JP2000019235A - Mi sensor excellent in temperature characteristic - Google Patents

Mi sensor excellent in temperature characteristic

Info

Publication number
JP2000019235A
JP2000019235A JP10186695A JP18669598A JP2000019235A JP 2000019235 A JP2000019235 A JP 2000019235A JP 10186695 A JP10186695 A JP 10186695A JP 18669598 A JP18669598 A JP 18669598A JP 2000019235 A JP2000019235 A JP 2000019235A
Authority
JP
Japan
Prior art keywords
circuit
sensor
current circuit
constant current
temperature characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10186695A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Yoshiaki Koya
吉晃 幸谷
Yoshinobu Motokura
義信 本蔵
Kaneo Mori
佳年雄 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP10186695A priority Critical patent/JP2000019235A/en
Publication of JP2000019235A publication Critical patent/JP2000019235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetism-impedance(MI) sensor which is excellent in temperature characteristic. SOLUTION: In the MI sensor, when a constant-current circuit and a peak- hold circuit are fed back by using an operational amplifier (OP) 7, the temperature characteristics of both circuits are enhanced. The temperature characteristic is at 1%/F.S. or lower in the temperature range of -40 to 85 deg.C. In addition, when the OP 7 whose performance as a unity gain bandwidth is at 100 MHz or higher is used, the MI sensor of high sensitivity is obtainable. In addition, when the upper limit of a resistance value used in the constant-current circuit is set at 500 Ω, it is possible to suppress the attenuation of a signal at a high frequency in the constant-current circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,磁気−インピーダ
ンスセンサ(以下,MIセンサという)に関するもので
ある.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic-impedance sensor (hereinafter referred to as MI sensor).

【0002】[0002]

【従来技術】ホール素子やMR素子と同程度の微小寸法
が可能で,磁界の検出感度がホール素子やMR素子の1
00倍以上であり,フラックスゲートセンサと同程度の
センサとして,外部磁場によって,センサの検出体であ
るアモルファスワイヤのインピーダンスが大きく変化す
る磁気−インピーダンス(MI)効果を用いたMIセン
サが提案されている.そのMI効果は,周波数が高いほ
ど,インピーダンスの変化が大きいために,できるだけ
高周波,好ましくはパルスによる測定がが望まれる.パ
ルスを用いてインピーダンスを測定する電子回路のブロ
ック図を図1に示す.電子回路は,発振回路にて数nsの
時間幅の鋭いパルスを発振し,そのパルス電流を定電流
回路を通して,検出体であるアモルファスワイヤに供給
する.この時に得られる出力のピーク値は,外部磁場に
対応する.その信号をピークホールド回路で直流に変換
し,増幅回路で増幅する.従来回路では,数n〜数十sの
時間幅の鋭いパルスを扱うために,インピーダンス変化
が大きく感度の優れたMIセンサを構成できたが,回路
の温度補償が十分でなかった.特に定電流回路とピーク
ホールド回路の温度補償が十分でなかった.この原因は
図10に示す定電流回路のディジタル素子1と図12で
示すピークホールド回路のSBD2(ショットキーバリア
ダイオード)素子の温度特性が悪いためである.このた
め回路全体の温度特性が悪くなっている.実際,温度特
性を調査してみると,-40〜85℃の条件で50%/F.S.とな
るという問題があった.そのため自動車用途などには適
用が困難であった.本発明は,定電流回路とピークホー
ルド回路の温度補償をすることにより,回路全体の温度
特性を向上させたMIセンサを提供するものである.
2. Description of the Related Art Small dimensions comparable to those of a Hall element or an MR element are possible, and the magnetic field detection sensitivity is one of the Hall element and the MR element.
An MI sensor using a magnetic-impedance (MI) effect, in which the impedance of an amorphous wire, which is a detection object of the sensor, greatly changes due to an external magnetic field, has been proposed as a sensor that is at least 00 times the same as a fluxgate sensor. Yes. As for the MI effect, the higher the frequency, the greater the change in impedance. Therefore, it is desirable to measure the frequency as high as possible, preferably using a pulse. Figure 1 shows a block diagram of an electronic circuit that measures impedance using pulses. In the electronic circuit, a sharp pulse with a time width of several ns is oscillated by an oscillation circuit, and the pulse current is supplied to an amorphous wire as a detection object through a constant current circuit. The peak value of the output obtained at this time corresponds to the external magnetic field. The signal is converted to DC by a peak hold circuit and amplified by an amplifier circuit. In the conventional circuit, an MI sensor with a large impedance change and excellent sensitivity could be constructed to handle a sharp pulse with a time width of several n to several tens of seconds, but the temperature compensation of the circuit was not sufficient. In particular, the temperature compensation of the constant current circuit and the peak hold circuit was not sufficient. This is because the temperature characteristics of the digital element 1 of the constant current circuit shown in FIG. 10 and the SBD2 (Schottky barrier diode) element of the peak hold circuit shown in FIG. 12 are poor. For this reason, the temperature characteristics of the entire circuit are degraded. In fact, when investigating the temperature characteristics, there was a problem that it became 50% / FS under the condition of -40 to 85 ° C. Therefore, it was difficult to apply it to automobiles. The present invention provides an MI sensor in which the temperature characteristics of the entire circuit are improved by compensating the temperature of the constant current circuit and the peak hold circuit.

【0003】[0003]

【課題を解決するための手段】MIセンサにおいて,定
電流回路およびピークホールド回路にオペアンプ(以下
OPと記載する)を用いてフィードバックをかける.そ
のOPのユニティーゲインバンド幅が100MHz以上の性能
を有することが望ましい.また,定電流回路において
は,回路で使用される抵抗値の上限を500Ωとすること
が望ましい.
In the MI sensor, feedback is applied to a constant current circuit and a peak hold circuit using an operational amplifier (hereinafter, referred to as OP). It is desirable that the unity gain bandwidth of the OP has a performance of 100 MHz or more. In a constant current circuit, the upper limit of the resistance used in the circuit is preferably set to 500Ω.

【作用】本発明は,定電流回路とピークホールド回路を
OPを用いてフィードバックをかけることによる温度補
償を行うことにした.定電流回路は図2に示すように,
2個のOP7および11を使用し,ピークホールド回路
は図3に示すように2個のOP12および13を使用し
たフィードバック回路を用いた.定電流回路の動作につ
いて簡単に説明する.抵抗10の電圧降下が,反転され
た入力電圧に等しくなるようにOP7でフィードバック
をかけることにより,出力電流が定電流になる.この
時,同時に,アモルファスワイヤに発生する電圧を抵抗
9と抵抗8で分圧して正帰還をかけるため,そこに流れ
る電流分だけ効率が悪くなる.そこでOP11を用いて
ボルテージフォロア回路を分圧回路に入れることによ
り,抵抗9と抵抗8に電流を流れないようにしている.
実際,図4に示すように,-40〜85℃の条件で従来回路
の温度特性17は100%/F.S.に対し本発明の回路の温度
特性18は1%/F.S.と極めて改善されている.ピークホ
ールド回路の動作について簡単に説明する.SBD14を
通ってコンデンサ15に充電された電圧を測定する.連
続的に測定するために抵抗16を入れて放電させる.O
P12でフィードバックをかけることにより,SBD14
の温度特性の改善をはかっている.さらにOP13を用
いたボルテージフォロアをつけることにより,後段の増
幅回路との電気的な分離をはかる.実際,図5に示すよ
うに,-40〜85℃の条件で従来回路の温度特性19は50%
/F.S.に対し本発明の回路の温度特性20は1%/F.S.と極
めて改善されている.さらに好ましくは,ユニティーゲ
インバンド幅が100MHz以上の性能を有するOPを使う.
実際,MI効果は,外部磁場によって高周波インピーダ
ンスが変化する現象であり,低周波ではインピーダンス
の変化は少ない.今回,本発明の回路は,OPをも用い
てフィードバックをかけているためにOPの周波数特性
が悪いと,高周波インピーダンスを測定できない.実
際,図6に示すようにMI特性に及ぼすOPの代表的な
周波数特性であるユニティーゲインバンド幅の影響を調
査してみると,100MHz以下になると,極端にMI特性が
劣化することが分かる.従って,OPのユニティーゲイ
ンバンド幅が100MHz以上であることが望ましい.さら
に,定電流回路においては,信号が高周波であるため
に,回路の抵抗値が大きいと信号の減衰が起こる.実
際,図7に示すように回路の出力に及ぼす抵抗値の影響
を調査してみると,500Ω以上になると,信号が約半分
になり,かつ急激に信号が減衰する.従って,定電流回
路の抵抗値が500Ω以下であることが望ましい.
According to the present invention, temperature compensation is performed by applying feedback to the constant current circuit and the peak hold circuit using the OP. As shown in Fig. 2, the constant current circuit
Two OPs 7 and 11 were used, and a feedback circuit using two OPs 12 and 13 was used as a peak hold circuit as shown in FIG. The operation of the constant current circuit is briefly described. By applying feedback at OP7 so that the voltage drop of the resistor 10 becomes equal to the inverted input voltage, the output current becomes a constant current. At this time, the voltage generated in the amorphous wire is simultaneously divided by the resistor 9 and the resistor 8 and positive feedback is applied. Therefore, the efficiency is reduced by the current flowing therethrough. Therefore, a current is prevented from flowing through the resistors 9 and 8 by inserting a voltage follower circuit into the voltage dividing circuit using OP11.
In fact, as shown in FIG. 4, the temperature characteristic 17 of the conventional circuit is 100% / FS and the temperature characteristic 18 of the circuit of the present invention is 1% / FS at -40 to 85.degree. The operation of the peak hold circuit is briefly described. The voltage charged in the capacitor 15 through the SBD 14 is measured. The resistor 16 is inserted and discharged for continuous measurement. O
By giving feedback in P12, SBD14
The aim is to improve the temperature characteristics of. Further, by attaching a voltage follower using OP13, electrical isolation from a subsequent-stage amplifier circuit is achieved. In fact, as shown in FIG. 5, the temperature characteristic 19 of the conventional circuit under the condition of -40 to 85 ° C. is 50%.
The temperature characteristic 20 of the circuit of the present invention is extremely improved to 1% / FS compared to / FS. More preferably, an OP having a unity gain bandwidth of 100 MHz or more is used.
Actually, the MI effect is a phenomenon in which the high-frequency impedance is changed by an external magnetic field, and the change in the impedance is small at a low frequency. In this case, the circuit of the present invention performs feedback using the OP, so that the high frequency impedance cannot be measured if the frequency characteristic of the OP is poor. In fact, as shown in FIG. 6, when examining the influence of the unity gain bandwidth, which is a typical frequency characteristic of the OP, on the MI characteristic, it can be seen that the MI characteristic deteriorates extremely below 100 MHz. Therefore, it is desirable that the unity gain bandwidth of the OP be 100 MHz or more. Furthermore, in a constant current circuit, the signal is attenuated when the resistance of the circuit is large because the signal has a high frequency. In fact, when investigating the effect of the resistance value on the output of the circuit as shown in Fig. 7, when the resistance exceeds 500Ω, the signal is reduced to about half and the signal is attenuated rapidly. Therefore, it is desirable that the resistance of the constant current circuit be 500Ω or less.

【実施例】以下,実施例に基づいて,本発明を詳細に説
明する.図8は,本発明によるMIセンサの回路の一実
施例である.定電流回路はパルス信号をフィードバック
するためにユニティーゲイン1.3GHzのOPを2個用い
た.また抵抗の値は高周波信号の減衰を押さえるために
100Ωとした.また,ピークホールド回路は,パルス信
号をフィードバックするためにユニティーゲイン1.3GHz
のOPを2個用いた.ここで比較例として図12に示す
ように従来提案されている回路を試験に供した.-40℃
から85℃までの温度範囲の温度特性を調査した結果,図
9に示すように,従来のMIセンサは,温度特性21は
50%/F.S.に対し,本発明のMIセンサは,温度特性22
は1%/F.S.である.
The present invention will be described below in detail based on embodiments. FIG. 8 shows an embodiment of the circuit of the MI sensor according to the present invention. The constant current circuit used two OPs with unity gain of 1.3 GHz to feed back the pulse signal. Also, the value of the resistor should be
100Ω. The peak hold circuit has a unity gain of 1.3GHz to feed back the pulse signal.
Were used. As a comparative example, a conventionally proposed circuit was subjected to a test as shown in FIG. -40 ℃
As a result of investigating the temperature characteristics in the temperature range from to 85 ° C., as shown in FIG.
For 50% / FS, the MI sensor of the present invention has a temperature characteristic of 22%.
Is 1% / FS.

【0004】[0004]

【発明の効果】以上述べたように,本発明によれば,温
度特性が優れたMIセンサを提供することが出きる.
As described above, according to the present invention, an MI sensor having excellent temperature characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 MIセンサの回路ブロック図である.FIG. 1 is a circuit block diagram of an MI sensor.

【図2】 本発明品の定電流回路である.FIG. 2 shows a constant current circuit according to the present invention.

【図3】 本発明品のピークホールド回路である.FIG. 3 shows a peak hold circuit of the product of the present invention.

【図4】 定電流回路の温度特性を示す図である.FIG. 4 is a diagram showing temperature characteristics of a constant current circuit.

【図5】 ピークホールド回路の温度特性を示す図
である.
FIG. 5 is a diagram showing temperature characteristics of a peak hold circuit.

【図6】 出力に及ぼすユニティゲインの影響を示
す図である.
FIG. 6 is a diagram showing the effect of unity gain on output.

【図7】 出力に及ぼす抵抗値の影響を示す図であ
る.
FIG. 7 is a diagram showing the effect of resistance on output.

【図8】 本発明品の回路図である.FIG. 8 is a circuit diagram of the product of the present invention.

【図9】 本発明品の温度特性を示す図である.FIG. 9 is a diagram showing temperature characteristics of the product of the present invention.

【図10】 従来のMIセンサの定電流回路図であ
る.
FIG. 10 is a constant current circuit diagram of a conventional MI sensor.

【図11】 従来のMIセンサのピークホールド回路
図である.
FIG. 11 is a peak hold circuit diagram of a conventional MI sensor.

【図12】 従来品の回路図である.FIG. 12 is a circuit diagram of a conventional product.

【符号の説明】[Explanation of symbols]

1 ディジタル素子 2 SBD 3 コンデンサ 4 抵抗 5 抵抗 6 抵抗 7 OP 8 抵抗 9 抵抗 10 抵抗 11 OP 12 OP 13 OP 14 SBD 15 コンデンサ 16 抵抗 17 従来回路のグラフ 18 本発明品のグラフ 19 従来回路のグラフ 20 本発明品のグラフ 21 従来回路のグラフ 22 本発明品のグラフ REFERENCE SIGNS LIST 1 digital element 2 SBD 3 capacitor 4 resistor 5 resistor 6 resistor 7 OP 8 resistor 9 resistor 10 resistor 11 OP 12 OP 13 OP 14 SBD 15 capacitor 16 resistor 17 Graph of conventional circuit 18 Graph of present invention 19 Graph of conventional circuit 20 Graph of the present invention 21 Graph of the conventional circuit 22 Graph of the present invention

───────────────────────────────────────────────────── フロントページの続き (72)発明者 毛利 佳年雄 名古屋市天白区天白町島田黒石3911番地の 3 Fターム(参考) 2G017 AB05 AD42 AD53 AD55 AD69 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshinori Mohri 3F term of 3911, Shimada Kuroishi, Tenpaku-cho, Tempaku-ku, Nagoya 2F017 AB05 AD42 AD53 AD55 AD69

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】MIセンサにおいて,定電流回路およびピ
ークホールド回路にオペアンプ(以下OPと記載する)
を用いてフィードバックをかけることを特徴として,温
度範囲が-40℃から85℃において,1%/F.S.以下の温度特
性を有するMIセンサ.
In an MI sensor, an operational amplifier (hereinafter referred to as OP) is provided in a constant current circuit and a peak hold circuit.
The MI sensor has a temperature characteristic of 1% / FS or less in the temperature range of -40 ° C to 85 ° C.
【請求項2】請求項1において,OPは,ユニティーゲ
インバンド幅が100MHz以上の性能を有することを特徴と
するMIセンサ
2. The MI sensor according to claim 1, wherein the OP has a performance with a unity gain bandwidth of 100 MHz or more.
【請求項3】請求項2において,定電流回路の抵抗値
は,その上限を500Ωとすることを特徴とするMIセン
3. The MI sensor according to claim 2, wherein the upper limit of the resistance value of the constant current circuit is 500Ω.
JP10186695A 1998-07-01 1998-07-01 Mi sensor excellent in temperature characteristic Pending JP2000019235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10186695A JP2000019235A (en) 1998-07-01 1998-07-01 Mi sensor excellent in temperature characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10186695A JP2000019235A (en) 1998-07-01 1998-07-01 Mi sensor excellent in temperature characteristic

Publications (1)

Publication Number Publication Date
JP2000019235A true JP2000019235A (en) 2000-01-21

Family

ID=16193025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10186695A Pending JP2000019235A (en) 1998-07-01 1998-07-01 Mi sensor excellent in temperature characteristic

Country Status (1)

Country Link
JP (1) JP2000019235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195854A (en) * 2000-12-25 2002-07-10 Aichi Steel Works Ltd Rotation sensor
US7375515B2 (en) 2004-12-27 2008-05-20 Ricoh Company, Ltd. Magnetic sensor circuit and semiconductor device capable of temperature compensation
WO2009011306A1 (en) * 2007-07-18 2009-01-22 Bridgestone Corporation Conveyer belt monitoring system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195854A (en) * 2000-12-25 2002-07-10 Aichi Steel Works Ltd Rotation sensor
US7375515B2 (en) 2004-12-27 2008-05-20 Ricoh Company, Ltd. Magnetic sensor circuit and semiconductor device capable of temperature compensation
WO2009011306A1 (en) * 2007-07-18 2009-01-22 Bridgestone Corporation Conveyer belt monitoring system
AU2008276955B2 (en) * 2007-07-18 2011-01-27 Bridgestone Corporation Conveyer belt monitoring system
US8558541B2 (en) 2007-07-18 2013-10-15 Bridgestone Corporation Monitoring system of conveyor belt
JP5358438B2 (en) * 2007-07-18 2013-12-04 株式会社ブリヂストン Conveyor belt monitoring system

Similar Documents

Publication Publication Date Title
EP2047284B1 (en) Electric potential sensor
EP2016432B1 (en) Rf power sensor with chopper amplifier
CN107209211B (en) electronic integrator for rogowski coil sensors
KR101056003B1 (en) Extended Range RMS-DC Converters
KR910009088B1 (en) Radio frequency detector
EP2148433A1 (en) Wide-range low-noise amplifier
US9645193B2 (en) Impedance source ranging apparatus and method
GB2559261A (en) Apparatus and method for measuring an electric current in an electrical conductor
US20010008478A1 (en) Linear capacitance measurement circuit
EP1962435B1 (en) Impulse generator utilizing nonlinear transmission line
Abuelma'Atti et al. A current-mode current-controlled current-conveyor-based analogue multiplier/divider
US7436165B2 (en) Device for measuring very short current pulses
JP2000019235A (en) Mi sensor excellent in temperature characteristic
US4175258A (en) High level white noise generator
US5732332A (en) Transmitter having temperature-compensated detector
CN106788327B (en) Sensor circuit for both contact and non-contact detection
Watson et al. Frequency downconversion and phase noise in MIT
CN111103626A (en) Inductive sensor for a measuring device
CN104931996A (en) Signal conditioning system of large-dynamic short pulses in radiation detection
JP2000329802A (en) Broad dynamic range power sensor
Furqon et al. Design of ultrawide band partial discharge detector using Pi attenuator and ultrawide band amplifier
DE69431688T2 (en) Average power detection circuit
JP6810088B2 (en) Variable gain amplifier
JP4839572B2 (en) Input circuit
CN110333379B (en) Graphene detector based on direct current bias and design method