JP2000018789A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2000018789A
JP2000018789A JP10182663A JP18266398A JP2000018789A JP 2000018789 A JP2000018789 A JP 2000018789A JP 10182663 A JP10182663 A JP 10182663A JP 18266398 A JP18266398 A JP 18266398A JP 2000018789 A JP2000018789 A JP 2000018789A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerator
compressor
condenser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10182663A
Other languages
Japanese (ja)
Inventor
Keimei Asakura
啓明 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP10182663A priority Critical patent/JP2000018789A/en
Publication of JP2000018789A publication Critical patent/JP2000018789A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To sustain the surface temperature of a partition optimally by switching the refrigerant flow through a second control valve even if the r.p.m. of a compressor is varied thereby controlling the condensing temperature. SOLUTION: A second control valve 100 comprising a three-way valve is disposed between a compressor 46 and a condenser 62. When the r.p.m. of the compressor 46 is low, delivery of refrigerant and condensation capacity are also low to cause no problem and the refrigerant flow is switched to channel (b), as shown on the drawing, by means of the second control valve 100. Consequently, refrigerant is fed to a part of the condenser 62 and the condensing temperature is not lowered. When the r.p.m. of the compressor 46 is high, the refrigerant flow is switched to channel (a), as shown on the drawing, by means of the second control valve 100 and refrigerant is fed entirely to the condenser 62 thus preventing the condensing temperature from increasing. Consequently, temperature of an antisweat pipe 64 is kept within a predetermined range and the surface temperature of a partition can be optimized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍能力を可変で
きる圧縮機と複数の蒸発器及び冷気循環用の送風機を備
えた冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having a compressor capable of changing the refrigerating capacity, a plurality of evaporators, and a blower for circulating cool air.

【0002】[0002]

【従来の技術】従来、この種の冷気循環式の冷凍冷蔵庫
としては、ミッドフリーザータイプは大きく分けて4つ
の目的温度帯別の部屋に仕切られている。そして、この
種の冷蔵庫は一般的には冷蔵室、第1冷凍室、第2冷凍
室、野菜室で構成されている。なお、冷蔵室にはその一
部にパーシャルチルド室が設けられている。
2. Description of the Related Art Conventionally, a mid-freezer type of this type of cold air refrigerating refrigerator is roughly divided into four rooms having different target temperature zones. This type of refrigerator generally includes a refrigerator compartment, a first freezer compartment, a second freezer compartment, and a vegetable compartment. Note that a partly chilled room is provided in the refrigeration room.

【0003】そして、各部屋の仕切り部はドアのガスケ
ットと密着するように鉄板となっている。ここで問題と
なるのが庫内の冷気がガスケットを介して仕切り表面に
伝わり結露することである。そこで、従来の冷凍冷蔵庫
では仕切り内部に防露パイプを設けて、冷媒の凝縮熱で
仕切り表面を暖めて結露を防止している。
The partition of each room is made of an iron plate so as to be in close contact with the gasket of the door. The problem here is that the cool air in the refrigerator is transmitted to the partition surface via the gasket and forms dew. Therefore, in the conventional refrigerator, a dew-prevention pipe is provided inside the partition, and the surface of the partition is heated by the condensation heat of the refrigerant to prevent dew condensation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、仕切り
表面の結露を防止するため上述のように防露パイプを設
けているものの、防露パイプの温度(冷媒の凝縮温度)
は室温、圧縮機の回転数、庫内負荷などによって変化し
てしまうため、仕切り表面は最適な温度に保たれないと
いう問題があった。
However, in order to prevent dew condensation on the partition surface, although the dew prevention pipe is provided as described above, the temperature of the dew prevention pipe (condensation temperature of the refrigerant)
Changes due to room temperature, the number of revolutions of the compressor, the load in the refrigerator, and the like, so that the partition surface cannot be maintained at an optimum temperature.

【0005】すなわち、圧縮機の回転数が低い時(30
〜50rps)、冷媒の循環量が少ないため、冷媒の凝
縮温度は低くなり、仕切り表面は十分に暖められず結露
することもある。また、圧縮機の回転数が高い時(50
〜70rps)、冷媒の循環量が多いため、冷媒の凝縮
温度は高くなり、仕切り表面は必要以上に暖められ庫内
に熱リークして消費電力量を悪化させてしまう。
That is, when the rotation speed of the compressor is low (30
-50 rps), the amount of refrigerant circulating is small, the condensing temperature of the refrigerant is low, and the partition surface may not be sufficiently warmed and may form dew. Also, when the rotation speed of the compressor is high (50
Since the circulation amount of the refrigerant is large, the condensing temperature of the refrigerant becomes high, and the partition surface is heated more than necessary and heat leaks into the storage to deteriorate the power consumption.

【0006】そこで、本発明は上記問題点に鑑み、圧縮
機の回転数が変化しても第2の制御弁で冷媒の流れを切
り替えて凝縮温度を制御し、仕切り表面の温度を最適に
保つことを目的とした冷蔵庫を提供するものである。
In view of the above problems, the present invention controls the condensing temperature by switching the flow of the refrigerant by the second control valve even if the rotational speed of the compressor changes, and keeps the temperature of the partition surface optimal. It is intended to provide a refrigerator for the purpose.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1の冷蔵
庫は、冷凍能力を可変できる圧縮機と、凝縮器と、防露
パイプと、複数の冷蔵室に対応した冷蔵用蒸発器と、冷
凍室に対応した冷凍用蒸発器とを環状に接続して冷媒流
路を構成し、冷媒流路を切り替えて冷蔵用蒸発器と冷凍
用蒸発器を通して冷媒を流したり、冷凍用蒸発器のみに
冷媒を流す第1の制御弁を冷媒流路に介設し、圧縮機と
凝縮器との間に冷媒流路を切り替える第2の制御弁を介
設している。
According to a first aspect of the present invention, there is provided a refrigerator having a variable refrigerating capacity, a condenser, a dew-proof pipe, a refrigerating evaporator corresponding to a plurality of refrigerating compartments, Refrigerant evaporators corresponding to the freezing compartments are connected in a ring to form a refrigerant flow path, and the refrigerant flow paths are switched to allow the refrigerant to flow through the refrigeration evaporator and the refrigerating evaporator, or only to the freezing evaporator A first control valve for flowing the refrigerant is provided in the refrigerant flow path, and a second control valve for switching the refrigerant flow path is provided between the compressor and the condenser.

【0008】請求項2の冷蔵庫では、請求項2のものに
おいて、第2の制御弁は三方弁としていることを特徴と
している。
According to a second aspect of the present invention, in the refrigerator of the second aspect, the second control valve is a three-way valve.

【0009】請求項3の冷蔵庫では、請求項2のものに
おいて、圧縮機の回転数に応じて三方弁の2つの出力側
を切り替えていることを特徴としている。
According to a third aspect of the present invention, in the refrigerator of the second aspect, the two output sides of the three-way valve are switched according to the number of revolutions of the compressor.

【0010】請求項4の冷蔵庫では、請求項2のものに
おいて、三方弁の第1の出力口を凝縮器の入口部に接続
し、三方弁の第2の出力口を凝縮器の入口部と出口部と
の間に接続していることを特徴としている。
According to a fourth aspect of the present invention, in the refrigerator of the second aspect, the first output port of the three-way valve is connected to the inlet of the condenser, and the second output port of the three-way valve is connected to the inlet of the condenser. It is characterized in that it is connected to the outlet.

【0011】請求項5の冷蔵庫では、第1の制御弁を冷
媒流路を切り替えて冷凍用蒸発器のみに冷媒を流す場合
には、三方弁の第2の出力口を凝縮器の入口部と出口部
との間に接続していることを特徴とする。
According to the fifth aspect of the present invention, when the first control valve switches the refrigerant flow path to flow the refrigerant only to the refrigerating evaporator, the second output port of the three-way valve is connected to the inlet of the condenser. It is characterized in that it is connected to the outlet.

【0012】本発明の冷蔵庫であると、圧縮機と凝縮器
の間に三方弁を設け、圧縮機の回転数に応じて三方弁を
制御し、冷媒流路を切り替えることで、凝縮温度を仕切
り表面温度に適した温度帯にすることが可能となり、仕
切り表面の結露防止と省エネ効果がある。
According to the refrigerator of the present invention, a three-way valve is provided between the compressor and the condenser, the three-way valve is controlled in accordance with the number of revolutions of the compressor, and the refrigerant flow is switched to partition the condensation temperature. It is possible to set a temperature zone suitable for the surface temperature, thereby preventing dew condensation on the partition surface and saving energy.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例を図1〜図
3に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0014】先ず、冷蔵庫の全体の構成について図2〜
図3に基づいて説明する。
First, the entire structure of the refrigerator is shown in FIGS.
This will be described with reference to FIG.

【0015】図2は、本実施例の冷蔵庫10の縦断面図
である。
FIG. 2 is a longitudinal sectional view of the refrigerator 10 of the present embodiment.

【0016】冷蔵庫10の本体であるキャビネット12
には、上段から冷蔵室14、野菜室16、温度切替室1
8、冷凍室22が設けられている。また、温度切替室1
8の左側には製氷室20が設けられている。そして、野
菜室16と温度切替室18、製氷室20との間には断熱
仕切体24が配されている。
The cabinet 12 which is the main body of the refrigerator 10
Refrigerator room 14, vegetable room 16, temperature switching room 1
8, a freezing room 22 is provided. In addition, temperature switching room 1
An ice making chamber 20 is provided on the left side of 8. A heat insulating partition 24 is arranged between the vegetable room 16, the temperature switching room 18 and the ice making room 20.

【0017】冷蔵室14には、ヒンジによって開閉する
冷蔵室扉14aが設けられている。また、この冷蔵室1
4の下部には、約0℃付近で庫内温度を維持するチルド
室26が設けられている。
The refrigerator compartment 14 is provided with a refrigerator compartment door 14a which is opened and closed by a hinge. In addition, this refrigerator room 1
In the lower part of 4, a chilled chamber 26 for maintaining the temperature in the refrigerator at about 0 ° C. is provided.

【0018】野菜室16は、引出式の野菜室扉16aが
設けられ、この扉と共に野菜容器28が引き出し可能と
なっている。野菜容器28にはクリスパカバー29によ
って覆われている。
The vegetable compartment 16 is provided with a draw-out type vegetable compartment door 16a, and the vegetable container 28 can be pulled out together with the door. The vegetable container 28 is covered with a Chrispa cover 29.

【0019】温度切替室18には、引出式の温度切替室
扉18aが設けられ、この扉と共に温度切替室容器30
が引き出し可能となっている。
The temperature switching chamber 18 is provided with a draw-out type temperature switching chamber door 18a.
Can be pulled out.

【0020】冷凍室22にも、引出式の冷凍室扉22a
が設けられ、この扉と共に冷凍容器32が引き出し可能
となっている。
The freezer compartment 22 also has a drawer-type freezer compartment door 22a.
Is provided, and the freezing container 32 can be pulled out together with the door.

【0021】製氷室20は、図2に示すように、その天
井部付近に製氷装置34が設けられ、この下方には貯氷
容器36が設けられている。
As shown in FIG. 2, the ice making chamber 20 is provided with an ice making device 34 near the ceiling thereof, and an ice storage container 36 is provided below the ice making device 34.

【0022】製氷装置34は、製氷皿38と、それを回
転させる駆動部40と、貯氷容器36の氷の量を検知す
る検氷レバー42とよりなる。なお、製氷皿38に水を
供給するタンク44は、チルド室26の左側に設けられ
ている。
The ice making device 34 includes an ice tray 38, a driving unit 40 for rotating the ice tray 38, and an ice detecting lever 42 for detecting the amount of ice in the ice storage container 36. The tank 44 that supplies water to the ice tray 38 is provided on the left side of the chilled chamber 26.

【0023】次に、冷蔵庫10の冷凍サイクルの構造及
びその配置について説明する。
Next, the structure and arrangement of the refrigeration cycle of the refrigerator 10 will be described.

【0024】まず、圧縮機46は、図2に示すように、
キャビネット12の底部、すなわち冷凍室22の後方下
部に設けられている機械室48に設けられている。
First, as shown in FIG.
It is provided in the machine room 48 provided at the bottom of the cabinet 12, that is, at the rear lower part of the freezing room 22.

【0025】冷蔵庫10の蒸発器は冷蔵用と冷凍用の2
つ存在し、冷蔵用蒸発器50は野菜室16の後方に配さ
れ、冷凍用蒸発器52は冷凍室22の後方上部に設けら
れている。また、冷蔵用蒸発器50の上方には冷蔵用送
風機54が設けられ、冷凍用蒸発器52の上方には冷凍
用送風機56が設けられている。また、冷蔵用蒸発器5
0の下方には除霜ヒータ96が設けられている。冷凍用
蒸発器52の下方には除霜ヒータ98が設けられてい
る。
The refrigerator 10 has two evaporators, one for refrigeration and the other for freezing.
The refrigerator evaporator 50 is disposed behind the vegetable compartment 16, and the freezing evaporator 52 is provided at the rear upper portion of the freezer compartment 22. A refrigeration blower 54 is provided above the refrigeration evaporator 50, and a refrigeration blower 56 is provided above the refrigeration evaporator 52. In addition, refrigeration evaporator 5
Below 0, a defrost heater 96 is provided. A defrost heater 98 is provided below the freezing evaporator 52.

【0026】ところで、温度切替室18の左側壁と底板
は断熱構造となっている。これによって、温度切替室1
8の庫内温度を冷蔵室と同じ温度に設定しても、周囲に
存在する冷凍室22等からの温度影響を受けることがな
い。さらに、温度切替室18の背面板も断熱構造となっ
ているため、冷凍用蒸発器52からの温度影響を受ける
こともない。
The left side wall and the bottom plate of the temperature switching chamber 18 have a heat insulating structure. Thereby, the temperature switching chamber 1
Even if the inside temperature of the refrigerator 8 is set to the same temperature as that of the refrigerator compartment, there is no influence of the temperature from the freezer compartment 22 and the like existing around. Further, since the back plate of the temperature switching chamber 18 also has a heat insulating structure, it is not affected by the temperature from the refrigerating evaporator 52.

【0027】この冷凍サイクルの装置の配置を概説した
ものが図3であり、その冷媒流路を示したブロック図が
図1である。以下、これら図に基づいて、冷媒の流れに
ついて説明する。なお、図3及びこの説明では、図1に
示す第2の制御弁100は説明の便宜上省略してある。
FIG. 3 schematically shows the arrangement of the refrigeration cycle apparatus, and FIG. 1 is a block diagram showing the refrigerant flow path. Hereinafter, the flow of the refrigerant will be described with reference to these drawings. In FIG. 3 and this description, the second control valve 100 shown in FIG. 1 is omitted for convenience of description.

【0028】圧縮機46から出た冷媒は、マフラー5
8、放熱パイプ60、凝縮器62、防露パイプ64、ド
ライヤー66を経て三方弁68に至る。三方弁68にお
いて冷媒流路は分岐し、一方は冷蔵用キャピラリーチュ
ーブ70に向かい、他方は冷凍用キャピラリーチューブ
72に向かう。冷蔵用キャピラリーチューブ70から前
記した冷蔵用蒸発器50に至り、冷凍用キャピラリーチ
ューブ72の出口側と1つになり、前記した冷凍用蒸発
器52に至る。その後、アキュムレータ74、サクショ
ンパイプ76を通って圧縮機46に戻る。
The refrigerant flowing out of the compressor 46 is supplied to the muffler 5
8, through the heat radiating pipe 60, the condenser 62, the dew-proof pipe 64, and the dryer 66 to reach the three-way valve 68. In the three-way valve 68, the refrigerant flow path branches, one of which is directed to the refrigeration capillary tube 70, and the other is directed to the refrigeration capillary tube 72. From the refrigerating capillary tube 70 to the refrigerating evaporator 50, one is provided at the outlet side of the refrigerating capillary tube 72, and then to the refrigerating evaporator 52. Thereafter, the flow returns to the compressor 46 through the accumulator 74 and the suction pipe 76.

【0029】ここで、上記で説明していない各装置の冷
蔵庫10における取付位置を説明する。
Here, the mounting position of each device not described above in the refrigerator 10 will be described.

【0030】凝縮器62は、図3に示すように、複数回
折曲されて板状に構成され、図2に示すように、冷凍室
22の底部下方に配されている。また、アキュムレータ
74は、図4に示すように、冷凍用蒸発器52の右側に
取り付けられている。
As shown in FIG. 3, the condenser 62 is formed into a plate shape by being bent a plurality of times, and is arranged below the bottom of the freezing compartment 22 as shown in FIG. The accumulator 74 is mounted on the right side of the freezing evaporator 52 as shown in FIG.

【0031】次に、上記構成の冷凍サイクルにおける冷
気の流れを冷蔵庫10の図2を用いて説明する。
Next, the flow of cool air in the refrigeration cycle having the above-described configuration will be described with reference to FIG.

【0032】まず、冷蔵用蒸発器50によって冷却され
た冷気の流れについて説明する。
First, the flow of cold air cooled by the refrigeration evaporator 50 will be described.

【0033】冷蔵用蒸発器50によって冷却された冷気
は、冷蔵用送風機54の前側から、野菜室16の後方に
位置する冷蔵分岐空間78に送り込まれる。この冷蔵分
岐空間78の上部は、冷蔵室14の背面に設けられてい
る冷蔵ダクト80に接続され、この冷蔵ダクト80に冷
気が送られる。冷蔵ダクト80は、図4に示すように、
冷蔵室14の下部で二股に分かれ、ほぼU字状の形状を
なしている。冷蔵ダクト80の前面には所定間隔毎に冷
気の吹出口82が設けられ、これら吹出口82から冷蔵
室14に冷気が吹き込まれる。冷蔵室14を冷却した冷
気はチルド室26、タンク44の下方を通って(図2参
照)、冷蔵用送風機54及び冷蔵用蒸発器50の左右に
設けられたリターンダクト84に流れ(図2参照)、冷
蔵用蒸発器50の下方に吹き出される。そして、この冷
気は再び冷蔵用蒸発器50で冷却されて、冷蔵用送風機
54の位置に至る。
The cool air cooled by the cooling evaporator 50 is sent from the front side of the cooling blower 54 to the cooling branch space 78 located behind the vegetable compartment 16. The upper portion of the refrigeration branch space 78 is connected to a refrigeration duct 80 provided on the back of the refrigeration compartment 14, and cool air is sent to the refrigeration duct 80. The refrigeration duct 80, as shown in FIG.
It is bifurcated at the lower part of the refrigerator compartment 14 and has a substantially U-shaped shape. Cool air outlets 82 are provided at predetermined intervals on the front surface of the refrigeration duct 80, and cool air is blown into the refrigeration compartment 14 from these outlets 82. The cool air that has cooled the refrigerating compartment 14 passes below the chilled compartment 26 and the tank 44 (see FIG. 2), and flows into return ducts 84 provided on the left and right sides of the refrigerating blower 54 and the refrigerating evaporator 50 (see FIG. 2). ), And is blown below the refrigeration evaporator 50. Then, the cool air is cooled again by the refrigeration evaporator 50 and reaches the position of the refrigeration blower 54.

【0034】一方、冷蔵分岐空間78からは、野菜室1
6のクリスパカバー29に沿って吹き出され、野菜室1
6を冷却する(図2参照)。この冷気は、野菜容器28
の底部を前から後ろに向かって流れ、リターン開口部8
8に至って冷蔵用蒸発器50に循環する(図2参照)。
On the other hand, from the refrigerated branch space 78, the vegetable room 1
6 is blown out along the Chrispa cover 29, and the vegetable room 1
6 is cooled (see FIG. 2). This cold air is
Flows from the front to the back of the
After that, the refrigerant is circulated to the refrigerator evaporator 50 (see FIG. 2).

【0035】次に、冷凍用蒸発器52によって冷却され
た冷気の流れを説明する。
Next, the flow of cool air cooled by the freezing evaporator 52 will be described.

【0036】冷凍用蒸発器52によって冷却された冷気
は冷凍用送風機56により、冷凍分岐空間90に至る。
この冷凍分岐空間90の上部は製氷装置34に通じてお
り、冷気はこの上部から製氷装置34に吹き出す。ま
た、冷凍分岐空間90の下部は、冷凍室22の冷凍容器
32の背面板に開口している孔33と、冷凍容器32の
上面に通じており、冷気は、この下部から冷凍容器32
内部に向かって吹き出す。
The cool air cooled by the freezing evaporator 52 reaches the freezing branch space 90 by the freezing blower 56.
The upper part of the freezing branch space 90 communicates with the ice making device 34, and cool air blows out from the upper part to the ice making device 34. The lower portion of the freezing branch space 90 communicates with a hole 33 opened in the back plate of the freezing container 32 of the freezing compartment 22 and the upper surface of the freezing container 32, and cool air flows from the lower portion into the freezing container 32.
Blow out towards the inside.

【0037】製氷室20を冷却した冷気は冷凍室22の
前面に流れ、冷凍室22の冷凍容器32の内部を冷却し
た冷気は冷凍室22の前面に流れる。そして、この冷気
は冷凍容器32の前面に沿って下方に流れ、底部を通っ
てリターンダクト92に至る。リターンダクト92に流
れ込んだ冷気は、冷凍用蒸発器52に循環する。
The cold air that has cooled the ice making chamber 20 flows to the front of the freezing chamber 22, and the cool air that has cooled the inside of the freezing container 32 of the freezing chamber 22 flows to the front of the freezing chamber 22. Then, the cool air flows downward along the front surface of the freezing container 32 and reaches the return duct 92 through the bottom. The cool air flowing into the return duct 92 is circulated to the freezing evaporator 52.

【0038】図2に示すように、冷凍分岐空間90の右
側には、温度切替室18に冷気を送るためのダンパ装置
94が設けられ、このダンパ装置94のダンパの開閉に
よって、温度切替室18に送る冷気の量を調整され、そ
の庫内温度を調整する。温度切替室18を冷却した冷気
は、温度切替室18の底部から冷凍用蒸発器52に通じ
るリターンダクト95に流れ込み冷凍用蒸発器52に循
環する。
As shown in FIG. 2, a damper device 94 for sending cool air to the temperature switching chamber 18 is provided on the right side of the refrigeration branch space 90. When the damper of the damper device 94 is opened and closed, the temperature switching chamber 18 is opened. The amount of cold air to be sent is adjusted, and the temperature in the refrigerator is adjusted. The cool air that has cooled the temperature switching chamber 18 flows from the bottom of the temperature switching chamber 18 into a return duct 95 that communicates with the refrigeration evaporator 52, and circulates through the refrigeration evaporator 52.

【0039】上述の構成がこの種の冷蔵庫の一般的な構
成及び冷気の循環経路である。図1に示すように第2の
制御弁100を設けたものであり、この第2の制御弁1
00は、凝縮器62と圧縮機46との間に介設してい
る。そして、この第2の制御弁100は三方弁で構成し
ている。すなわち、第2の制御弁100の入力口は圧縮
機46と接続され、第2の制御弁100の第1出力口は
配管102を介して凝縮器62の入力口に接続されてい
る。そして、第2の制御弁100の第2出力口は配管1
04を介して凝縮器62の中間口に接続している。
The above configuration is the general configuration of this type of refrigerator and the circulation path of cool air. As shown in FIG. 1, a second control valve 100 is provided.
00 is interposed between the condenser 62 and the compressor 46. The second control valve 100 is constituted by a three-way valve. That is, the input port of the second control valve 100 is connected to the compressor 46, and the first output port of the second control valve 100 is connected to the input port of the condenser 62 via the pipe 102. The second output port of the second control valve 100 is connected to the pipe 1
It is connected to the intermediate port of the condenser 62 through the line 04.

【0040】冷媒の基本的な流れは上記と同様である
が、図1においては圧縮機46の回転数が変化した場合
の第2の制御弁100の制御について説明する。
Although the basic flow of the refrigerant is the same as described above, FIG. 1 illustrates the control of the second control valve 100 when the rotation speed of the compressor 46 changes.

【0041】運転中、圧縮機46から吐出された冷媒
は、第2の制御弁100を通り、凝縮器62へ流れる。
圧縮機46で圧縮された冷媒は凝縮器62、防露パイプ
64で凝縮(放熱)する。この時、冷媒の凝縮温度は圧
縮機46の回転数、室温、凝縮器62の性能で変化す
る。
During operation, the refrigerant discharged from the compressor 46 flows through the second control valve 100 to the condenser 62.
The refrigerant compressed by the compressor 46 is condensed (heat radiated) by the condenser 62 and the dew prevention pipe 64. At this time, the condensation temperature of the refrigerant changes depending on the rotation speed of the compressor 46, the room temperature, and the performance of the condenser 62.

【0042】圧縮機46が低回転(30〜50rps)
であれば冷媒循環量が少ないため凝縮温度は低くなる。
また、圧縮機46が高回転(50〜70rps)であれ
ば冷媒循環量が多くなるため凝縮温度は高くなる。そこ
で、圧縮機46と凝縮器62との間に第2の制御弁10
0を設け、圧縮機46の回転数によって冷媒流路を切り
替えて凝縮温度を最適化するようにしたものである。
The compressor 46 operates at a low speed (30 to 50 rps).
In this case, the refrigerant circulation amount is small, so that the condensation temperature is low.
If the compressor 46 rotates at a high speed (50 to 70 rps), the amount of circulating refrigerant increases, so that the condensation temperature increases. Therefore, the second control valve 10 is provided between the compressor 46 and the condenser 62.
0 is provided, and the refrigerant flow path is switched according to the rotation speed of the compressor 46 to optimize the condensation temperature.

【0043】すなわち、圧縮機46が低回転であれば冷
媒吐出量も少なく凝縮能力も小さくて問題がないので、
また、冷媒を凝縮器62全体に流すと防露パイプ64の
温度を低くしすぎるので、冷媒の流れを第2の制御弁1
00により図1のbの流路に切り替える。これにより凝
縮器62の一部分に冷媒を流し凝縮温度を低くさせない
ようにしている。
That is, if the compressor 46 rotates at a low speed, the refrigerant discharge amount is small and the condensing capacity is small, so that there is no problem.
Further, when the refrigerant flows through the entire condenser 62, the temperature of the dew-proof pipe 64 becomes too low.
00 switches to the flow path of FIG. Thereby, the refrigerant is caused to flow through a part of the condenser 62 so as not to lower the condensation temperature.

【0044】圧縮機46が高回転であれば第2の制御弁
100により冷媒を図1のaの流路に切り替え、凝縮器
62全てに冷媒を流し、凝縮温度を高くさせないように
している。そのため、防露パイプ64の温度が一定範囲
内に維持され、仕切り表面の温度を最適化することがで
きる。なお、凝縮器62の能力を従来の2倍程度にして
おくことで、この場合でも凝縮温度が高くなるのを防止
できる。
When the compressor 46 rotates at a high speed, the refrigerant is switched to the flow path in FIG. 1A by the second control valve 100 so that the refrigerant flows through the entire condenser 62 so as not to raise the condensation temperature. Therefore, the temperature of the dew-proof pipe 64 is maintained within a certain range, and the temperature of the partition surface can be optimized. In this case, by increasing the capacity of the condenser 62 to about twice the conventional capacity, it is possible to prevent the condensation temperature from increasing even in this case.

【0045】例えば、室温が25℃で相対湿度が90%
なら23.2℃で結露する。圧縮機46の回転数が30
rpsで冷媒流路をbに切り替えることで、凝縮温度を
最適に制御し、仕切り表面温度を23.2℃以上に維持
することができる。
For example, if the room temperature is 25 ° C. and the relative humidity is 90%
If so, dew forms at 23.2 ° C. The rotation speed of the compressor 46 is 30
By switching the refrigerant flow path to b at rps, the condensing temperature can be optimally controlled, and the partition surface temperature can be maintained at 23.2 ° C. or higher.

【0046】[0046]

【発明の効果】以上により本発明の冷蔵庫であると、圧
縮機と凝縮器との間に三方弁からなる第2の制御弁を設
けて、圧縮機の回転数に応じて第2の制御弁を制御し、
冷媒流路を切り替えることで、凝縮温度を仕切り表面温
度に適した温度帯にすることが可能となり、仕切り表面
の結露防止と省エネ効果を発揮することができる。
As described above, according to the refrigerator of the present invention, a second control valve comprising a three-way valve is provided between the compressor and the condenser, and the second control valve is controlled in accordance with the rotation speed of the compressor. Control the
By switching the refrigerant flow path, it is possible to set the condensation temperature to a temperature zone suitable for the partition surface temperature, and it is possible to prevent dew condensation on the partition surface and exhibit an energy saving effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の第2の制御弁を設けて圧縮
機の回転数に応じて冷媒流路を切り替える場合の冷媒流
路のブロック図である。
FIG. 1 is a block diagram of a refrigerant flow path when a second control valve according to an embodiment of the present invention is provided and a refrigerant flow path is switched according to the number of revolutions of a compressor.

【図2】冷蔵庫の重断面図である。FIG. 2 is a heavy sectional view of the refrigerator.

【図3】冷凍サイクルを構成する各装置の配置図であ
る。
FIG. 3 is a layout view of each device constituting a refrigeration cycle.

【符号の説明】[Explanation of symbols]

10 冷蔵庫 46 圧縮機 50 冷蔵用蒸発器 52 冷凍用蒸発器 62 凝縮器 64 防露パイプ 68 三方弁(制御弁) 100 三方弁(第2の制御弁) DESCRIPTION OF SYMBOLS 10 Refrigerator 46 Compressor 50 Refrigeration evaporator 52 Refrigeration evaporator 62 Condenser 64 Dew-proof pipe 68 Three-way valve (control valve) 100 Three-way valve (second control valve)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】冷凍能力を可変できる圧縮機と、凝縮器
と、防露パイプと、複数の冷蔵室に対応した冷蔵用蒸発
器と、冷凍室に対応した冷凍用蒸発器とを環状に接続し
て冷媒流路を構成し、 冷媒流路を切り替えて冷蔵用蒸発器と冷凍用蒸発器を通
して冷媒を流したり、冷凍用蒸発器のみに冷媒を流す第
1の制御弁を冷媒流路に介設し、 圧縮機と凝縮器との間に冷媒流路を切り替える第2の制
御弁を介設していることを特徴とする冷蔵庫。
1. An annular connection of a compressor capable of changing a refrigerating capacity, a condenser, a dew-proof pipe, a refrigerating evaporator corresponding to a plurality of refrigerating rooms, and a refrigerating evaporator corresponding to a refrigerating room. A refrigerant flow path is formed, and the refrigerant flow path is switched to flow the refrigerant through the refrigeration evaporator and the refrigeration evaporator, or a first control valve for flowing the refrigerant only to the refrigeration evaporator is connected to the refrigerant flow path. A refrigerator, wherein a second control valve for switching a refrigerant flow path is interposed between the compressor and the condenser.
【請求項2】第2の制御弁は三方弁としていることを特
徴とする請求項1記載の冷蔵庫。
2. The refrigerator according to claim 1, wherein the second control valve is a three-way valve.
【請求項3】圧縮機の回転数に応じて三方弁の2つの出
力側を切り替えていることを特徴とする請求項2記載の
冷蔵庫。
3. The refrigerator according to claim 2, wherein the two output sides of the three-way valve are switched according to the rotation speed of the compressor.
【請求項4】三方弁の第1の出力口を凝縮器の入口部に
接続し、 三方弁の第2の出力口を凝縮器の入口部と出口部との間
に接続していることを特徴とする請求項2記載の冷蔵
庫。
4. The method according to claim 1, wherein a first output of the three-way valve is connected to an inlet of the condenser, and a second output of the three-way valve is connected between the inlet and the outlet of the condenser. The refrigerator according to claim 2, characterized in that:
【請求項5】第1の制御弁を冷媒流路を切り替えて冷凍
用蒸発器のみに冷媒を流す場合には、三方弁の第2の出
力口を凝縮器の入口部と出口部との間に接続しているこ
とを特徴とする請求項2記載の冷蔵庫。
5. When the first control valve switches the refrigerant flow path to flow the refrigerant only to the refrigerating evaporator, the second output port of the three-way valve is connected between the inlet and the outlet of the condenser. The refrigerator according to claim 2, wherein the refrigerator is connected to the refrigerator.
JP10182663A 1998-06-29 1998-06-29 Refrigerator Pending JP2000018789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10182663A JP2000018789A (en) 1998-06-29 1998-06-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10182663A JP2000018789A (en) 1998-06-29 1998-06-29 Refrigerator

Publications (1)

Publication Number Publication Date
JP2000018789A true JP2000018789A (en) 2000-01-18

Family

ID=16122268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10182663A Pending JP2000018789A (en) 1998-06-29 1998-06-29 Refrigerator

Country Status (1)

Country Link
JP (1) JP2000018789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579062A (en) * 2019-10-08 2019-12-17 长虹美菱股份有限公司 refrigerator with integrated anti-condensation tube structure
US11029072B2 (en) 2015-01-05 2021-06-08 Samsung Electronics Co., Ltd. Cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029072B2 (en) 2015-01-05 2021-06-08 Samsung Electronics Co., Ltd. Cooling device
CN110579062A (en) * 2019-10-08 2019-12-17 长虹美菱股份有限公司 refrigerator with integrated anti-condensation tube structure

Similar Documents

Publication Publication Date Title
WO2011001479A1 (en) Refrigerator
JP2003121043A (en) Refrigerator
JP3471218B2 (en) refrigerator
KR100348068B1 (en) Controlling method of refrigerator
JP3850145B2 (en) Refrigerator evaporating dish structure
JP2000314580A (en) Freezer refrigerator
JP3483763B2 (en) Refrigerator control method
JPH11304333A (en) Control method for refrigerator
AU766805B2 (en) A refrigerator
JP3497759B2 (en) refrigerator
JP2000018789A (en) Refrigerator
JP3600009B2 (en) Refrigerator control method
JP4197851B2 (en) refrigerator
JP2000283626A (en) Refrigerator
JP2000258023A (en) Refrigerator
JP3083447B2 (en) Freezer refrigerator
JP2002089981A (en) Refrigerator
JP7475869B2 (en) refrigerator
JPH11304331A (en) Control method for refrigerator
EP1761733B1 (en) Refrigerator, and method for controlling operation of the same
JP3567108B2 (en) refrigerator
JP3819644B2 (en) refrigerator
JP2000266445A (en) Refrigerator
KR20030015643A (en) Air circulation system of Refrigerator
KR100597292B1 (en) Refrigerator