.

【0022】このように、零相変流器10を用いて直流
電路21の地絡を検出する際に、地絡電流によって検出
コア11が着磁し、検出コア11に残留磁気が発生し
て、地絡検出回路9の検出レベルが変化したとしても、
地絡電流検出後に制御回路8が分散電源2を再起動する
際に、消磁回路15が検出コア11の残留磁気を消磁し
ているので、地絡検出回路9の検出レベルを一定に保つ
ことができ、地絡検出回路9の誤動作を無くすことがで
きる。また、制御回路8が分散電源2を初めて起動する
際に、制御回路8が消磁回路15を用いて検出コア11
を消磁するようにしても良く、分散電源2を初めて起動
する際、および、再起動する際に消磁回路15が検出コ
ア11を消磁して、検出コア11の残留磁気を取り除く
ことにより、地絡検出回路9の検出レベルを一定に保
ち、地絡検出回路9の誤検出を防止することができる。 (実施形態2)本実施形態の太陽光発電システムの回路
図を図3に示す。なお、基本的な構成は実施形態1と同
様であるので、同一の構成要素には同一の符号を付し
て、その説明を省略する。
As described above, when detecting a ground fault in the DC circuit 21 using the zero-phase current transformer 10, the detection core 11 is magnetized by the ground fault current, and residual magnetism is generated in the detection core 11. , Even if the detection level of the ground fault detection circuit 9 changes,
When the control circuit 8 restarts the distributed power supply 2 after the detection of the ground fault current, the demagnetizing circuit 15 demagnetizes the residual magnetism of the detection core 11, so that the detection level of the ground fault detecting circuit 9 can be kept constant. As a result, malfunction of the ground fault detection circuit 9 can be eliminated. When the control circuit 8 starts the distributed power supply 2 for the first time, the control circuit 8 uses the degaussing circuit 15 to detect the detection core 11.
When the distributed power source 2 is started up for the first time and when it is restarted, the degaussing circuit 15 degausses the detection core 11 and removes the residual magnetism of the detection core 11, thereby providing a ground fault. The detection level of the detection circuit 9 can be kept constant, and erroneous detection of the ground fault detection circuit 9 can be prevented. (Embodiment 2) FIG. 3 shows a circuit diagram of a photovoltaic power generation system of this embodiment. Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof will be omitted.

【0023】実施形態1では消磁回路15が直流電路2
1に減衰振動電流を流すことによって検出コア11の残
留磁気を消磁しているが、本実施形態では消磁回路15
が制御回路8の制御信号に基づいて検出コア11に巻回
された検出用の二次巻線(図示せず)に減衰振動電流を
流すことにより、検出コア11の残留磁気を消磁してい
る。尚、消磁回路15は、検出用の二次巻線とは別に検
出コア11に巻回された二次巻線(図示せず)に減衰振
動電流を流すようにしても良い。
In the first embodiment, the demagnetizing circuit 15 is
1, the residual magnetism of the detection core 11 is demagnetized by flowing the damped oscillating current to the demagnetizing circuit 15 in this embodiment.
Flows decaying oscillating current through a detection secondary winding (not shown) wound around the detection core 11 based on a control signal of the control circuit 8, thereby demagnetizing the residual magnetism of the detection core 11. . Note that the demagnetizing circuit 15 may cause the damped oscillating current to flow through a secondary winding (not shown) wound around the detection core 11 separately from the secondary winding for detection.

【0024】このように、消磁回路15は検出コア11
に巻回された二次巻線に減衰振動電流を流しており、こ
の二次巻線に減衰振動電流を流すことによって、実施形
態1と同様、検出コア11の残留磁気を消磁することが
できる。而して、地絡電流検出時に検出コア11が地絡
電流によって着磁し、地絡検出回路9の検出レベルが変
化したとしても、地絡電流検出後に制御回路8が昇圧回
路5およびインバータ回路6を再起動するとともに解列
開閉器14を再投入する際に、制御回路8が消磁回路1
5を用いて検出コア11の残留磁気を消磁しているの
で、地絡検出回路9の検出レベルを一定に保つことがで
き、地絡検出回路9の誤動作を無くすことができる。 (実施形態3)本実施形態の太陽光発電システムの回路
図を図4に示す。なお、基本的な構成は実施形態1と同
様であるので、同一の構成要素には同一の符号を付し
て、その説明を省略する。
As described above, the degaussing circuit 15 is connected to the detection core 11
A damped oscillating current is passed through the secondary winding wound around, and by flowing the damped oscillating current through this secondary winding, the residual magnetism of the detection core 11 can be demagnetized as in the first embodiment. . Thus, even if the detection core 11 is magnetized by the ground fault current when the ground fault current is detected, and the detection level of the ground fault detection circuit 9 changes, the control circuit 8 operates the booster circuit 5 and the inverter circuit after the detection of the ground fault current. When the controller 6 is restarted and the parallel-off switch 14 is turned on again, the control circuit 8
Since the residual magnetism of the detection core 11 is demagnetized using the reference numeral 5, the detection level of the ground fault detection circuit 9 can be kept constant, and the malfunction of the ground fault detection circuit 9 can be eliminated. (Embodiment 3) FIG. 4 shows a circuit diagram of a photovoltaic power generation system of this embodiment. Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof will be omitted.

【0025】本実施形態では、第2のインダクタ51お
よびIGBT52の接続点に一端が接続された抵抗17
と、抵抗17の他端に一端が接続された第1のコンデン
サ18と、負極側の直流電路21における検出コア11
に対して太陽電池1側の部位と第1のコンデンサ18の
他端とを接続するスイッチ16cと、正極側の直流電路
21における検出コア11に対して太陽電池1側の部位
と第1のコンデンサ18の他端とを接続するスイッチ1
6dとで消磁回路15が構成され、スイッチ16c,1
6dは制御回路8によってオン・オフされる。ここで、
制御回路8の出力信号によってスイッチ16cがオンす
ると、太陽電池1の出力電圧によって第1のコンデンサ
18が充電される。そして、地絡電流検出後に制御回路
8が昇圧回路5およびインバータ回路6を再起動すると
ともに、解列開閉器14を再投入する際に、制御回路8
がスイッチ16dをオンすると、第1のコンデンサ18
に蓄積された電荷が抵抗17および第2のインダクタ5
1を介して放出され、検出コア11の貫通孔12内に挿
通された直流電路21に減衰振動電流が流れて、検出コ
ア11の残留磁気が消磁される。
In this embodiment, the resistor 17 having one end connected to the connection point between the second inductor 51 and the IGBT 52
A first capacitor 18 having one end connected to the other end of the resistor 17, and a detection core 11 in the DC circuit 21 on the negative side.
A switch 16c for connecting a portion on the side of the solar cell 1 to the other end of the first capacitor 18 with respect to the portion on the side of the solar cell 1 with respect to the detection core 11 in the DC circuit 21 on the positive side; Switch 1 that connects to the other end of 18
6d constitute the degaussing circuit 15, and the switches 16c, 1
6d is turned on / off by the control circuit 8. here,
When the switch 16 c is turned on by the output signal of the control circuit 8, the first capacitor 18 is charged by the output voltage of the solar cell 1. When the control circuit 8 restarts the booster circuit 5 and the inverter circuit 6 after the detection of the ground fault current, and when the parallel-off switch 14 is turned on again, the control circuit 8
Turns on the switch 16d, the first capacitor 18
Is accumulated in the resistor 17 and the second inductor 5
1, the damped oscillating current flows through the DC current path 21 inserted into the through hole 12 of the detection core 11, and the residual magnetism of the detection core 11 is demagnetized.

【0026】このように、本実施形態では昇圧回路5を
構成する第2のインダクタ51が、第1のコンデンサ1
8に蓄積された電荷を放出して減衰振動電流を流す第1
のインダクタに兼用されているので、構成部品の数を減
らすことができ、分散電源2の小型化を図ることができ
る。
As described above, in the present embodiment, the second inductor 51 constituting the booster circuit 5 is connected to the first capacitor 1.
8 that discharges the electric charge accumulated in 8 and causes a damped oscillating current to flow.
, The number of components can be reduced, and the size of the distributed power source 2 can be reduced.

【0027】[0027]

【発明の効果】上述のように、請求項1の発明は、太陽
電池の直流電圧を所定の交流電圧に変換する電力変換手
段を具備し解列開閉器を介して商用電力系統と連系し負
荷に電力を供給する分散電源を備えた太陽光発電システ
ムにおいて、分散電源に、磁性材料からなる検出コアの
貫通孔内に直流電路が挿通された電流センサと、検出コ
アに巻回された巻線の出力から直流電路に流れる地絡電
流を検出する地絡検出回路と、地絡検出回路が地絡電流
を検出すると解列開閉器を開極させる制御回路と、少な
くとも地絡電流検出後に制御回路が解列開閉器を再投入
する際に検出コアを消磁する消磁回路とを設けて成るこ
とを特徴とし、例えば直流電路が地絡し直流電路に比較
的大きな地絡電流が流れて、検出コアが着磁したとして
も、地絡電流検出後の解列開閉器の再投入時に消磁回路
が検出コアを消磁することによって、検出コアの残留磁
気を消磁することができ、地絡検出回路の検出レベルを
一定に保ち、地絡検出回路の誤動作を防止できるという
効果がある。
As described above, the first aspect of the present invention includes a power conversion means for converting a DC voltage of a solar cell into a predetermined AC voltage, and is connected to a commercial power system via a disconnection switch. In a photovoltaic power generation system provided with a distributed power supply for supplying power to a load, a distributed power supply includes a current sensor having a DC current path inserted through a through-hole of a detection core made of a magnetic material, and a winding wound around the detection core. A ground fault detection circuit that detects a ground fault current flowing in the DC circuit from the output of the line, a control circuit that opens the disconnect switch when the ground fault detection circuit detects the ground fault current, and controls at least after the detection of the ground fault current The circuit is provided with a degaussing circuit for degaussing the detection core when the circuit breaker is turned on again.For example, when a DC circuit is grounded and a relatively large ground fault current flows in the DC circuit, the detection is performed. Ground fault current detection even when core is magnetized The degaussing circuit degauss the detection core when the parallel-off switch is turned on again, thereby demagnetizing the residual magnetism of the detection core, keeping the detection level of the ground fault detection circuit constant and malfunctioning the ground fault detection circuit. There is an effect that can be prevented.

【0028】請求項2の発明は、請求項1の発明におい
て、消磁回路は、太陽電池の出力電圧により充電される
コンデンサと、検出コアの貫通孔に挿通される直流電路
にコンデンサを介して接続される第1のインダクタとを
備え、コンデンサに蓄積された電荷を第1のインダクタ
を介して直流電路に放出することにより、直流電路に減
衰振動電流を流して検出コアを消磁することを特徴と
し、検出コアの貫通孔に挿通された直流電路に減衰振動
電流を流すことによって、検出コアの残留磁気を消磁で
きるという効果がある。
According to a second aspect of the present invention, in the first aspect, the degaussing circuit is connected via a capacitor to a capacitor charged by an output voltage of the solar cell and to a direct current path inserted into a through hole of the detection core. A first inductor, and discharging the electric charge accumulated in the capacitor to the DC circuit via the first inductor, thereby causing an attenuated oscillating current to flow in the DC circuit to demagnetize the detection core. By flowing an attenuated oscillating current through the direct current path inserted into the through hole of the detection core, there is an effect that the remanence of the detection core can be demagnetized.

【0029】請求項3の発明は、請求項1の発明におい
て、消磁回路は検出コアに巻回された巻線に検出コアを
消磁するための減衰振動電流を流すことを特徴とし、検
出コアに巻回された巻線に減衰振動電流を流すことによ
って、検出コアの残留磁気を消磁できるという効果があ
る。
According to a third aspect of the present invention, in the first aspect of the present invention, the degaussing circuit is characterized in that a decaying oscillating current for degaussing the detection core flows through a winding wound around the detection core. By passing the damped oscillating current through the wound winding, there is an effect that the residual magnetism of the detection core can be demagnetized.

【0030】請求項4の発明は、請求項2の発明におい
て、電力変換手段は太陽電池の直流電圧を所定の電圧値
に昇圧する昇圧回路を備え、昇圧回路は、太陽電池の直
流出力端間に接続された第2のインダクタおよび第2の
スイッチング素子の直列回路と、第2のインダクタ及び
第2のスイッチング素子の接続点にアノードが接続され
たダイオードと、ダイオードを介して第2のスイッチン
グ素子の両端間に接続された平滑用の第2のコンデンサ
とから構成され、第2のインダクタが減衰振動電流を流
すための第1のインダクタを兼用することを特徴とし、
昇圧回路を構成する第2のインダクタが減衰振動電流を
流すための第1のインダクタを兼用しているので、部品
点数を減らして、分散電源の小型化を図ることができる
という効果がある。
According to a fourth aspect of the present invention, in the second aspect of the present invention, the power conversion means includes a booster circuit for boosting the DC voltage of the solar cell to a predetermined voltage value, and the booster circuit is connected between the DC output terminals of the solar cell. , A series circuit of a second inductor and a second switching element, a diode having an anode connected to a connection point between the second inductor and the second switching element, and a second switching element via the diode. And a second capacitor for smoothing connected between both ends of the first and second terminals, wherein the second inductor also serves as the first inductor for flowing the damped oscillating current,
Since the second inductor constituting the booster circuit also serves as the first inductor for passing the damped oscillating current, there is an effect that the number of components can be reduced and the size of the distributed power supply can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1の太陽光発電システムを示す回路図
である。
FIG. 1 is a circuit diagram illustrating a photovoltaic power generation system according to a first embodiment.

【図2】(a)〜(c)は同上の動作を説明する説明図
である。
FIGS. 2A to 2C are explanatory diagrams illustrating the operation of the above.

【図3】実施形態2の太陽光発電システムを示す回路図
である。
FIG. 3 is a circuit diagram illustrating a photovoltaic power generation system according to a second embodiment.

【図4】実施形態3の太陽光発電システムを示す回路図
である。
FIG. 4 is a circuit diagram illustrating a photovoltaic power generation system according to a third embodiment.

【図5】従来の太陽光発電システムを示す回路図であ
る。
FIG. 5 is a circuit diagram showing a conventional solar power generation system.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 分散電源 3 商用電力系統 4 負荷 8 制御回路 9 地絡検出回路 10 零相変流器 11 検出コア 12 貫通孔 15 消磁回路 21 直流電路 DESCRIPTION OF SYMBOLS 1 Solar cell 2 Distributed power supply 3 Commercial power system 4 Load 8 Control circuit 9 Ground fault detection circuit 10 Zero-phase current transformer 11 Detection core 12 Through hole 15 Demagnetization circuit 21 DC electric circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小新 博昭 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 向井 忠吉 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 東浜 弘忠 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 湯浅 裕明 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 2G014 AA04 AB29 AB49 AC19 5G066 HA06 HA13 HB06  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroaki Koshin 1048 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. (72) Inventor Tadayoshi Mukai 1048 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Works Co., Ltd. (72) Inventor Hirotada Higashihama 1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside the Matsushita Electric Works Co., Ltd. (72) Inventor Hiroaki Yuasa 1048 Kadoma Kadoma, Kadoma City, Osaka Pref. AB29 AB49 AC19 5G066 HA06 HA13 HB06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】太陽電池の直流電圧を所定の交流電圧に変
換する電力変換手段を具備し解列開閉器を介して商用電
力系統と連系し負荷に電力を供給する分散電源を備えた
太陽光発電システムにおいて、分散電源に、磁性材料か
らなる検出コアの貫通孔内に直流電路が挿通された電流
センサと、検出コアに巻回された巻線の出力から直流電
路に流れる地絡電流を検出する地絡検出回路と、地絡検
出回路が地絡電流を検出すると解列開閉器を開極させる
制御回路と、少なくとも地絡電流検出後に制御回路が解
列開閉器を再投入する際に検出コアを消磁する消磁回路
とを設けて成ることを特徴とする太陽光発電システム。
1. A solar system comprising: a power conversion means for converting a DC voltage of a solar cell into a predetermined AC voltage; and a distributed power supply connected to a commercial power system via a disconnecting switch and supplying power to a load. In a photovoltaic power generation system, a distributed power source is provided with a current sensor in which a DC circuit is inserted into a through hole of a detection core made of a magnetic material, and a ground fault current flowing in the DC circuit from an output of a winding wound around the detection core. A ground fault detection circuit for detecting, a control circuit for opening the disconnection switch when the ground fault detection circuit detects the ground fault current, and at least when the control circuit recloses the disconnection switch after the detection of the ground fault current. A photovoltaic power generation system comprising a degaussing circuit for degaussing a detection core.
【請求項2】消磁回路は、太陽電池の出力電圧により充
電される第1のコンデンサと、検出コアの貫通孔に挿通
される直流電路に第1のコンデンサを介して接続される
第1のインダクタとを備え、第1のコンデンサに蓄積さ
れた電荷を第1のインダクタを介して直流電路に放出す
ることにより、直流電路に減衰振動電流を流して検出コ
アを消磁することを特徴とする請求項1記載の太陽光発
電システム。
2. A degaussing circuit comprising: a first capacitor charged by an output voltage of a solar cell; and a first inductor connected to a direct current path inserted into a through hole of the detection core via the first capacitor. And discharging the electric charge accumulated in the first capacitor to the DC circuit via the first inductor, thereby causing an attenuated oscillating current to flow in the DC circuit to demagnetize the detection core. 1. The solar power generation system according to 1.
【請求項3】消磁回路は検出コアに巻回された巻線に検
出コアを消磁するための減衰振動電流を流すことを特徴
とする請求項1記載の太陽光発電システム。
3. The photovoltaic power generation system according to claim 1, wherein the degaussing circuit supplies a damped oscillating current for degaussing the detection core to a winding wound around the detection core.
【請求項4】電力変換手段は太陽電池の直流電圧を所定
の電圧値に昇圧する昇圧回路を備え、昇圧回路は、太陽
電池の直流出力端間に接続された第2のインダクタおよ
び第2のスイッチング素子の直列回路と、第2のインダ
クタ及び第2のスイッチング素子の接続点にアノードが
接続されたダイオードと、ダイオードを介して第2のス
イッチング素子の両端間に接続された平滑用の第2のコ
ンデンサとから構成され、第2のインダクタが減衰振動
電流を流すための第1のインダクタを兼用することを特
徴とする請求項2記載の太陽光発電システム。
4. The power conversion means includes a booster circuit for boosting a DC voltage of the solar cell to a predetermined voltage value, wherein the booster circuit includes a second inductor connected between the DC output terminals of the solar cell and a second inductor. A series circuit of switching elements, a diode having an anode connected to a connection point between the second inductor and the second switching element, and a second smoothing element connected between both ends of the second switching element via the diode. 3. The photovoltaic power generation system according to claim 2, wherein the second inductor also serves as the first inductor for flowing the damped oscillating current. 4.
JP18510498A 1998-06-30 1998-06-30 Solar power system Expired - Fee Related JP3804276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18510498A JP3804276B2 (en) 1998-06-30 1998-06-30 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18510498A JP3804276B2 (en) 1998-06-30 1998-06-30 Solar power system

Publications (2)

Publication Number Publication Date
JP2000023370A true JP2000023370A (en) 2000-01-21
JP3804276B2 JP3804276B2 (en) 2006-08-02

Family

ID=16164933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18510498A Expired - Fee Related JP3804276B2 (en) 1998-06-30 1998-06-30 Solar power system

Country Status (1)

Country Link
JP (1) JP3804276B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187150A (en) * 2004-12-28 2006-07-13 Omron Corp Power conditioner and its self-diagnostic method
KR20170130487A (en) 2015-04-22 2017-11-28 파나소닉 아이피 매니지먼트 가부시키가이샤 Blocking device
JP6319929B1 (en) * 2017-03-24 2018-05-09 竹内マネージメント株式会社 DC ground fault detection device, solar power generation system, and program
KR102100481B1 (en) * 2019-08-07 2020-04-13 금수티아이 주식회사 solar photovoltatic generation system connected street light
CN114325434A (en) * 2021-12-21 2022-04-12 上海磐动电气科技有限公司 Fuel cell electrochemical impedance spectrum detection device and detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187150A (en) * 2004-12-28 2006-07-13 Omron Corp Power conditioner and its self-diagnostic method
KR20170130487A (en) 2015-04-22 2017-11-28 파나소닉 아이피 매니지먼트 가부시키가이샤 Blocking device
US10396544B2 (en) 2015-04-22 2019-08-27 Panasonic Intellectual Property Management Co., Ltd. Shutoff device
JP6319929B1 (en) * 2017-03-24 2018-05-09 竹内マネージメント株式会社 DC ground fault detection device, solar power generation system, and program
JP2018164340A (en) * 2017-03-24 2018-10-18 竹内マネージメント株式会社 Dc ground fault detection device, photovoltaic power generation system, and program
KR102100481B1 (en) * 2019-08-07 2020-04-13 금수티아이 주식회사 solar photovoltatic generation system connected street light
CN114325434A (en) * 2021-12-21 2022-04-12 上海磐动电气科技有限公司 Fuel cell electrochemical impedance spectrum detection device and detection method

Also Published As

Publication number Publication date
JP3804276B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US10917023B2 (en) Power conversion system and method for pre charging DC-Bus capacitors therein
US8116103B2 (en) Device for feeding electric energy into a power grid and DC converter for such a device
US7944091B2 (en) Apparatus for feeding electrical energy into a power grid and DC voltage converter for such an apparatus
JP5208374B2 (en) Grid interconnection power conditioner and grid interconnection power system
US11496053B2 (en) Power conversion system with dc-bus pre-charge
US7522437B2 (en) Inverter circuit and control circuit thereof
JP3884386B2 (en) Grid-connected inverter device
JP2000023370A (en) Solar light power generation system
JP4405654B2 (en) Power converter and power generator
KR100419303B1 (en) Power transmission apparatus and method for power transmission
JPH09215205A (en) Power conversion apparatus
JP3454345B2 (en) Inverter device
JP2004208345A (en) Three-phase unbalanced voltage restraining apparatus
JPH09121559A (en) Inverter device
JP3563967B2 (en) Solar power system
JP2001211650A (en) Power supply unit
KR200194413Y1 (en) Battery charger of zero switching type
JP2002142463A (en) System linkage inverter
JP2002165461A (en) Transformerless inverter power supply
JP3466448B2 (en) DC-DC converter
JP2000023368A (en) Solar light power generation system
JPH0686557A (en) Uninterruptible power supply
JPH1118441A (en) Method of initially charging dc capacitor of inverter
JP2001022457A (en) Decentralized power unit
JP2004158386A (en) Induction heating cooking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees