JP2000019106A - Method for measuring light transmittance of liquid - Google Patents

Method for measuring light transmittance of liquid

Info

Publication number
JP2000019106A
JP2000019106A JP20447098A JP20447098A JP2000019106A JP 2000019106 A JP2000019106 A JP 2000019106A JP 20447098 A JP20447098 A JP 20447098A JP 20447098 A JP20447098 A JP 20447098A JP 2000019106 A JP2000019106 A JP 2000019106A
Authority
JP
Japan
Prior art keywords
complementary color
liquid
spectral
chromaticity
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20447098A
Other languages
Japanese (ja)
Other versions
JP3882347B2 (en
Inventor
Hiroyuki Kondo
弘之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP20447098A priority Critical patent/JP3882347B2/en
Publication of JP2000019106A publication Critical patent/JP2000019106A/en
Application granted granted Critical
Publication of JP3882347B2 publication Critical patent/JP3882347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To make transmittance of a measured solution easily measurable by inversely computing three stimulus values of complementary color from the complementary color obtained from chromaticity, and multiplying the further computed spectral distribution of the complementary color by spectral distribution outputted from a sensor to electrically obtain the complementary color. SOLUTION: Spectral distribution Tn (λ) of light transmitted through a sample is outputted from a spectral sensor and inputted to a microcomputer, and three stimulus values X, Y, Z obtained by multiplying Tn (λ) by an isochromatic function by a three- stimulus value XYZ computing element 61 of the microcomputer are inputted to a chromaticity computing element 62. A complementary color computing element 63 computes complementary color from the chromaticity of output Cn of the computing element 62, and a chromaticity → spectral distribution computing element 64 inversely computes three stimulus values X, Y, Z of complementary color from the output Cn. Spectral direction (λ) of complementary color obtained by dividing X, Y, Z by an isochromatic function is outputted and inputted to a multiplier 65. The multiplier also inputs the spectral distribution value Tn (λ) from the spectral sensor and obtains transmittance Th (λ) to the complementary color by Tn (λ)×H (λ). A mechanical filter equivalent to the complementary color is therefore dispensed with, and operation for selecting this is also dispensed with.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体の光透過度測定
方法に関する。
The present invention relates to a method for measuring light transmittance of a liquid.

【0002】[0002]

【従来の技術】現在、工場排水の規制基準を定めるため
に排水の着色度測定装置について種々開発されている。
例えば、特開平7−43302公報の「着色度測定方法
および測定装置」によれば、可視光線を含む光を分光せ
ずに試料の流れるフローセルに投射し、このフローセル
を透過した光を検出して透過率または吸光度を求め、こ
の透過率または吸光度に基づいて試料の着色度を測定す
るようにしている。この方法によればフローセルを流れ
る液体の着色度を時々刻々測定するものであり、従来の
静止した試料を目視して標準液と比較して着色度を求め
るものに比べると正確な測定が可能である。更に本公報
によれば、色相の選択性の高い測定を可能とするため
に、黄色、赤色、青色の各排水の透過率は短波長領域、
短波長寄りの中波長領域、長波長領域でそれぞれ小さく
なっている。従って、この波長特性に応じたカットフィ
ルターを使用して、透過率の大きい領域の光線をカット
することにより、各試料の色相に適した波長領域の光で
測定することができるともしている。これによれば確か
に選択性の高い測定が可能であるが、このような種類の
カットフィルターを実際にはフローセルを流れるそのと
きの色相を人間が見て、これに応じたカットフィルター
を用いることになるが、フローセルを流れる液体の流れ
の着色の変化が大きい場合にはとうていこれに対処する
ことはできない。また、正確な色相測定は困難である。
2. Description of the Related Art At present, various kinds of apparatuses for measuring the degree of coloring of wastewater have been developed in order to determine the regulation standards for industrial wastewater.
For example, according to “Coloring degree measuring method and measuring apparatus” in JP-A-7-43302, light including visible light is projected onto a flow cell through which a sample flows without being separated, and light transmitted through the flow cell is detected. The transmittance or the absorbance is determined, and the degree of coloring of the sample is measured based on the transmittance or the absorbance. According to this method, the degree of coloring of the liquid flowing through the flow cell is measured from time to time, and more accurate measurement is possible as compared with a conventional method in which a stationary sample is visually observed and compared with a standard solution to determine the degree of coloring. is there. Further, according to this publication, in order to enable highly selective measurement of hue, the transmittance of each of yellow, red, and blue wastewater is in a short wavelength region,
It becomes smaller in the middle wavelength region and the longer wavelength region closer to the short wavelength. Therefore, by using a cut filter corresponding to the wavelength characteristic to cut light rays in a region having a large transmittance, measurement can be performed with light in a wavelength region suitable for the hue of each sample. According to this, it is possible to perform highly selective measurement.However, a cut filter of this kind is actually used by a person who looks at the hue flowing through the flow cell at that time and uses a cut filter according to this. However, when the change in the coloring of the liquid flow flowing through the flow cell is large, it cannot be dealt with. Also, accurate hue measurement is difficult.

【0003】他方、特開平9−43140号公報では、
X、Y、Zの吸光度の総和より希釈度法で求めた着色度
を得るようにしているので測定すべき液体の色相と同一
の波長の光線も含まれている。従って低い着色度領域で
は透過光強度が大きくなり、測定精度が低くなる。
On the other hand, in Japanese Patent Application Laid-Open No. 9-43140,
Since the degree of coloring determined by the dilution method is obtained from the sum of the absorbances of X, Y, and Z, light rays having the same wavelength as the hue of the liquid to be measured are also included. Therefore, in the low coloring degree region, the transmitted light intensity increases, and the measurement accuracy decreases.

【0004】本出願人は先に上述の問題点に鑑みて、低
コストで工場排水のように時々刻々変化する排水の着色
度を低濃度領域から高濃度領域まで色相に左右されず正
確に計測することのできる着色度測定装置を提供するこ
とを課題として、白色光源と、着色度を測定すべき液体
を充填させている透明容器と、該透明容器を透過した前
記白色光源からの光のうち赤(R)、緑(G)、青
(B)の波長の光を通す色度変換フィルタと、これらフ
ィルタを通過した光を受光する第1の光電変換器と、そ
の検出信号を増幅する増幅器と、該増幅器の出力から、
前記液体の色相を演算する演算器とを具備し、該演算器
の演算結果である色相から選択されたフィルタを前記白
色光源と第2の光電変換器との間に配設するようにした
液体の着色度測定装置において、前記透明容器には着色
度を測定すべき液体を流通させて、前記各色相の補色の
光線を優先的に通すフィルタを複数種類と、前記白色光
源からの光線をそのまま通過させる開口を備えた移動
板、及び該移動板を移動させる駆動機を設け、測定開始
時には前記駆動機により、前記開口を前記白色光源から
の光線が通過するように前記移動板を移動し、次いで前
記演算器の演算結果により前記駆動機を駆動して、該演
算結果に対応する色相の補色光を優先的に通すフィルタ
を光軸上に合わせるように前記移動板を移動させ、該フ
ィルタを通過した光線を前記第2の光電変換器で受光
し、該第2の光電変換器の出力から前記液体の着色度を
測定するようにしたことを特徴とする液体の着色度測定
装置を提案した(特願平9−170987号)。
In view of the above-mentioned problems, the present applicant accurately measures the coloring degree of wastewater that changes every moment, such as factory wastewater, at low cost from low-density areas to high-density areas without being affected by hue. With the object of providing a coloring degree measuring device that can perform a white light source, a transparent container filled with a liquid whose coloring degree is to be measured, and a light from the white light source transmitted through the transparent container. A chromaticity conversion filter that transmits light of red (R), green (G), and blue (B) wavelengths, a first photoelectric converter that receives light passing through these filters, and an amplifier that amplifies the detection signal And from the output of the amplifier,
And a calculator for calculating the hue of the liquid, wherein a filter selected from the hue that is the calculation result of the calculator is arranged between the white light source and the second photoelectric converter. In the coloring degree measuring device, a liquid to be measured for coloring degree is allowed to flow through the transparent container, and a plurality of types of filters that preferentially pass light beams of complementary colors of the respective hues are provided. A moving plate having an opening to pass therethrough, and a driving device for moving the moving plate are provided, and at the start of the measurement, the driving device moves the moving plate so that light from the white light source passes through the opening, Next, the driving device is driven by the operation result of the operation unit, and the moving plate is moved so that a filter that preferentially passes complementary color light of a hue corresponding to the operation result is aligned on the optical axis. The light that has passed Is received by the second photoelectric converter, and the degree of coloring of the liquid is measured from the output of the second photoelectric converter. Hei 9-170987).

【0005】以下、図面を参照してこの着色度測定装置
について説明する。
Hereinafter, the coloring degree measuring apparatus will be described with reference to the drawings.

【0006】図5はその全体を示すが、図において白色
光源1はコリメータ2に導入され、ここで平行光線とさ
れて、光学フィルタ分光板4においてその時選ばれてい
る開口もしくは光学フィルタを平行光線が通される。開
口部を通過した光は透明材で成るフローセル5を透過さ
れて三刺激値を求めるためのフィルタ8a、9a、10
aおよび光電変換器8b、9b、10bに投射される。
フローセル5には着色度を測定すべき液体が上方から下
方へと流されており、ある色相を呈している。三刺激値
を求めるためのフィルタ8a、9a、10aの透過光を
受ける光電変換器8b、9b、10bのそれぞれの出力
が増幅器12で増幅され、制御演算処理部13に供給さ
れる。この制御演算処理部13においては三刺激値X、
Y、Zを計算し、所定の演算により、フローセル5を今
流れている液体の色相を演算する。この演算した色相の
補色に対応する光学フィルタを選ぶべく分光板4を駆動
するパルスモータ14の駆動出力を発生する。他方、演
算結果をディスプレイに表示させる。あるいはプリンタ
に印字出力として供給する。
FIG. 5 shows the whole, in which a white light source 1 is introduced into a collimator 2, where it is converted into a parallel light, and a parallel light is passed through an aperture or an optical filter selected at that time in an optical filter spectral plate 4. Is passed. The light that has passed through the opening is transmitted through a flow cell 5 made of a transparent material, and filters 8a, 9a, and 10 for obtaining tristimulus values.
a and the photoelectric converters 8b, 9b, and 10b.
The liquid whose coloring degree is to be measured flows from above to below in the flow cell 5, and exhibits a certain hue. The respective outputs of the photoelectric converters 8b, 9b, 10b that receive the transmitted light of the filters 8a, 9a, 10a for obtaining the tristimulus values are amplified by the amplifier 12 and supplied to the control operation processing unit 13. In the control operation processing unit 13, the tristimulus value X,
Y and Z are calculated, and the hue of the liquid currently flowing through the flow cell 5 is calculated by a predetermined calculation. A drive output of the pulse motor 14 for driving the spectral plate 4 is generated to select an optical filter corresponding to the calculated hue complementary color. On the other hand, the calculation result is displayed on the display. Alternatively, it is supplied as a print output to a printer.

【0007】次にこの作用について説明する。Next, this operation will be described.

【0008】今、フローセル5には赤色の色相を有する
排水が流されているとする。白色光源1からの光線はコ
リメータ2により平行光線とされ、測定開始時には分光
板4において開口4aがフローセル5に対抗する位置を
取らされている。従って、何ら光線はフィルタされず、
フローセル5を流れている測定すべき液体を透過し、X
YZの三刺激値検出用フィルタ8a、9a、10a及び
光電変換器8b、9b、10bで透過光強度が検出さ
れ、それぞれの出力は増幅器12により増幅されて制御
演算処理部13に供給される。制御演算処理部13にマ
イコンにより今フローセル5を流れている液体の三刺激
値XYZが演算され、さらにXYZ値より色相が演算さ
れる。この演算出力によりパルスモータ14に今、赤色
の補色光である青緑を選ぶべくパルス数を設定されて、
分光板4を回転させる。よって開口4bにはめられてい
る青緑を透過するフィルタがフローセル5に対向して停
止する。
Now, it is assumed that a wastewater having a red hue is flowing through the flow cell 5. The light from the white light source 1 is converted into a parallel light by the collimator 2, and the opening 4 a is set at a position opposing the flow cell 5 in the spectral plate 4 at the start of the measurement. Therefore, no rays are filtered,
Penetrates the liquid to be measured flowing through the flow cell 5;
The transmitted light intensity is detected by the YZ tristimulus value detection filters 8a, 9a, and 10a and the photoelectric converters 8b, 9b, and 10b, and the respective outputs are amplified by the amplifier 12 and supplied to the control operation processing unit 13. The microcomputer calculates a tristimulus value XYZ of the liquid currently flowing through the flow cell 5 in the control calculation processing unit 13 and further calculates a hue from the XYZ value. With this calculation output, the pulse number is now set in the pulse motor 14 to select blue-green, which is a complementary color of red,
The spectral plate 4 is rotated. Accordingly, the filter that transmits blue and green and is fitted in the opening 4b is stopped facing the flow cell 5.

【0009】白色光源1からの光線はコリメータ2によ
り平行光線とされ、フローセル5を今流れている液体を
透過して、今度はXYZ検出用フィルタ8a、9a、1
0aを透過させず、光電変換器12が補色の光を受け
て、この出力が増幅器12により増幅され、液体の色相
の補色光による透過率および吸光度を求める。あらかじ
め液体の色相の補色光を用いて吸光度と希釈法による着
色度との検量線を複数種類作成しマイコンのROM(R
ead Only Memory)に格納しておき試料
の色相の決定により、これらの検量線の一つを選択し補
色光で測定した吸光度より今フローセル5を流れている
液体の着色度を正確に演算することができる。着色度は
フローセル5を流れる色相が赤である液体の場合、赤色
の補色光である青緑の光線は試料を通過する光の吸収分
が大きくなり、低濃度領域でも精度の良い着色度が求め
られる。上記はフローセル5に流れる液体の色相が赤の
場合であったが、青を呈する場合においては同様にXY
Z検出用フィルタ8a、9a、10a及び光電変換器8
b、9b、10bの出力により制御演算処理装置13で
この色相の青が演算されて、この演算結果によりパルス
モータ14のパルス数を設定して、青の補色光を選ぶべ
く分光板4を回転させて、開口4Cにはめられている青
の補色にあたる黄を透過するフィルタ23がフローセル
5に対向して停止する。以下、色相が赤の場合と同様に
着色度が求められる。
The light from the white light source 1 is converted into a parallel light by the collimator 2, passes through the liquid flowing through the flow cell 5, and then becomes the XYZ detection filters 8a, 9a, 1a.
Oa is not transmitted, and the photoelectric converter 12 receives the light of the complementary color, and the output is amplified by the amplifier 12, and the transmittance and the absorbance of the complementary color light of the hue of the liquid are obtained. A plurality of kinds of calibration curves of absorbance and coloring degree by the dilution method are prepared in advance using complementary color light of the hue of the liquid, and the ROM (R
In this case, one of these calibration curves is selected by determining the hue of the sample, and the degree of coloring of the liquid currently flowing through the flow cell 5 is accurately calculated from the absorbance measured with the complementary light. Can be. In the case of a liquid having a red hue flowing through the flow cell 5, a blue-green light beam, which is a complementary color of red, absorbs a large amount of light passing through the sample, and a high degree of coloring is required even in a low concentration region. Can be The above description is for the case where the hue of the liquid flowing through the flow cell 5 is red.
Z detection filters 8a, 9a, 10a and photoelectric converter 8
The control processor 13 calculates the blue of this hue based on the outputs of b, 9b, and 10b, sets the number of pulses of the pulse motor 14 based on the calculation result, and rotates the spectral plate 4 to select the complementary light of blue. Then, the filter 23 transmitting yellow, which is a complementary color of blue, which is fitted in the opening 4 </ b> C is stopped facing the flow cell 5. Hereinafter, the degree of coloring is determined in the same manner as in the case where the hue is red.

【0010】然るに、上記装置においては、補色をコン
ピュータにより演算した後、この補色の色相を有するフ
ィルタを円板4を回転させることにより選び、試料の着
色度を測定するようにしている。従って、この補色に対
応する色の数だけフィルタを用意しなければならない。
またこの位置決めも面倒である。
However, in the above apparatus, after calculating the complementary color by a computer, a filter having the hue of the complementary color is selected by rotating the disk 4 to measure the degree of coloring of the sample. Therefore, filters must be prepared by the number of colors corresponding to the complementary colors.
This positioning is also troublesome.

【0011】[0011]

【発明が解決しようとする課題】本発明は上述の問題に
鑑みてなされ、測定溶液の補色をコンピュータで演算す
ると共に、機械的なフィルタを何ら必要とすることな
く、また、この選択の駆動機構も不要であり、測定溶液
の着色度すなわち透過度を測定することができるように
した液体の光透過度測定方法を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a computer that calculates a complementary color of a measurement solution, does not require any mechanical filter, and has a drive mechanism for selecting the color. It is another object of the present invention to provide a method for measuring the light transmittance of a liquid, which can measure the degree of coloring, that is, the transmittance of a measurement solution.

【0012】[0012]

【課題を解決するための手段】以上の課題は、透過度を
測定すべき液体を充填させている透明容器に白色光源か
らの光線を透過させ、該透過光を分光センサで受け、該
分光センサから分光分布を出力し、該出力から三刺激値
X、Y、Z、を演算し、該演算結果から色度を演算する
ようにした液体の光透過度測定方法において、前記色度
から該色度の補色を演算し、該補色から該補色の三刺激
値を逆算し、この逆算に基づき前記補色の分光分布を演
算し、この演算結果に、前記分光センサの出力である前
記分光分布を乗ずることにより前記液体の透過度を測定
するようにしたことを特徴とする液体の光透過度測定方
法、によって解決される。
An object of the present invention is to transmit a light beam from a white light source to a transparent container filled with a liquid whose transmittance is to be measured, and to receive the transmitted light by a spectral sensor. From the output, calculate tristimulus values X, Y, and Z from the output, and calculate the chromaticity from the calculation result. The complementary color is calculated, the tristimulus value of the complementary color is inversely calculated from the complementary color, the spectral distribution of the complementary color is calculated based on the inverse calculation, and the calculation result is multiplied by the spectral distribution which is the output of the spectral sensor. Accordingly, a liquid light transmittance measuring method is characterized in that the liquid transmittance is measured.

【0013】[0013]

【発明の実施の形態】図1は本発明の実施の形態による
液体の光透過度測定装置の全体を表わすが、図において
従来例に対応するものについては同一の符号を付し、そ
の詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the whole of a liquid light transmittance measuring apparatus according to an embodiment of the present invention. Description is omitted.

【0014】すなわち、本実施の形態によれば、分光セ
ンサ50が用いられており、これは各波長毎にそろった
複数のセンサであり、この出力Tn(λ)がマイクロコ
ンピュータ51に供給される。ここでλは波長を表わ
し、Tn(λ)はこの波長の光の透過度を表わす。すな
わち、分光センサ50の出力がこのとき試料を通過して
きた光線の分光分布を出力する。これが図2においてマ
イクロコンピュータ51内の三刺激値XYZ演算器61
に供給される。公知のようにこの分光分布に人間の目に
対応する分光感度を表わす等色関数をかけることによ
り、三刺激値XYZが得られるのであるが、この演算結
果XYZは色度演算器62に供給される。
That is, according to the present embodiment, the spectroscopic sensor 50 is used, which is a plurality of sensors arranged for each wavelength, and the output Tn (λ) is supplied to the microcomputer 51. . Here, λ represents a wavelength, and Tn (λ) represents the transmittance of light of this wavelength. That is, the output of the spectroscopic sensor 50 outputs the spectral distribution of the light beam that has passed through the sample at this time. This is the tristimulus value XYZ calculator 61 in the microcomputer 51 in FIG.
Supplied to As known, a tristimulus value XYZ is obtained by multiplying this spectral distribution by a color-matching function representing spectral sensitivity corresponding to the human eye. The calculation result XYZ is supplied to a chromaticity calculator 62. You.

【0015】本実施の形態によれば、XYZ(Yxy)
表色系色度図が用いられている。これは図3に示すよう
に、x、yとの値により色度を表わすことができるので
あるが、これらx、yと、及びこれの垂直な方向の値で
ある明度zとの関係は、x=X/(X+Y+Z)、y=
Y/(X+Y+Z)、z=Z/(X+Y+Z)=1−x
−y、以上の式により、x、y、zが定められる。すな
わち図3の色度図において、このときの溶液の色相に応
じて、座標点p1 が定められる。
According to the present embodiment, XYZ (Yxy)
A color system chromaticity diagram is used. As shown in FIG. 3, the chromaticity can be represented by the values of x and y. The relationship between these x and y and the lightness z which is the value in the vertical direction is x = X / (X + Y + Z), y =
Y / (X + Y + Z), z = Z / (X + Y + Z) = 1-x
-Y, x, y, and z are determined by the above equations. That is, in the chromaticity diagram of FIG. 3, according to the hue of the solution at this time, the coordinate points p 1 is determined.

【0016】色度演算器62の出力Cnは補色演算器6
3に供給される。この演算器63内には、図3において
点Wが白色点(x=y=1/3)を示すが、この測定溶
液の色度を表わす座標点をp1 とすれば、p1 とWとを
結び、更に延長した線上にある点p2 が補色である(点
Wを挟んで両側にある)。この補色p2 は出力Cnとし
て色度→分光分布演算器64に供給される。補色はxy
z値で表わされているのであるが、上述の関係式から
X、Y、Zを逆算する。これによってこの補色の三刺激
値XYZが得られるのであるが、これを更に図4に示す
等色関数で除することにより、この補色の分光分布が得
られる。この出力H(λ)は乗算器65に供給される。
The output Cn of the chromaticity calculator 62 is a complementary color calculator 6
3 is supplied. Within this calculator 63, shows the point W is the white point in FIG. 3 (x = y = 1/ 3), if the coordinate point representing the chromaticity of the measurement solution with p 1, p 1 and W And the point p 2 on the extended line is a complementary color (on both sides of the point W). This complementary color p 2 is supplied to the chromaticity → spectral distribution calculator 64 as the output Cn. The complementary color is xy
Although represented by the z value, X, Y, and Z are back calculated from the above relational expression. As a result, the tristimulus value XYZ of this complementary color is obtained. By further dividing this by the color matching function shown in FIG. 4, the spectral distribution of this complementary color is obtained. This output H (λ) is supplied to the multiplier 65.

【0017】他方、測定溶液を分光センサ50により分
光した結果、すなわち分光分布の値Tn(λ)を乗算器
65に供給し、Tn(λ)×Hh(λ)により、この補
色に対する透過度Th(λ)が得られる。これは上記従
来例で述べたように、補色に対しては、低濃度でも透過
度を感度よく測定することができるが、本発明の実施の
形態によれば、補色と同等の機械的なフィルタが何ら必
要でない。従ってこれを選択する操作も不要である。
On the other hand, the result of spectroscopy of the measurement solution by the spectroscopic sensor 50, that is, the value of the spectral distribution Tn (λ) is supplied to the multiplier 65, and the transmittance Th for the complementary color is calculated by Tn (λ) × Hh (λ). (Λ) is obtained. As described in the above-mentioned conventional example, the transmittance can be measured with high sensitivity even at a low density for a complementary color. However, according to the embodiment of the present invention, a mechanical filter equivalent to the complementary color is used. Nothing is needed. Therefore, there is no need for an operation for selecting this.

【0018】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく、本発
明の技術的思想に基づいて種々の変形が可能である。
Although the embodiment of the present invention has been described above, the present invention is, of course, not limited to this, and various modifications can be made based on the technical idea of the present invention.

【0019】例えば以上の実施の形態では、分光センサ
50は図示したように各波長毎に並べた複数のセンサと
したが、これに限ることなく、赤、緑、青のフィルタを
表わす(λ)センサ、(λ)センサ及び(λ)セ
ンサを用いてもよい。なお、図ではx、y、zの下線を
通常の如くこれら文字の上に記している。
For example, in the above-described embodiment, the spectroscopic sensor 50 is a plurality of sensors arranged for each wavelength as shown in the figure. However, the present invention is not limited to this, and x (λ) representing red, green, and blue filters is used. ) Sensors, y (λ) sensors and z (λ) sensors may be used. In the figure, underlines of x, y, and z are described above these characters as usual.

【0020】また以上の実施の形態では、補色演算器6
3においては、CIExyz表色系色度図から白色点W
の両側にあるとしてp2 点としたが、勿論これに限るこ
となく、公知の補色もしくは余色演算方式で補色を求め
るようにしてもよい。
In the above embodiment, the complementary color calculator 6
3, the white point W from the CIExyz color system chromaticity diagram
It is assumed that the point p 2 is on both sides of the image. However, it is needless to say that the present invention is not limited to this.

【0021】[0021]

【発明の効果】以上述べたように、本発明の液体の光透
過度測定方法によれば、電気的に補色を得て感度よく、
測定溶液の着色度すなわち透過度を簡単な操作で容易に
得ることができる。
As described above, according to the method for measuring the light transmittance of a liquid according to the present invention, it is possible to obtain a complementary color electrically and to obtain high sensitivity.
The coloring degree, ie, the transmittance, of the measurement solution can be easily obtained by a simple operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による溶液の透過度を測定
する装置の概略図である。
FIG. 1 is a schematic view of an apparatus for measuring the permeability of a solution according to an embodiment of the present invention.

【図2】図1におけるマイクロコンピュータ内の回路ブ
ロック図である。
FIG. 2 is a circuit block diagram in the microcomputer in FIG.

【図3】マイクロコンピュータ内に設定されているXY
Z表色系色度図のチャートである。
FIG. 3 shows XY set in the microcomputer.
It is a chart of a Z color system chromaticity diagram.

【図4】等色関数を表わすチャートである。FIG. 4 is a chart showing a color matching function.

【図5】従来例の着色測定装置の概略正面図である。FIG. 5 is a schematic front view of a conventional color measuring device.

【図6】同装置における要部の正面図である。FIG. 6 is a front view of a main part of the device.

【符号の説明】[Explanation of symbols]

50 分光センサ 51 マイクロコンピュータ 61 三刺激値XYZ演算器 62 色度演算器 63 補色演算器 64 色度→分光分布演算器 65 乗算器 Reference Signs List 50 spectral sensor 51 microcomputer 61 tristimulus value XYZ calculator 62 chromaticity calculator 63 complementary color calculator 64 chromaticity → spectral distribution calculator 65 multiplier

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G020 AA08 BA02 BA14 CA02 CB43 CC26 CD04 CD13 CD22 CD51 DA02 DA13 DA23 DA32 DA35 DA62 2G059 AA02 AA05 BB04 CC19 EE01 EE13 FF01 HH02 JJ01 JJ21 KK01 MM01 MM09 NN06 NN10 PP01  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 2G020 AA08 BA02 BA14 CA02 CB43 CC26 CD04 CD13 CD22 CD51 DA02 DA13 DA23 DA32 DA35 DA62 2G059 AA02 AA05 BB04 CC19 EE01 EE13 FF01 HH02 JJ01 JJ21 KK01 MM01 MM09 NN06NN06NN

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透過度を測定すべき液体を充填させてい
る透明容器に白色光源からの光線を透過させ、該透過光
を分光センサで受け、該分光センサから分光分布を出力
し、該出力から三刺激値X、Y、Z、を演算し、該演算
結果から色度を演算するようにした液体の光透過度測定
方法において、前記色度から該色度の補色を演算し、該
補色から該補色の三刺激値を逆算し、この逆算に基づき
前記補色の分光分布を演算し、この演算結果に、前記分
光センサの出力である前記分光分布を乗ずることにより
前記液体の透過度を測定するようにしたことを特徴とす
る液体の光透過度測定方法。
1. A light beam from a white light source is transmitted through a transparent container filled with a liquid whose transmittance is to be measured, the transmitted light is received by a spectral sensor, and a spectral distribution is output from the spectral sensor. Calculating the tristimulus values X, Y, and Z from the above, and calculating the chromaticity from the calculation result. In the liquid light transmittance measuring method, a complementary color of the chromaticity is calculated from the chromaticity, and the complementary color is calculated. From the tristimulus value of the complementary color, calculate the spectral distribution of the complementary color based on the inverse calculation, and measure the transmittance of the liquid by multiplying the calculation result by the spectral distribution which is the output of the spectral sensor. A method for measuring the light transmittance of a liquid, comprising:
【請求項2】 前記三刺激値を等色関数で除することに
より前記補色の分光分布を得るようにしたことを特徴と
する請求項1に記載の液体の光透過度測定方法。
2. The method according to claim 1, wherein the spectral distribution of the complementary color is obtained by dividing the tristimulus value by a color matching function.
【請求項3】 前記補色はXYZ表色系色度図から求め
るようにしたことを特徴とする請求項1又は2に記載の
液体の光透過度測定方法。
3. The method for measuring light transmittance of a liquid according to claim 1, wherein the complementary color is obtained from an XYZ color system chromaticity diagram.
【請求項4】 前記分光センサは(λ)センサ、
(λ)センサ及び(λ)センサであることを特徴とす
る請求項1〜3のいずれかに記載の液体の光透過度測定
方法。
4. The spectroscopic sensor according to claim 1,x(Λ) sensor,y
(Λ) sensor andz(Λ) sensor
The light transmittance measurement of the liquid according to claim 1.
Method.
JP20447098A 1998-07-03 1998-07-03 Measuring method of light transmittance of liquid Expired - Fee Related JP3882347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20447098A JP3882347B2 (en) 1998-07-03 1998-07-03 Measuring method of light transmittance of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20447098A JP3882347B2 (en) 1998-07-03 1998-07-03 Measuring method of light transmittance of liquid

Publications (2)

Publication Number Publication Date
JP2000019106A true JP2000019106A (en) 2000-01-21
JP3882347B2 JP3882347B2 (en) 2007-02-14

Family

ID=16491072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20447098A Expired - Fee Related JP3882347B2 (en) 1998-07-03 1998-07-03 Measuring method of light transmittance of liquid

Country Status (1)

Country Link
JP (1) JP3882347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700489B (en) * 2018-10-29 2020-08-01 林修安 Device for instantaneously inspecting waste quality and recovery device and method using the same
CN115326726A (en) * 2022-08-12 2022-11-11 粤海永顺泰(广州)麦芽有限公司 Malt chroma detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401978B2 (en) * 2008-12-25 2014-01-29 栗田工業株式会社 Method and apparatus for measuring lysate concentration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700489B (en) * 2018-10-29 2020-08-01 林修安 Device for instantaneously inspecting waste quality and recovery device and method using the same
CN115326726A (en) * 2022-08-12 2022-11-11 粤海永顺泰(广州)麦芽有限公司 Malt chroma detection method
CN115326726B (en) * 2022-08-12 2024-06-04 粤海永顺泰(广州)麦芽有限公司 Malt chroma detection method

Also Published As

Publication number Publication date
JP3882347B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JP3246021B2 (en) 2D colorimeter
EP0444689B1 (en) A compensation method adapted for use in color measuring apparatus
US5844680A (en) Device and process for measuring and analysing spectral radiation, in particular for measuring and analysing color characteristics
CN101324468B (en) Low stray light rapid spectrometer and measurement method thereof
CN109690288A (en) For almost measure simultaneously fluid sample transmission and/or forward scattering and/or again emit and at the same measure transmission and forward scattering or transmission and the sensor again emitted of fluid sample
JP2000019106A (en) Method for measuring light transmittance of liquid
JP3119528B2 (en) Scanner spectral colorimeter
JP3261888B2 (en) Liquid color detection device
JP3505560B2 (en) Self-diagnosis method for liquid color / turbidity measurement device
JP2006084333A (en) Spectral reflectance prediction device and spectral reflectance prediction method
JPH112566A (en) Liquid colored degree measuring device
EP0284214A1 (en) Electric current measurement
JP3006028B2 (en) Color matching device
JPH0125017B2 (en)
JPH0953988A (en) Apparatus for measuring coloring of liquid
JP2001318001A (en) Color measuring instrument
RU2059211C1 (en) Method of measurement of colour of leather or other similar materials
JP3208907B2 (en) Color value correction device
CN106885630A (en) A kind of method and device that spectral measurement is carried out based on color
RU2063063C1 (en) Method and device for measurement and/or quantitative representation of color quality
JP3318912B1 (en) Tristimulus direct reading colorimeter
JPH08292099A (en) Ozone injection quantity control method
JPH11258048A (en) Coloring degree measuring method for solution
CN117848981A (en) Multispectral imaging integrated system, device and use method thereof
JPS62142240A (en) Photoelectric colorimeter which can measure density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Effective date: 20061106

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091124

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees