JP2000019308A - Light scattering film, its production and double refractive film - Google Patents

Light scattering film, its production and double refractive film

Info

Publication number
JP2000019308A
JP2000019308A JP10199831A JP19983198A JP2000019308A JP 2000019308 A JP2000019308 A JP 2000019308A JP 10199831 A JP10199831 A JP 10199831A JP 19983198 A JP19983198 A JP 19983198A JP 2000019308 A JP2000019308 A JP 2000019308A
Authority
JP
Japan
Prior art keywords
film
light
polymers
scattering
light scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10199831A
Other languages
Japanese (ja)
Other versions
JP3976157B2 (en
Inventor
Kazutaka Hara
和孝 原
Minoru Miyatake
宮武  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP19983198A priority Critical patent/JP3976157B2/en
Publication of JP2000019308A publication Critical patent/JP2000019308A/en
Application granted granted Critical
Publication of JP3976157B2 publication Critical patent/JP3976157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light scattering film in which the shapes and sizes of microregions are changed in a thickness direction and the optical characteristics hardly change by wavelengths and the optical characteristics hardly dependent upon the wavelengths in spite of a single layer film by comprising the film dispersed and distributed with the microregions different in double refraction characteristics and varying the average values of the sizes of the microregions between the front and rear of the film by the changes in the film thickness direction. SOLUTION: The light scattering film 1 consists of the film dispersed and distributed with the microregions (e) different in the double refraction characteristics and the sizes of the microregions (e) are changed in the film thickness direction, by which their average values are changed between the front and rear of the film. The production of such light scattering film 1 may be executed by a method of varying the curing rate or temp. at the front and rear of a development layer, thereby varying the growth rate of the microregions formed in the development layer between the front and rear directions of the development layer at the time of forming the film by, for example, a casting method to develop a liquid mixture composed of plural polymers varying in the double refraction characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、散乱や位相差や偏光等の
光学特性が波長による変化を受けにくい光散乱フィル
ム、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-scattering film in which optical characteristics such as scattering, phase difference and polarization are hardly changed by wavelength, and a method for producing the same.

【0002】[0002]

【発明の背景】従来、複屈折特性が相違する微小領域を
分散分布させてなる光散乱フィルムが知られていた(特
開平9−274108号公報)。かかる光散乱フィルム
は、散乱や位相差や偏光等が部分的に相違する光学特性
を示し、液晶表示装置等における画像のにじみやボケの
防止等の視認性の向上を目的に用いられている。
BACKGROUND OF THE INVENTION Conventionally, a light scattering film in which minute regions having different birefringence characteristics are dispersed and distributed has been known (Japanese Patent Application Laid-Open No. 9-274108). Such a light-scattering film exhibits optical characteristics in which scattering, phase difference, polarization, and the like are partially different, and is used for the purpose of improving visibility such as prevention of image bleeding and blurring in a liquid crystal display device or the like.

【0003】しかしながら、微小領域の形状やサイズに
よる光路差にて光学特性が波長により大きく変化し、光
学特性の波長依存性が大きい問題点があった。
However, there has been a problem that the optical characteristics greatly change depending on the wavelength due to the optical path difference due to the shape and size of the minute region, and the wavelength dependence of the optical characteristics is large.

【0004】[0004]

【発明の技術的課題】本発明は、単層フィルムにても光
学特性が波長に依存しにくい光散乱フィルムの開発を課
題とする。
SUMMARY OF THE INVENTION An object of the present invention is to develop a light-scattering film whose optical properties are hardly dependent on wavelength even in a single-layer film.

【0005】[0005]

【課題の解決手段】本発明は、複屈折特性が相違する微
小領域を分散分布させたフィルムからなり、その微小領
域の大きさがフィルム厚方向で変化してフィルム表裏で
その平均値が相違していることを特徴とする光散乱フィ
ルム、及びそのフィルムの延伸処理フィルムからなるこ
とを特徴とする複屈折性フィルムを提供するものであ
る。
The present invention comprises a film in which minute regions having different birefringence characteristics are dispersed and distributed, and the size of the minute regions changes in the thickness direction of the film, so that the average value differs between the front and back of the film. And a birefringent film comprising a light-scattering film and a stretched film of the film.

【0006】[0006]

【発明の効果】本発明によれば、微小領域の形状やサイ
ズが厚さ方向に変化して光学特性が波長により変化しに
くく、単層フィルムにても光学特性が波長に依存しにく
い光散乱フィルムを得ることができる。
According to the present invention, the light scattering is such that the optical characteristics are hardly changed by the wavelength because the shape and the size of the minute region change in the thickness direction, and the optical characteristics are hardly dependent on the wavelength even in a single-layer film. A film can be obtained.

【0007】[0007]

【発明の実施形態】本発明による光散乱フィルムは、複
屈折特性が相違する微小領域を分散分布させたフィルム
からなり、その微小領域の大きさがフィルム厚方向で変
化してフィルム表裏でその平均値が相違しているもので
ある。その例を図1、図2に示した。1が光散乱フィル
ムであり、eが微小領域である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The light-scattering film according to the present invention comprises a film in which minute regions having different birefringence characteristics are dispersed and distributed. The values are different. Examples thereof are shown in FIGS. 1 is a light scattering film, and e is a minute area.

【0008】本発明による光散乱フィルムの製造は、例
えば複屈折特性が相違する複数のポリマーの混合液を展
開するキャスト法にて製膜する際に、その展開層の表裏
における硬化速度又は温度を相違させて、展開層中に形
成される微小領域の成長速度を展開層の表裏方向で相違
させる方法にて行うことができる。
In the production of the light-scattering film according to the present invention, for example, when a film is formed by a casting method in which a mixed solution of a plurality of polymers having different birefringence characteristics is developed, the curing speed or temperature on the front and back of the developed layer is controlled. Alternatively, it can be performed by a method in which the growth rate of the minute region formed in the spread layer is different between the front and back directions of the spread layer.

【0009】また複屈折特性が相違する複数のポリマー
を成分とし、かつ少なくとも1種の紫外線硬化型ポリマ
ーを含む混合液を展開し、その展開層を紫外線照射にて
硬化処理する際に、その展開層の表裏に対する紫外線照
射量を相違させて、展開層中に形成される微小領域の成
長速度を展開層の表裏方向で相違させる方法にても当該
光散乱フィルムを製造することができる。
Further, when a mixed solution containing a plurality of polymers having different birefringence characteristics as components and containing at least one kind of ultraviolet-curable polymer is developed, and when the developed layer is cured by ultraviolet irradiation, the developed The light-scattering film can also be manufactured by a method in which the amount of ultraviolet irradiation on the front and back of the layer is changed so that the growth rate of the minute region formed in the spread layer is different in the front and back directions of the spread layer.

【0010】さらに複屈折特性が相違する複数のポリマ
ーの混合物を押出し成形方式にてフィルムに成形する際
に、その成形過程のフィルムの表裏に温度差をもたせ
て、成形フィルム中に形成される微小領域の成長速度を
成形フィルムの表裏方向で相違させる方法にても当該光
散乱フィルムを製造することができる。
Further, when a mixture of a plurality of polymers having different birefringence characteristics is formed into a film by an extrusion molding method, a temperature difference is provided between the front and back of the film in the molding process, and fine particles formed in the formed film are formed. The light scattering film can also be manufactured by a method in which the growth rate of the region is made different in the front and back directions of the molded film.

【0011】またさらにキャスト法にて製膜する際に、
1種又は2種以上のポリマーを成分とするポリマー液に
粒度分布を有する光散乱性粒子を配合した混合液を用い
て、その混合液を展開層の厚さ方向が重力方向となるよ
うに展開し、光散乱性粒子の粒度差による沈降速度差を
利用して展開層の表裏方向に粒度分布による大きさに応
じた光散乱性粒子の傾斜分布を形成する方法にても当該
光散乱フィルムを製造することができる。
Further, when forming a film by a casting method,
Using a mixture of light-scattering particles having a particle size distribution in a polymer liquid containing one or more kinds of polymers as a component, the mixture is developed so that the thickness direction of the developing layer becomes the direction of gravity. The light scattering film is also used in a method of forming a gradient distribution of light scattering particles according to the size due to the particle size distribution in the front and back directions of the spreading layer using the difference in sedimentation velocity due to the difference in particle size of the light scattering particles. Can be manufactured.

【0012】加えて、キャスト法による製膜時にその展
開層に貧溶媒を噴霧する方式などにて得られる限外濾過
膜の如く、孔の形状が膜厚方向に変化した多孔質フィル
ムの孔に複屈折特性が相違するポリマーを充填する方法
などにても当該光散乱フィルムを製造することができ
る。
[0012] In addition, as in an ultrafiltration membrane obtained by spraying a poor solvent onto a spreading layer during film formation by a casting method, the pores of a porous film in which the shape of the pores changes in the film thickness direction are used. The light scattering film can also be manufactured by a method of filling a polymer having different birefringence characteristics.

【0013】従って本発明による光散乱フィルムの製造
は、ベースとなるフィルム成分中に形状やサイズがフィ
ルム厚方向で変化した複屈折特性相違の微小領域を分散
形成しうる適宜な方式にて行うことができる。ちなみに
前記したキャスト法や紫外線照射法、押出し成形法や光
散乱性粒子配合法にては図1に例示した如き微小領域分
散タイプのものが、多孔質フィルム法にては図2に例示
した如き微小領域分散タイプのものが一般に得られやす
い。光学特性の波長依存を防止する点よりは、フィルム
中における微小領域の形状やサイズがフィルム厚方向で
一定方向に可及的に連続変化したものが好ましい。
Therefore, the production of the light scattering film according to the present invention is carried out by an appropriate method capable of dispersing and forming minute regions having a difference in birefringence characteristics whose shape and size are changed in the film thickness direction in a base film component. Can be. Incidentally, in the casting method, the ultraviolet irradiation method, the extrusion molding method and the light-scattering particle blending method, the micro-area dispersed type as illustrated in FIG. 1 is used, and in the porous film method, as illustrated in FIG. In general, a micro-area dispersed type is easily obtained. It is preferable that the shape and size of the minute region in the film are continuously changed as much as possible in a constant direction in the film thickness direction from the viewpoint of preventing the wavelength dependence of the optical characteristics.

【0014】上記において光散乱フィルムの形成には、
例えばポリマー類や液晶類等の透明性に優れる適宜な材
料の1種又は2種以上を、そのまま又は延伸処理等の適
宜な配向処理を介して複屈折特性が相違する領域を形成
しうる組合せで用いうる。
In the above, the formation of the light scattering film includes:
For example, one or two or more of suitable materials having excellent transparency such as polymers and liquid crystals may be used as they are or through a combination capable of forming regions having different birefringence characteristics through appropriate alignment treatment such as stretching treatment. Can be used.

【0015】ちなみに前記した配向処理で複屈折特性が
相違する領域を形成する組合せの例としては、ポリマー
類と液晶類の組合せ、等方性ポリマーと異方性ポリマー
の組合せ、異方性ポリマー同士の組合せなどがあげられ
る。微小領域の分散分布性などの点より、相分離する組
合せが好ましく、組合せる材料の相溶性により分散分布
性を制御することができる。相分離は、例えば非相溶性
の材料を溶媒にて溶液化する方式や、相溶性の材料を加
熱溶融下に混合する方式などの適宜な方式で行うことが
できる。
Incidentally, examples of combinations for forming regions having different birefringence characteristics by the above-mentioned alignment treatment include combinations of polymers and liquid crystals, combinations of isotropic polymers and anisotropic polymers, and combinations of anisotropic polymers. And the like. From the viewpoint of the dispersion distribution of the minute region, a combination that separates phases is preferable, and the dispersion distribution can be controlled by the compatibility of the materials to be combined. The phase separation can be performed by an appropriate method such as a method in which an incompatible material is converted into a solution with a solvent, and a method in which a compatible material is mixed while being heated and melted.

【0016】前記ポリマー類の例としては、ポリエチレ
ンテレフタレートやポリエチレンナフタレートの如きポ
リエステル系ポリマー、ポリスチレンやアクリロニトリ
ル・スチレン共重合体(AS樹脂)の如きスチレン系ポ
リマー、ポリエチレンやポリプロピレン、シクロ系ない
しノルボルネン構造を有するポリオレフィンやエチレン
・プロピレン共重合体の如きオレフィン系ポリマー、カ
ーボネート系ポリマー、ポリメチルメタクリレートの如
きアクリル系ポリマー、塩化ビニル系ポリマー、二酢酸
セルロースや三酢酸セルロースの如きセルロース系ポリ
マー、ナイロンや芳香族ポリアミドの如きアミド系ポリ
マー、イミド系ポリマー、スルホン系ポリマー、ポリエ
ーテルスルホン系ポリマー、ポリエーテルエーテルケト
ン系ポリマー、ポリフェニレンスルフィド系ポリマー、
ビニルアルコール系ポリマー、塩化ビニリデン系ポリマ
ー、ビニルブチラール系ポリマー、アリレート系ポリマ
ー、ポリオキシメチレン系ポリマー、それらのブレンド
物などがあげられる。加熱処理や紫外線処理などにより
重合してポリマー化するものなども用いうる。
Examples of the polymers include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, styrene polymers such as polystyrene and acrylonitrile-styrene copolymer (AS resin), polyethylene and polypropylene, and cyclo or norbornene structures. Olefin polymers such as polyolefins and ethylene / propylene copolymers, carbonate polymers, acrylic polymers such as polymethyl methacrylate, vinyl chloride polymers, cellulose polymers such as cellulose diacetate and cellulose triacetate, nylon and aromatic Amide polymers such as aromatic polyamides, imide polymers, sulfone polymers, polyethersulfone polymers, polyetheretherketone polymers, Phenylene sulfide-based polymer,
Examples include vinyl alcohol-based polymers, vinylidene chloride-based polymers, vinyl butyral-based polymers, arylate-based polymers, polyoxymethylene-based polymers, and blends thereof. Those which are polymerized by heat treatment, ultraviolet treatment or the like may be used.

【0017】また液晶類の例としては、シアノビフェニ
ル系やシアノフェニルシクロヘキサン系、シアノフェニ
ルエステル系や安息香酸フェニルエステル系、フェニル
ピリミジン系やそれらの混合物の如き室温又は高温でネ
マチック相やスメクチック相を呈する低分子液晶、ある
いは室温又は高温でネマチック相やスメクチック相を呈
する液晶ポリマーなどがあげられる。
Examples of liquid crystals include a nematic phase and a smectic phase at room temperature or high temperature such as cyanobiphenyl, cyanophenylcyclohexane, cyanophenyl ester, phenyl benzoate, phenylpyrimidine, and mixtures thereof. And low-molecular liquid crystals exhibiting a nematic phase or a smectic phase at room temperature or high temperature.

【0018】微小領域の均等分布性に優れる光散乱フィ
ルムを得る点などよりは、溶媒を介した材料の混合液を
キャスト法や流延成形法等にて製膜する方式が好まし
い。その場合、溶媒の種類や混合液の粘度、混合液展開
層の乾燥速度などにより微小領域の大きさや分布性など
を制御することができる。なお上記した粒度分布を有す
る光散乱性粒子としても、前記したポリマー類や液晶類
などからなるものなどがあげられる。
From the viewpoint of obtaining a light-scattering film having excellent uniform distribution of minute regions, it is preferable to form a mixed solution of materials via a solvent by a casting method, a casting method, or the like. In this case, the size and distribution of the minute region can be controlled by the type of the solvent, the viscosity of the mixed solution, the drying speed of the mixed solution developing layer, and the like. Examples of the light-scattering particles having the above-mentioned particle size distribution include those made of the above-mentioned polymers and liquid crystals.

【0019】光散乱フィルムの厚さは、適宜に決定しう
る。一般には光学特性などの点より1μm〜3mm、就中
5μm〜1mm、特に10〜500μmの厚さとされる。な
お光散乱フィルムの形成に際しては、例えば分散剤や界
面活性剤、紫外線吸収剤や色調調節剤、難燃剤や離型
剤、酸化防止剤などの適宜な添加剤を配合することがで
きる。
The thickness of the light scattering film can be determined appropriately. In general, the thickness is 1 μm to 3 mm, particularly 5 μm to 1 mm, and particularly preferably 10 to 500 μm from the viewpoint of optical characteristics. When forming the light scattering film, for example, appropriate additives such as a dispersant, a surfactant, an ultraviolet absorber, a color adjusting agent, a flame retardant, a release agent, and an antioxidant can be blended.

【0020】複屈折特性が相違する微小領域の形成に際
しては、必要に応じて配向処理が施される。その配向処
理は、例えば一軸や二軸、逐次二軸やZ軸等による延伸
処理方式や圧延方式、ガラス転移点又は液晶転移点以上
の温度で電場又は磁場を印加して急冷し配向を固定化す
る方式や製膜時に流動配向させる方式、等方性ポリマー
の僅かな配向に基づいて液晶を自己配向させる方式など
の、配向により屈折率を制御しうる適宜な方式の1種又
は2種以上を用いて行うことができる。
When forming micro regions having different birefringence characteristics, an orientation treatment is performed as necessary. The orientation treatment is, for example, a uniaxial or biaxial, sequential biaxial or Z-axis stretching method or a rolling method, and quenching by applying an electric field or a magnetic field at a temperature higher than the glass transition point or the liquid crystal transition point to fix the orientation. One or two or more of appropriate methods that can control the refractive index by alignment, such as a method of performing liquid alignment during film formation, a method of self-aligning liquid crystal based on a slight alignment of an isotropic polymer, and the like. It can be performed using:

【0021】光散乱フィルムにおける微小領域は、散乱
等の光学特性の均質性などの点より可及的に均等に分散
分布していることが好ましい。また光散乱フィルムに占
める微小領域の割合については、特に限定はないが、一
般には片表面における微小領域の表面積割合に基づいて
1〜95%、就中5〜80%、特に10〜70%とされ
る。
It is preferable that the minute regions in the light scattering film are dispersed and distributed as uniformly as possible from the viewpoint of homogeneity of optical characteristics such as scattering. The ratio of the minute region in the light scattering film is not particularly limited, but is generally 1 to 95%, preferably 5 to 80%, particularly 10 to 70% based on the surface area ratio of the minute region on one surface. Is done.

【0022】本発明による光散乱フィルムは、光学特性
の制御などを目的に適宜な方式で延伸処理した複屈折性
フィルムとすることもできる。従って本発明による光散
乱フィルムは、延伸フィルムであってもよいし、非延伸
フィルムであってもよい。なお延伸フィルムとする場合
には、脆性ポリマーも用いうるが、延び性に優れるポリ
マーが特に好ましく用いうる。
The light-scattering film according to the present invention may be a birefringent film that has been stretched by an appropriate method for the purpose of controlling optical characteristics and the like. Therefore, the light scattering film according to the present invention may be a stretched film or a non-stretched film. When a stretched film is used, a brittle polymer may be used, but a polymer having excellent extensibility can be particularly preferably used.

【0023】ちなみに前記の延伸処理により光学特性に
異方性をもたせて、例えば微小領域と他の部分(フィル
ムベース)との屈折率差に基づき直線偏光を散乱する軸
方向と、散乱なく透過する軸方向を有する光散乱フィル
ムなどを得ることもできる。
By the way, the optical properties are given anisotropy by the above-mentioned stretching treatment, so that, for example, the linearly polarized light is scattered based on the refractive index difference between the minute area and the other part (film base), and the light is transmitted without scattering. It is also possible to obtain a light scattering film having an axial direction.

【0024】本発明による光散乱フィルムや複屈折性フ
ィルムは、拡散板や位相差板、偏光制御板やアンチグレ
ア板、表示特性制御板など各種の用途に用いうる。その
実用に際しては、重畳したり、他の適宜な光学部品と積
層したりすることができる。その積層対象の光学部品に
ついては、特に限定はなく、例えば偏光板や位相差板、
導光板等のバックライトや反射板、多層膜等からなる偏
光分離板や液晶セルなどの適宜なものを用いうる。
The light scattering film and the birefringent film according to the present invention can be used for various applications such as a diffusion plate, a retardation plate, a polarization control plate, an anti-glare plate, and a display characteristic control plate. In practical use, they can be superimposed or laminated with other appropriate optical components. There is no particular limitation on the optical component to be laminated, for example, a polarizing plate or a retardation plate,
Appropriate devices such as a backlight such as a light guide plate, a reflection plate, a polarization separation plate composed of a multilayer film and a liquid crystal cell can be used.

【0025】[0025]

【実施例】実施例1 ポリメタクリル酸メチル300部(重量部、以下同じ)
を含有する18重量%ジクロロメタン溶液とシアノ系ネ
マチック液晶(チッソ社製、GR−41)100部を混
合し、その混合液を水冷した基盤上に展開し、その展開
層の上部より90℃の熱風を吹き付けて乾燥処理するキ
ャスト法にて厚さ50μmの光散乱フィルムを得た。
EXAMPLES Example 1 300 parts of poly (methyl methacrylate) (parts by weight, the same applies hereinafter)
Is mixed with 100 parts of a cyano-based nematic liquid crystal (GR-41, manufactured by Chisso Corp.), and the mixture is spread on a water-cooled substrate. Was spray-dried to obtain a light scattering film having a thickness of 50 μm by a casting method.

【0026】前記の光散乱フィルムは、ポリメタクリル
酸メチルからなるフィルムベース中にシアノ系ネマチッ
ク液晶からなる微小領域がドメイン状に分散分布した図
1に例示のタイプのものであり、そのドメインの大きさ
は、前記の熱風乾燥側で平均直径が約1μm、基盤側で
平均直径が約5μmであり、その粒径分布変化はフィル
ム厚方向におおよそ直線的であった。
The light-scattering film is of the type illustrated in FIG. 1 in which fine regions composed of cyano-based nematic liquid crystals are dispersed and distributed in the form of domains in a film base composed of polymethyl methacrylate. The average diameter was about 1 μm on the hot air drying side and about 5 μm on the substrate side, and the change in particle size distribution was approximately linear in the film thickness direction.

【0027】また前記の光散乱フィルムを延伸処理する
ことにより液晶相が配向して位相差が発生し、包埋物質
との屈折率差から光散乱性を示す複屈折性フィルムが得
られた。その散乱特性における波長依存性は、フィルム
の表裏で微小領域の平均直径に変化のない均一フィルム
に較べて少なかった。
By stretching the light-scattering film, the liquid crystal phase was oriented to generate a phase difference, and a birefringent film showing light-scattering properties was obtained from the difference in refractive index from the embedding substance. The wavelength dependence of the scattering properties was less than that of a uniform film in which the average diameter of the microscopic region did not change on the front and back of the film.

【0028】実施例2 メタクリル酸メチル80部、アクリル酸10部、光反応
開始剤3部(チバガイギ社製、イルガキュア184:2
部、イルガキュア907:1部)、紫外線吸収剤(チバ
ガイギ社製、チヌビン1130)2部、反応開始剤(B
PO)2部、及びシアノ系ネマチック液晶(チッソ社
製、GR−41)30部を混合し、その混合液を離型処
理したガラス板間(ギャップ100μm)に注入し、そ
の一方より紫外線を照射して重合の進行による白濁(相
分離)を生じさせた後、80℃で120分間アニールし
て残存モノマーの反応を完結させて光散乱フィルムを得
た。
Example 2 80 parts of methyl methacrylate, 10 parts of acrylic acid, 3 parts of a photoreaction initiator (Irgacure 184: 2 manufactured by Ciba-Geigy)
Parts, Irgacure 907: 1 part), 2 parts of an ultraviolet absorber (Tinuvin 1130, manufactured by Ciba Geigy), and a reaction initiator (B
PO) and 30 parts of a cyano-based nematic liquid crystal (GR-41, manufactured by Chisso Corporation) were mixed, and the mixed solution was injected into a space between release-treated glass plates (gap: 100 μm), and one of them was irradiated with ultraviolet rays. Then, turbidity (phase separation) was caused by the progress of the polymerization, and then annealing was performed at 80 ° C. for 120 minutes to complete the reaction of the remaining monomers, thereby obtaining a light scattering film.

【0029】前記の光散乱フィルムは、メタクリル酸メ
チル・アクリル酸共重合体からなるフィルムベース中に
シアノ系ネマチック液晶の相分離による微小領域が分散
分布した図1に例示のタイプのものであり、その微小領
域の平均粒径は、紫外線照射側が小さく反対面側ほど大
きいものであった。
The light-scattering film is of the type illustrated in FIG. 1 in which fine regions due to phase separation of a cyano-based nematic liquid crystal are dispersed and distributed in a film base made of a methyl methacrylate-acrylic acid copolymer. The average particle size of the fine region was smaller on the ultraviolet irradiation side and larger on the opposite surface side.

【0030】また前記の光散乱フィルムを延伸処理する
ことにより液晶相が配向して位相差が発生し、包埋物質
との屈折率差から光散乱性を示す複屈折性フィルムが得
られた。その散乱特性における波長依存性は、フィルム
の表裏で微小領域の平均直径に変化のない均一フィルム
に較べて少なかった。
By subjecting the light-scattering film to a stretching treatment, the liquid crystal phase was oriented to generate a phase difference, and a birefringent film exhibiting light-scattering properties was obtained from the difference in refractive index from the embedding substance. The wavelength dependence of the scattering properties was less than that of a uniform film in which the average diameter of the microscopic region did not change on the front and back of the film.

【0031】実施例3 厚さ500μmのポリメタクリル酸メチルフィルムを超
臨界炭酸ガス処理して炭酸ガスによる膨潤フィルムとし
た後、常温常圧に戻して見かけ上の体積が1.5倍で、
内部に元体積の50%に相当する連続気泡が発生した、
スキン層を有しない連続多孔質フィルムを得た。このフ
ィルムの断面構造は、図2に例示した如く気泡の平均直
径が表面側で大きく、内部側ほど小さいものであった。
次に前記の多孔質フィルムに真空中にてシアノ系ネマチ
ック液晶(チッソ社製、GR−41)を吸収させて光散
乱フィルムを得た。
Example 3 A polymethyl methacrylate film having a thickness of 500 μm was subjected to supercritical carbon dioxide gas treatment to form a swelling film with carbon dioxide gas, and then returned to normal temperature and normal pressure to have an apparent volume 1.5 times.
Open cells corresponding to 50% of the original volume were generated inside,
A continuous porous film having no skin layer was obtained. In the cross-sectional structure of this film, as shown in FIG. 2, the average diameter of bubbles was larger on the surface side and smaller on the inner side.
Next, a cyano-based nematic liquid crystal (GR-41, manufactured by Chisso Corporation) was absorbed in the porous film in a vacuum to obtain a light scattering film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の説明図FIG. 1 is an explanatory view of an embodiment.

【図2】他の実施例の説明図FIG. 2 is an explanatory view of another embodiment.

【符号の説明】[Explanation of symbols]

1:光散乱フィルム e:微小領域 1: light scattering film e: minute area

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年6月30日(1998.6.3
0)
[Submission date] June 30, 1998 (1998.6.3)
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】 また前記の光散乱フィルムは硬化フィル
ムで延伸処理することは困難であったが、その散乱特性
における波長依存性は、フィルムの表裏で微小領域の平
均直径に変化のない均一フィルムに較べて少なかった。
The light-scattering film is a cured film.
Although it was difficult to perform the stretching treatment with a film, the wavelength dependence of the scattering characteristics was smaller than that of a uniform film in which the average diameter of the microscopic region did not change on the front and back of the film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複屈折特性が相違する微小領域を分散分
布させたフィルムからなり、その微小領域の大きさがフ
ィルム厚方向で変化してフィルム表裏でその平均値が相
違していることを特徴とする光散乱フィルム。
1. A film formed by dispersing and distributing minute regions having different birefringence characteristics, wherein the size of the minute regions changes in the film thickness direction and the average value differs between the front and back of the film. Light scattering film.
【請求項2】 複屈折特性が相違する複数のポリマーの
混合液を展開するキャスト法にて製膜する際に、その展
開層の表裏における硬化速度又は温度を相違させること
を特徴とする請求項1に記載の光散乱フィルムの製造方
法。
2. The method according to claim 1, wherein when forming a film by a casting method in which a mixed solution of a plurality of polymers having different birefringence characteristics is developed, the curing speed or the temperature on the front and back surfaces of the developed layer is made different. 2. The method for producing a light-scattering film according to 1.
【請求項3】 複屈折特性が相違する複数のポリマーを
成分とし、かつ少なくとも1種の紫外線硬化型ポリマー
を含む混合液を展開し、その展開層を紫外線照射にて硬
化処理する際に、その展開層の表裏に対する紫外線照射
量を相違させることを特徴とする請求項1に記載の光散
乱フィルムの製造方法。
3. When a mixed solution containing a plurality of polymers having different birefringence characteristics as components and containing at least one kind of UV-curable polymer is developed, and the developed layer is cured by UV irradiation, The method for producing a light-scattering film according to claim 1, wherein the ultraviolet irradiation amounts on the front and back of the spreading layer are different.
【請求項4】 複屈折特性が相違する複数のポリマーの
混合物を押出し成形方式にてフィルムに成形する際に、
その成形過程のフィルムの表裏に温度差をもたせること
を特徴とする請求項1に記載の光散乱フィルムの製造方
法。
4. When forming a mixture of a plurality of polymers having different birefringence characteristics into a film by an extrusion molding method,
The method for producing a light-scattering film according to claim 1, wherein a temperature difference is provided between the front and back of the film in the forming process.
【請求項5】 キャスト法にて製膜する際に、1種又は
2種以上のポリマーを成分とするポリマー液に粒度分布
を有する光散乱性粒子を配合した混合液を用いて、その
混合液を展開層の厚さ方向が重力方向となるように展開
することを特徴とする請求項1に記載の光散乱フィルム
の製造方法。
5. When forming a film by a casting method, a mixed solution obtained by mixing light scattering particles having a particle size distribution with a polymer liquid containing one or more kinds of polymers is used. The method for producing a light-scattering film according to claim 1, wherein the developing layer is developed so that the thickness direction of the developing layer becomes the direction of gravity.
【請求項6】 多孔質フィルムの孔に複屈折特性が相違
するポリマーを充填することを特徴とする請求項1に記
載の光散乱フィルムの製造方法。
6. The method for producing a light-scattering film according to claim 1, wherein a polymer having a different birefringence property is filled in the pores of the porous film.
【請求項7】 請求項1に記載の光散乱フィルムの延伸
処理フィルムからなることを特徴とする複屈折性フィル
ム。
7. A birefringent film, comprising the stretched film of the light scattering film according to claim 1.
JP19983198A 1998-06-29 1998-06-29 Light scattering film, method for producing the same, and birefringent film Expired - Fee Related JP3976157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19983198A JP3976157B2 (en) 1998-06-29 1998-06-29 Light scattering film, method for producing the same, and birefringent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19983198A JP3976157B2 (en) 1998-06-29 1998-06-29 Light scattering film, method for producing the same, and birefringent film

Publications (2)

Publication Number Publication Date
JP2000019308A true JP2000019308A (en) 2000-01-21
JP3976157B2 JP3976157B2 (en) 2007-09-12

Family

ID=16414377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19983198A Expired - Fee Related JP3976157B2 (en) 1998-06-29 1998-06-29 Light scattering film, method for producing the same, and birefringent film

Country Status (1)

Country Link
JP (1) JP3976157B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127287A (en) * 2000-10-25 2002-05-08 Pilot Ink Co Ltd Reversibly thermal-discoloring laminate and method for manufacturing the same
JP2005302336A (en) * 2004-04-07 2005-10-27 Hitachi Ltd Light-emitting element and its display device
JP2007212833A (en) * 2006-02-10 2007-08-23 Sumitomo Chemical Co Ltd Manufacturing method of light control film and light control film obtained thereby
JP2008032846A (en) * 2006-07-26 2008-02-14 Dainippon Printing Co Ltd Optical sheet, transmission type screen and rear projection type display apparatus
JP2009538454A (en) * 2006-05-25 2009-11-05 アイ2アイシー コーポレイション Manufacturing method for sheets with different particle concentrations
KR20130035798A (en) * 2011-09-30 2013-04-09 엘지이노텍 주식회사 Optical member and apparatus and method of fabricating the same
JP2017504220A (en) * 2013-11-08 2017-02-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component, optoelectronic device, optical element manufacturing method, and optoelectronic component manufacturing method
KR20180023717A (en) * 2016-08-26 2018-03-07 연세대학교 산학협력단 Optical diffuser film, method of fabricating the same, and polymer structure
KR101905849B1 (en) * 2011-09-09 2018-10-08 엘지이노텍 주식회사 Optical member, display device having the same and method of fabricating the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127287A (en) * 2000-10-25 2002-05-08 Pilot Ink Co Ltd Reversibly thermal-discoloring laminate and method for manufacturing the same
JP2005302336A (en) * 2004-04-07 2005-10-27 Hitachi Ltd Light-emitting element and its display device
JP4564773B2 (en) * 2004-04-07 2010-10-20 株式会社 日立ディスプレイズ LIGHT EMITTING ELEMENT AND DISPLAY DEVICE THEREOF
JP2007212833A (en) * 2006-02-10 2007-08-23 Sumitomo Chemical Co Ltd Manufacturing method of light control film and light control film obtained thereby
JP2009538454A (en) * 2006-05-25 2009-11-05 アイ2アイシー コーポレイション Manufacturing method for sheets with different particle concentrations
JP2008032846A (en) * 2006-07-26 2008-02-14 Dainippon Printing Co Ltd Optical sheet, transmission type screen and rear projection type display apparatus
KR101905849B1 (en) * 2011-09-09 2018-10-08 엘지이노텍 주식회사 Optical member, display device having the same and method of fabricating the same
KR20130035798A (en) * 2011-09-30 2013-04-09 엘지이노텍 주식회사 Optical member and apparatus and method of fabricating the same
KR101882302B1 (en) * 2011-09-30 2018-07-27 엘지이노텍 주식회사 Optical member and apparatus and method of fabricating the same
JP2017504220A (en) * 2013-11-08 2017-02-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component, optoelectronic device, optical element manufacturing method, and optoelectronic component manufacturing method
US10916686B2 (en) 2013-11-08 2021-02-09 Osram Oled Gmbh Optoelectronic component, optoelectronic arrangement, method of producing an optical element, and method of producing an optoelectronic component
KR20180023717A (en) * 2016-08-26 2018-03-07 연세대학교 산학협력단 Optical diffuser film, method of fabricating the same, and polymer structure
KR101899214B1 (en) * 2016-08-26 2018-09-14 연세대학교 산학협력단 Optical diffuser film, method of fabricating the same, and polymer structure

Also Published As

Publication number Publication date
JP3976157B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
TWI661223B (en) Light modulation device and eyewear
JP3594868B2 (en) Laminated polarizing plate and liquid crystal display
Doane Polymer dispersed liquid crystal displays
TW466354B (en) Wide viewing angle polarizing plane and liquid crystal display
KR101499363B1 (en) Liquid Crystal Device
US7649595B2 (en) Method of forming a polymer dispersed liquid crystal cell, a cell formed by such method and uses of such cell
US5699136A (en) Negative uniaxial anisotropic element and method for manufacturing the same
JP3383260B2 (en) Neutral polarizing plate and liquid crystal display
JP4462522B2 (en) Liquid crystal display
WO2006095617A1 (en) Liquid crystal panel, liquid crystal television, and liquid crystal display device
JP2006189781A (en) Liquid crystal panel and liquid crystal display device
US20070195244A1 (en) Optical Film And Image Display
JP2004252478A (en) Liquid crystal composite material
JP2000190385A (en) Manufacture of optical film, optical film and liquid crystal display
JP4614407B2 (en) Polarizing film and liquid crystal display device
WO2005098489A1 (en) Polarizer, polarizing plate, optical film and image display
JP2000019308A (en) Light scattering film, its production and double refractive film
Silva et al. Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films
TW200811548A (en) Phase differential film, polarizing film and liquid crystal display device
CN100432785C (en) Liquid crystal panel and liquid crystal display apparatus
JPH05196815A (en) Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance
JP2005292727A (en) Laminated phase difference film, its manufacturing method and optical film using the same
KR20130082475A (en) Composition for photo-aligning layer
JP4099262B2 (en) Light diffusion adhesive layer, method for producing the same, optical element, and liquid crystal display device
KR20200077825A (en) Liquid crystal composition, liquid crystal film and method for manufacturing liquid crystal film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160629

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees