JP2000017398A - Fe-Ni ALLOY FOR LEAD FRAME, EXCELLENT IN BANKABILITY - Google Patents

Fe-Ni ALLOY FOR LEAD FRAME, EXCELLENT IN BANKABILITY

Info

Publication number
JP2000017398A
JP2000017398A JP18730198A JP18730198A JP2000017398A JP 2000017398 A JP2000017398 A JP 2000017398A JP 18730198 A JP18730198 A JP 18730198A JP 18730198 A JP18730198 A JP 18730198A JP 2000017398 A JP2000017398 A JP 2000017398A
Authority
JP
Japan
Prior art keywords
alloy
lead frame
punching
inclusions
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18730198A
Other languages
Japanese (ja)
Other versions
JP3450711B2 (en
Inventor
Tatsuya Ito
辰哉 伊藤
Tsutomu Omori
勉 大森
Hidekazu Todoroki
秀和 轟
Jun Watanabe
純 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP18730198A priority Critical patent/JP3450711B2/en
Publication of JP2000017398A publication Critical patent/JP2000017398A/en
Application granted granted Critical
Publication of JP3450711B2 publication Critical patent/JP3450711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Fe-Ni alloy for lead frame, capable of reducing the anisotropy of shearing resistance at the time of blanking and also capable of inhibiting the occurrence of large-sized burr. SOLUTION: This alloy is an Fe-Ni alloy for lead frame, containing 30-50 wt.% Ni, and further, the prolonged length L of B type nonmetallic inclusions in a rolling direction is <=20 μm and also the size of individual nonmetallic inclusion is <=5 μm. By this method, the anisotropy of shearing resistance can be reduced and residual stress can be uniformized and also the size of burr can be uniformized, and blanking precision can be remarkably improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、良好な打抜き特性
を有するFe−Ni系リードフレーム用材料に係り、打
抜き時の剪断特性を改善するよう非金属介在物の大きさ
・形態および組成を制御することにより、良好な打抜き
特性を得る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Ni-based lead frame material having good punching characteristics, and controls the size, shape and composition of nonmetallic inclusions to improve the shearing characteristics at the time of punching. And a technique for obtaining good punching characteristics.

【0002】[0002]

【従来の技術】近年、フラットパッケージに代表される
ようにリードフレームの多ピン化が進んでおり、微細化
加工における要求水準がますます高まっている。一般
に、リードフレーム用材料には、リードパターンが打抜
き加工で形成される打抜き用途と、リードパターンが塩
化第二鉄溶液によるエッチングで形成されるエッチング
用途に分けられ、後者のほうがより微細なリードパター
ンの形成に向いている。一般的に、リードフレーム用材
料に要求される特性としては、打抜き特性に優れるこ
と、プレス加工時における加工性に優れること、良
好なはんだ性、メッキ性を有し半導体素子とのボンディ
ング時に支障がないこと、加工後の強度が高く変形し
にくいこと、電気伝導性が高く、実作動温度である2
00℃以下での熱膨張係数が低いことなどがあげられ
る。打抜きリードフレームを用いたIC半導体パッケー
ジの製造工程は、大まかには以下のように分けることが
できる。
2. Description of the Related Art In recent years, the number of pins in a lead frame has been increasing, as represented by a flat package, and the required level of miniaturization has been increasing. In general, lead frame materials are divided into punching applications in which the lead pattern is formed by punching and etching applications in which the lead pattern is formed by etching with a ferric chloride solution. Suitable for forming. In general, the characteristics required for lead frame materials include excellent punching characteristics, excellent workability in press working, good solderability, plating properties, and problems when bonding with semiconductor elements. No deformation, high strength after processing, low deformation, high electrical conductivity, and the actual operating temperature 2
Low thermal expansion coefficient at 00 ° C. or lower. The manufacturing process of an IC semiconductor package using a punched lead frame can be roughly divided as follows.

【0003】(1)素材(リードフレーム材)の打抜き
加工 (2)リードフレームを樹脂モールドにマウントするマ
ウント工程 (3)リードフレームと半導体素子を導線で接続するた
めのボンディング工程
(1) Punching of a material (lead frame material) (2) Mounting step of mounting a lead frame on a resin mold (3) Bonding step of connecting a lead frame and a semiconductor element with a conductive wire

【0004】ここで、工程1では打抜き性が、工程2で
はプレス成形性が要求され、工程3ではメッキ性、はん
だ性がそれぞれ要求される。加工後の強度が必要なのは
ボンディング時に反りや曲がりなどの変形が起きにくい
ことが必要なためと、取り扱い時の変形による不良発生
で歩留まり低下を防ぐためである。また電気伝導性は、
リードに流れる電流による発熱を左右し、半導体素子の
動作の安定性に影響する。リードフレーム用材料には、
加熱による組立工程中の熱膨脹差による歪みに起因する
半導体素子の特性変動や、モールドレジンとの密着性の
劣化を防止するために、半導体素子またはモールドレジ
ンとの熱膨張係数が近いことが必要とされている。その
ような要求を満たす従来より代表的な金属材料として、
Fe−42Ni合金、Fe−45Ni合金、Fe−50
Ni合金等の材料が用いられている。
Here, the punching property is required in the step 1, the press formability is required in the step 2, and the plating property and the solderability are required in the step 3 respectively. The strength after the processing is required because it is necessary that deformation such as warpage or bending is less likely to occur at the time of bonding, and that the yield is prevented from lowering due to occurrence of defects due to deformation during handling. The electrical conductivity is
It affects the heat generated by the current flowing through the leads and affects the stability of the operation of the semiconductor element. Lead frame materials include
It is necessary that the thermal expansion coefficient of the semiconductor element or the mold resin be close to that of the semiconductor element or the mold resin in order to prevent the characteristic fluctuation of the semiconductor element due to the distortion caused by the difference in thermal expansion during the assembly process due to heating and the deterioration of the adhesion with the mold resin. Have been. As a typical metal material that meets such demands,
Fe-42Ni alloy, Fe-45Ni alloy, Fe-50
A material such as a Ni alloy is used.

【0005】熱伝導の点では、銅合金がFe−Ni合金
に比べてより有利であるが、最近では半導体素子の安定
性向上、放熱性の改善、リードの形状改善(薄肉化)に
よる実効比抵抗の減少などの個々の改善がなされている
ため、Fe−Ni合金の熱伝導特性は技術的なネックに
はなっていない。一方、打抜き性については、この工程
において品質のばらつきが製品の歩留まりに大きく影響
し、また、今後の高精細化、多ピン化の動向と併せて重
要な工程と考えられることから、従来から壮んに検討さ
れている。これまでの打抜き性改善の試みとしては、例
えば特開昭61−44156に見られるように、圧延方
向平行断面の介在物の大きさを5μm以下とし、A系、
B系介在物の総数を1mmあたり20個以上としたも
のや、特開昭60−255953に見られるように、粒
径3μm以下の微細非金属介在物を組織内に均一分散さ
せたものがある。さらに、特開平9−87808、24
9943に見られるように、圧延および板圧方向に平行
な断面積1mmあたりの10μm以上の大きさのA系
介在物またはB系介在物を10〜1000個、5μm以
下のC系介在物を100〜50000個に制限し、エッ
チング後の硫化物系介在物痕の個数を1000〜200
0個としているなど、打抜き性改善に介在物を積極的に
利用している例が多く見られる。また特開昭63−24
010に見られるように炉外精錬温度を1700℃以下
で行うことにより、打抜き性に対して有害な10μmを
越える大きさのMgO−Alなどのスピネル系酸
化物の介在物の生成を抑制する技術も提案されている。
これらのことから打抜き性に対して介在物の制御がいか
に重要かが判る。
[0005] In terms of heat conduction, copper alloys are more advantageous than Fe-Ni alloys. However, recently, the effective ratio due to the improvement of the stability of semiconductor elements, the improvement of heat dissipation, and the improvement of the shape of leads (thinning) has been improved. Due to individual improvements such as reduced resistance, the thermal conductivity of Fe-Ni alloys is not a technical bottleneck. On the other hand, regarding the punching performance, the quality variation in this process has a great effect on the product yield, and it is considered to be an important process along with the trend of higher definition and more pins in the future, so it has been a great process in the past. Are being considered. As an attempt to improve the punching performance so far, as disclosed in, for example, JP-A-61-44156, the size of inclusions having a cross section parallel to the rolling direction is set to 5 μm or less,
B-type inclusions having a total number of 20 or more per 1 mm 2 or those in which fine non-metallic inclusions having a particle size of 3 μm or less are uniformly dispersed in the structure as shown in JP-A-60-255953. is there. Further, JP-A-9-87808, 24
9943, 10 to 1000 A- or B-type inclusions having a size of 10 μm or more per 1 mm 2 of cross-sectional area parallel to the rolling and sheet pressure directions were used. The number is limited to 100 to 50,000, and the number of sulfide-based inclusion marks after etching is set to 1,000 to 200.
In many cases, inclusions are positively used to improve punchability, such as zero. Also, JP-A-63-24
By performing the refining temperature outside the furnace at 1700 ° C. or lower as shown in FIG. 010, the generation of inclusions of spinel-based oxides such as MgO—Al 2 O 3 having a size exceeding 10 μm, which is harmful to the punching property, is suppressed. Suppression techniques have also been proposed.
These facts show how important inclusion control is to punching performance.

【0006】[0006]

【発明が解決しようとする課題】リードフレーム材で
は、プレス打抜きの際に生じるバリやカスにより製品の
性能を劣化させるだけでなく、金型に疵を付けたり残留
応力により反りや曲がりが生じてハンドリングに不具合
が起こる。このため、半導体の製造工程において安定し
た製造に支障を来したり歩留りの低下をもたらし、重大
なトラブルの原因となることもある。また最近ではリー
ドの高精細化に伴い、金型のクリアランスが小さく設定
されるため、より剪断抵抗が大きくなる傾向にある。こ
のため、金型の長寿命化のために益々打抜き性の良い材
料が求められている。しかしながら、このような要求を
満たすためには、前述したような介在物の制御のみでは
不十分であった。
In a lead frame material, not only does the performance of the product deteriorate due to burrs and scum generated at the time of press punching, but also the mold is damaged or warped or bent due to residual stress. Trouble occurs in handling. For this reason, in a semiconductor manufacturing process, it may hinder stable manufacturing or lower the yield, which may cause a serious trouble. Further, recently, as the precision of the leads has been increased, the clearance of the mold has been set smaller, so that the shear resistance tends to be larger. For this reason, materials having better punching properties are increasingly required for extending the life of the mold. However, in order to satisfy such demands, control of inclusions as described above was not sufficient.

【0007】[0007]

【課題を解決するための手段】本発明者は、Fe−Ni
系リードフレーム用合金の打抜き性について検討した結
果、打抜き時の加工精度を左右する要因と、打抜き
抵抗(剪断抵抗)に影響する要因とに分類し、打抜き性
の改善に効果的な各要因に着目した。そして、酸化物系
介在物の形態・分布、硫化物系介在物の形態・分布およ
び微細なカーバイドの析出の有無によりそれぞれの影響
を個別に把握するに至った。その前提となる基本的な知
見は以下のとおりである。
Means for Solving the Problems The present inventor has proposed Fe-Ni
As a result of examining the punching properties of lead alloys for lead frames, we classified them into factors that affect the processing accuracy during punching and factors that affect the punching resistance (shear resistance). I paid attention. Then, the respective effects were individually grasped based on the morphology and distribution of the oxide-based inclusions, the morphology and distribution of the sulfide-based inclusions, and the presence or absence of fine carbide precipitation. The basic knowledge on which it is based is as follows.

【0008】まず、打抜き時の加工精度に影響する要因
としては、バリの発生と材料の流れ込みによるダレの発
生が主なものである。これらは打抜き時の破断面と剪断
面との割合に関係しており、剪断面の割合が多くなると
バリの発生が多くなると同時にカスの発生が増加し、破
断面の割合が多くなるとダレの大きさが大きくなること
が知られている。これらは、当然ながら金型とポンチと
のクリアランス等の打抜き条件によっても左右される
が、打抜き条件を同一にした場合にこれらの相違が材料
の良し悪しとしてクローズアップされてくる。
First, factors that affect the processing accuracy at the time of punching are mainly the occurrence of burrs and the occurrence of sagging due to the flow of material. These are related to the ratio between the fracture surface and the shear surface at the time of punching. When the ratio of the shear surface increases, the generation of burrs increases, and at the same time, the generation of scum increases. Is known to increase. These are naturally influenced by the punching conditions such as the clearance between the die and the punch. However, when the punching conditions are the same, these differences come up as good or bad materials.

【0009】加工精度に影響する別の要因として、剪断
面と破断面の均一性があげられる。剪断面と破断面との
割合が不均一な場合、場所によりバリの大きさやダレの
大きさが不均一になり、その結果、場所によって形状の
ばらつきが大きくなり加工精度が悪化する。バリやダレ
がある一定の大きさで発生している場合には、クリアラ
ンス等の打抜き条件を変えれば改善できるが、バリやダ
レの大きさにばらつきがある場合には、打抜き条件では
対応が困難であり材料の改善が必要となる。
Another factor affecting the processing accuracy is the uniformity of the shear surface and the fracture surface. If the ratio between the shear surface and the fracture surface is not uniform, the size of the burr and the size of the sag become uneven depending on the location, and as a result, the variation in the shape increases depending on the location, and the processing accuracy deteriorates. If burrs or sagging occur at a certain size, it can be improved by changing the punching conditions such as clearance, but if the size of burrs or sagging varies, it is difficult to cope with the punching conditions Therefore, the material needs to be improved.

【0010】図2の斜線部で示すように、打抜き時のポ
ンチストロークの間で生じる応力と破断歪みの積分値を
剪断抵抗と定義した場合に、一般に、剪断抵抗の大きさ
は材料の引張強さや伸びなどの機械的性質と関連してい
ると考えられるが、同一材料でも圧延方向と圧延直角方
向では機械的性質が異なるように、圧延方向からの角度
依存性(異方性)が剪断抵抗に認められる。この異方性
が大きくなった場合には、例えば圧延方向にはバリの発
生が多いのに対して圧延直角方向にはバリが発生しない
といったことがあり、これらは同時に残留応力の不均一
にもつながり、リードフレーム材の製品の歩留まりに対
して悪影響を及ぼす。
As shown by the hatched portion in FIG. 2, when the integrated value of the stress generated during the punch stroke during punching and the breaking strain is defined as the shear resistance, the magnitude of the shear resistance is generally determined by the tensile strength of the material. Although it is thought to be related to mechanical properties such as pod elongation, even if the same material is used, the mechanical properties differ between the rolling direction and the direction perpendicular to the rolling direction. Is recognized. When this anisotropy increases, for example, burrs are often generated in the rolling direction, but burrs are not generated in the direction perpendicular to the rolling direction. This leads to an adverse effect on the yield of lead frame material products.

【0011】以上の観点から、本発明者は、打抜き時の
加工精度に関係する要素を剪断抵抗の異方性、バリ
やダレの不均一性およびバリやダレの大きさの3つに
分けて個別に検討した。そして、これら加工精度に及ぼ
す影響と材料に含まれる介在物がそれぞれどの様に関連
しているか種々の研究を行った結果、以下のような知見
を得るに至った。
From the above viewpoints, the present inventor divided the factors related to the processing accuracy at the time of punching into three: anisotropy of shear resistance, non-uniformity of burrs and sagging, and sizes of burrs and sagging. Considered individually. Then, as a result of conducting various studies on how the influence on the processing accuracy and the inclusions included in the material are related to each other, the following knowledge was obtained.

【0012】剪断抵抗の異方性に関しては、圧延方向に
延在するB系介在物がその原因であることが判った。具
体的には、B系介在物の長さが20μmを超える場合、
剪断抵抗の異方性が大きくなると同時に、破断面と剪断
面の均一性が悪くなることが判った。ここで、B系介在
物とは、JIS0555に規定されたものを言い、図1
に示すように、複数の介在物が圧延方向に並んだもので
ある。本発明では、個々の介在物どうしの間隔Pが10
μm以内で並んでいるものを1個のB系介在物と定義
し、図中符号Lがその長さである。また、B系介在物を
構成する個々の介在物や、A系介在物およびC系介在物
の大きさが5μmを上回ると、同様に剪断抵抗の異方性
が大きく、破断面と剪断面の均一性が悪くなることが判
明した。また、バリの均一性に関しては、介在物の大き
さと分布が支配要因であり、介在物の大きさが特に10
μmを超えるような大きなものが疎らに存在するような
分布形態のものでは、破断面と剪断面の境界が乱れやす
く、バリやダレの発生が不均一となることが判明した。
Regarding the anisotropy of the shear resistance, it has been found that B-based inclusions extending in the rolling direction are the cause. Specifically, when the length of the B-based inclusion exceeds 20 μm,
It has been found that the anisotropy of the shear resistance increases and the uniformity of the fracture surface and the shear surface deteriorates. Here, the B-based inclusions refer to those defined in JIS0555, and are shown in FIG.
As shown in the figure, a plurality of inclusions are arranged in the rolling direction. In the present invention, the interval P between the individual inclusions is 10
Those lined up within μm are defined as one B-based inclusion, and the symbol L in the figure is its length. When the size of each of the inclusions constituting the B-based inclusions and the size of the A-based inclusions and the C-based inclusions exceeds 5 μm, similarly, the anisotropy of the shear resistance is large, and the fracture surface and the shear surface It was found that the uniformity was poor. In addition, regarding the uniformity of burrs, the size and distribution of inclusions are the controlling factors, and the size of inclusions is particularly 10%.
In the case of a distribution form in which large ones exceeding μm are sparsely present, it has been found that the boundary between the fractured surface and the sheared surface is easily disturbed, and the generation of burrs and sagging becomes uneven.

【0013】本発明の第1のFe−Ni系リードフレー
ム用合金は、以上の知見に基づいてなされたもので、N
iを30〜50重量%含有したFe−Ni系リードフレ
ーム用合金において、個々の非金属介在物の大きさが5
μm以下であり、かつ非金属介在物のうちB系非金属介
在物の圧延による延長長さが20μm以下であることを
特徴としている。そして、このようなFe−Ni系リー
ドフレーム用合金では、介在物の大きさ、特に圧延方向
の介在物の大きさを制限することで剪断抵抗の異方性が
低減される。これにより、打抜き後の残留応力が均一と
なるので、打抜き品の経時変形を少なくすることができ
る。また、個々の介在物の大きさを5μm以下に制限し
ているので、剪断抵抗の異方性が低減されることと相ま
って、バリやダレを均一に発生させて打抜き精度を大幅
に向上させることが可能となる。
The first Fe—Ni based alloy for a lead frame of the present invention has been made based on the above findings.
In the Fe-Ni-based lead frame alloy containing 30 to 50% by weight of i, the size of each nonmetallic inclusion is 5%.
μm or less, and the extended length of the B-based nonmetallic inclusion among the nonmetallic inclusions by rolling is 20 μm or less. In such Fe—Ni based alloys for lead frames, the anisotropy of shear resistance is reduced by limiting the size of inclusions, particularly the size of inclusions in the rolling direction. As a result, the residual stress after punching becomes uniform, so that temporal deformation of the punched product can be reduced. In addition, since the size of each inclusion is limited to 5 μm or less, the anisotropy of the shear resistance is reduced, and burrs and sagging are uniformly generated to greatly improve the punching accuracy. Becomes possible.

【0014】さらに、バリやダレの大きさに関しては、
比較的小さな10μm以下の介在物の量(清浄度)に依
存し、清浄度がある程度大きくなると(介在物の量が増
えると)バリの大きさが小さくなり破断面の割合が増加
する。反対に、清浄度が低くなる(介在物量が減少す
る)に従いバリの発生が多くなり、剪断面の割合が増加
する。したがって、介在物の量は多すぎてもまた極端に
少なくても好ましくなく、適度な範囲にする必要があ
る。
Further, regarding the size of burrs and sagging,
Depending on the amount of relatively small inclusions (cleanness) of 10 μm or less, if the degree of cleanliness increases to some extent (increase in the amount of inclusions), the size of burrs decreases and the proportion of fractured surfaces increases. Conversely, as the cleanliness decreases (the amount of inclusions decreases), the generation of burrs increases, and the ratio of the shear surface increases. Therefore, it is not preferable that the amount of the inclusion is too large or extremely small, and it is necessary to set the amount to an appropriate range.

【0015】本発明の第2のFe−Ni系リードフレー
ム用合金は、介在物のうちでも快削性に寄与することで
知られている、MnSを主体とする硫化物について定量
的に解析した結果得られたもので、Niを30〜50重
量%含有したFe−Ni系リードフレーム用合金におい
て、個々の非金属介在物の大きさが5μm以下であり、
かつ、非金属介在物のなかでもB系の非金属介在物の圧
延方向の延長長さが20μm以下であり、さらに、粒径
0.02〜2μmのMnSを主体とする硫化物を100
0〜10000個/mmの割合で分散させたことを特
徴としている。そして、このような介在物の存在によ
り、適度な清浄度が付与されてバリの発生が小さくなる
ことが確認されている。なお、上記MnSの粒径は、好
ましくは0.05〜2μm、より好ましくは0.1〜2
μmであり、0.5〜2μmであればさらに好適であ
る。
The second Fe-Ni alloy for lead frames of the present invention was quantitatively analyzed for sulfides mainly composed of MnS, which are known to contribute to free-cutting properties among inclusions. The size of each non-metallic inclusion is 5 μm or less in the Fe-Ni-based lead frame alloy containing 30 to 50% by weight of Ni obtained as a result.
In addition, among the nonmetallic inclusions, the extension length in the rolling direction of the B-based nonmetallic inclusions is not more than 20 μm, and the sulfide mainly composed of MnS having a particle size of 0.02 to 2 μm is 100%.
It is characterized by being dispersed at a rate of 0 to 10000 particles / mm 2 . It has been confirmed that the presence of such inclusions imparts an appropriate degree of cleanliness and reduces the occurrence of burrs. The particle size of the MnS is preferably 0.05 to 2 μm, more preferably 0.1 to 2 μm.
μm, and more preferably 0.5 to 2 μm.

【0016】次に、打抜き時の抵抗に関する要素として
は、前述の剪断抵抗に関する要素、すなわち材料の機械
的性質(引張強さ、伸び、硬さ、剛性率等)や圧延方向
の介在物分布等がある。金型の寿命の点で考慮した場合
には、剪断荷重がより小さく、破断歪み(ストローク)
が小さいものが材料として望まれる。本発明者が剪断抵
抗に関する調査を種々行ったところ、組織中に分散させ
た微細なカーバイド(主としてFeC)が剪断抵抗を
低下させるのに最も効果が高いことを見い出した。ま
た、カーバイドの適正な析出条件を熱間圧延での冷却条
件および熱延帯の焼鈍条件中に見い出した。
Next, as the elements relating to the resistance at the time of punching, the above-mentioned elements relating to the shear resistance, that is, the mechanical properties (tensile strength, elongation, hardness, rigidity, etc.) of the material, the distribution of inclusions in the rolling direction, etc. There is. Considering the life of the mold, the shear load is smaller and the breaking strain (stroke)
Is desirable as a material. The present inventor has conducted various studies on shear resistance, and found that fine carbide (mainly Fe 3 C) dispersed in a tissue is most effective in reducing shear resistance. In addition, suitable precipitation conditions for carbides were found in the cooling conditions in hot rolling and the annealing conditions for hot strip.

【0017】本発明の第3のFe−Ni系リードフレー
ム用合金は、前記のような合金の素材を900℃〜12
00℃の範囲にて熱間圧延し、熱間圧延後の冷却を熱間
圧延温度から650℃まで少なくとも5℃/秒の冷却速
度で行い、冷却後の熱延帯を500℃以下の温度で巻き
取り、さらに、この熱延帯をコイル焼鈍炉において70
0〜900℃の温度で10hr以上保持することによ
り、合金組織中に微細なカーバイドを析出させたことを
特徴としている。
A third Fe-Ni-based lead frame alloy according to the present invention is obtained by using the above alloy material at 900 ° C to 12 ° C.
Hot rolling in the range of 00 ° C, cooling after hot rolling is performed at a cooling rate of at least 5 ° C / sec from the hot rolling temperature to 650 ° C, and the hot rolled belt after cooling is cooled at a temperature of 500 ° C or less. The hot rolled belt is further wound in a coil annealing furnace at 70 ° C.
It is characterized in that fine carbides are precipitated in the alloy structure by holding at a temperature of 0 to 900 ° C. for 10 hours or more.

【0018】以上のように、本発明では、まず、酸化物
系非金属介在物の大きさを規定することで剪断抵抗の異
方性を低減し(第1の特徴)、所定の硫化物を分散させ
ることで適度な破断面と剪断面の割合を構成し(第2の
特徴)、さらに、微細なカーバイドを分散させることで
剪断抵抗を低減している(第3の特徴)。そして、これ
ら全ての特徴を備えた場合の打抜き過程の経過は以下の
ようになると考えられる。
As described above, according to the present invention, first, the size of the oxide-based nonmetallic inclusion is specified to reduce the anisotropy of the shear resistance (first feature), and the predetermined sulfide is eliminated. Dispersion forms an appropriate ratio between the fracture surface and the shear surface (second characteristic), and further reduces the shear resistance by dispersing fine carbide (third characteristic). The process of the punching process when all of these features are provided is considered to be as follows.

【0019】まず、ポンチ近傍で個々の大きさが5μm
以下のA系やB系等の非金属介在物を起点としてクラッ
クが伝搬し、その先端にある直径2μm以下の微細なM
nSがボイドを生成し、それを起点に無数のクラックが
発生して打抜きが進行する。さらに、この過程で微細な
カーバイドはそれらの起点の発生を促進させ、全体とし
て打抜き時の抵抗を下げるのに寄与する。ただし、これ
はあくまでも推定であり、かかる作用の有無により本発
明が限定されないことは言うまでもない。なお、酸化物
系のA系、B系介在物の総数を減少させていっても剪断
抵抗や剪断破面に差がほとんど認められなかったことか
ら、微細なMnSはそれ自体もクラックの起点となって
いるものと考えられる。
First, in the vicinity of the punch, the individual size is 5 μm.
Cracks propagate from the following non-metallic inclusions such as A-type and B-type, and a fine M with a diameter of 2 μm or less
The nS generates a void, from which an infinite number of cracks are generated and punching proceeds. Further, in this process, fine carbides promote generation of the starting points, and contribute to lowering the resistance at the time of punching as a whole. However, this is merely an estimation, and it goes without saying that the present invention is not limited by the presence or absence of such an action. In addition, even if the total number of the oxide-based A-based and B-based inclusions was reduced, there was almost no difference in the shear resistance and the shear fracture surface. Therefore, the fine MnS itself was the starting point of the crack. It is thought that it has become.

【0020】次に、本発明の好適な成分組成について説
明する。本発明のFe−Ni系リードフレーム用合金の
好ましい成分組成は、重量%で、C:0.005〜0.
05%、Si:0.005〜0.5%、Mn:0.1〜
1.0%、Cr:0.5%以下、S:0.0005〜
0.02%を含有し、残部が実質的にFeよりなり、か
つ、合金中のMnの含有量とSの含有量の比Mn/Sが
50〜150の範囲である。以下、上記限定の根拠を説
明する。なお、以下の説明で「%」は「重量%」を意味
する。
Next, the preferred component composition of the present invention will be described. The preferred composition of the Fe—Ni-based lead frame alloy of the present invention is C: 0.005 to 0.5% by weight.
05%, Si: 0.005 to 0.5%, Mn: 0.1 to
1.0%, Cr: 0.5% or less, S: 0.0005 to
0.02%, the balance being substantially Fe, and the ratio Mn / S of the Mn content to the S content in the alloy is in the range of 50 to 150. Hereinafter, the grounds of the above limitation will be described. In the following description, “%” means “% by weight”.

【0021】C:Cは、0.05%を超えて含有すると
粗大な炭化物が析出し、打抜きを低下させる。また、合
金の耐力が上昇するとともにスプリングバックが大きく
なるため、成型加工時の加工性を劣化させる。逆に0.
005%を下回ると、打抜き時に必要な微細なカーバイ
ドが十分に析出せず、打抜き性が劣化する。以上の理由
から、Cの含有量は0.005〜0.05%とした。
C: If C is contained in an amount exceeding 0.05%, coarse carbides are precipitated and the punching is reduced. Further, since the yield strength of the alloy increases and the springback increases, the workability at the time of molding is deteriorated. Conversely, 0.
If the content is less than 005%, fine carbides necessary for punching do not sufficiently precipitate, and the punching properties deteriorate. For the above reasons, the content of C is set to 0.005 to 0.05%.

【0022】Si:Siは、脱酸剤として添加される
が、その含有量が多すぎるとCと同様に打抜き性を低下
させる。一方、Siの酸化物は組織中に不均一核生成に
より発生するMnS等の硫化物の析出起点となるため、
適当な量の添加が望ましい。このような観点から、Si
の含有量は0.005〜0.5%とした。
Si: Si is added as a deoxidizing agent, but if its content is too high, the punching properties are reduced as in the case of C. On the other hand, the oxide of Si becomes a starting point of precipitation of sulfide such as MnS generated by heterogeneous nucleation in the structure,
An appropriate amount is desirable. From such a viewpoint, Si
Was 0.005 to 0.5%.

【0023】Mn:MnもSiと同様に脱酸成分の一つ
であるが、熱間加工性に有害なSと結合してMnSを形
成することから、熱間加工性の改善に有効である。ま
た、Siと同様に、Mn酸化物は組織中に不均一核生成
により発生するMnS等の硫化物の析出起点となるた
め、適当な量の添加が望ましい。一方、Mnの添加量が
多すぎると熱膨張係数が高くなり、半導体素子との熱膨
張係数との差が大きくなって基盤材として不適当にな
る。以上の観点からMnの含有量は0.1〜1.0%と
した。
Mn: Mn is one of the deoxidizing components like Si, but it is effective for improving hot workability because it combines with S which is harmful to hot workability to form MnS. . Further, like Si, the Mn oxide becomes a starting point of precipitation of sulfides such as MnS generated by heterogeneous nucleation in the structure, and therefore, it is desirable to add an appropriate amount thereof. On the other hand, if the added amount of Mn is too large, the coefficient of thermal expansion becomes high, and the difference from the coefficient of thermal expansion with the semiconductor element becomes large, making it unsuitable as a base material. From the above viewpoint, the content of Mn is set to 0.1 to 1.0%.

【0024】S:Sは、熱間加工性に対して有害な成分
であるが、打抜き性に対して有用なMnS等の硫化物を
生成するのに必要な成分であるため、適量の添加が必要
である。このような観点から、Sの含有量は0.000
5〜0.02%とした。また、Mn量に対するS量の比
Mn/Sは、50〜150の範囲に規定するのが望まし
い。本発明者の検討によれば、Mn/Sが50を下回る
場合には、Mnの含有量が相対的に少ないためMnSの
量が不十分になるとともにSによる熱間加工性の劣化が
生じるようになり、、Mn/Sが150を上回ると、M
nの過剰による熱膨張係数の増大が生じる。なお、Mn
/Sは、80〜140が好ましく、90〜130であれ
ばさらに好適である。
S: S is a component harmful to hot workability, but is a component necessary for producing sulfides such as MnS useful for punching properties. is necessary. From such a viewpoint, the content of S is 0.000.
5 to 0.02%. Further, the ratio Mn / S of the amount of S to the amount of Mn is desirably set in the range of 50 to 150. According to the study of the present inventors, when Mn / S is less than 50, the content of Mn is relatively small, so that the amount of MnS becomes insufficient and the hot workability is deteriorated by S. When Mn / S exceeds 150, M
An excess of n causes an increase in the coefficient of thermal expansion. Note that Mn
The value of / S is preferably from 80 to 140, and more preferably from 90 to 130.

【0025】Ni:Niは、本発明合金の主要な構成元
素であり、含有量が少ない場合には熱膨張係数が大きく
なる。また、Niはマルテンサイト変態を促進する元素
であるから、含有量が多すぎると析出したマルテンサイ
トと半導体素子との不整合を生じ、基盤材として不適当
になるとともに、熱膨張係数が増大する。このような観
点から、Niの含有量は30〜50%とした。なお、C
rもマルテンサイト変態を促進する元素であり、その許
容量は0.5%である。
Ni: Ni is a main constituent element of the alloy of the present invention, and when its content is small, the coefficient of thermal expansion increases. In addition, since Ni is an element that promotes martensitic transformation, if the content is too large, inconsistency between precipitated martensite and a semiconductor element occurs, which makes it unsuitable as a base material and increases the thermal expansion coefficient. . From such a viewpoint, the content of Ni is set to 30 to 50%. Note that C
r is also an element that promotes martensitic transformation, and its allowable amount is 0.5%.

【0026】[0026]

【実施例】以下、具体的な実施例により本発明をより詳
細に説明する。Fe−42%Niを主成分とするFe−
Ni系合金を、真空度10−1〜10 −2torrの誘
導加熱型真空溶解炉にて5kgの鋼塊に溶製した。同時
に、大気溶解炉にてCaO−SiO−Alを主
成分としたスラグを使用し、塩基度を0.5〜2.0の
範囲で変更し同様に5kgの鋼塊を溶製した。
Hereinafter, the present invention will be described in more detail with reference to specific examples.
This will be described in detail. Fe-Fe-42%
Ni-based alloy, vacuum degree 10-1-10 -2invitation of torr
It was melted into a 5 kg steel ingot in a vacuum heating furnace of a conduction heating type. simultaneous
And CaO-SiO in an air melting furnace.2-Al2O3The lord
Using slag as a component, the basicity of 0.5-2.0
In the same manner, a 5 kg steel ingot was melted.

【0027】上記2種類の溶解の原料は電解鉄、電解ニ
ッケルおよび電解マンガン、フエロシリコン、硫化鉄を
使用した。これらの鋼塊を5mmの厚さに熱間鍛造した
後、均質化焼鈍として1250℃で2時間の熱処理を行
い、その後熱間圧延を1150℃で実施した。この際の
冷却条件は、熱間圧延後に650℃以下まで急冷(10
℃/分)と徐冷(0.1℃/分)の2種類とした。これ
ら熱延帯の一部のものに750℃で20時間の焼鈍を行
い、冷間圧延を1.5mmの厚さまで実施し光輝焼鈍を
行った。次いで、0.25mmまでさらに冷間圧延し、
800℃にて最終光輝焼純を行った。さらに、調質圧延
を0.20mmまで行ったものを供試材とし、それらの
成分組成を表1に示した。なお、表1において、真空溶
解炉で溶製したものは、#2、#5、#6、#7であ
り、その他の#1、#3、#4、#8、#9、#10は
大気溶解炉で溶製したものである。また、#1〜#6、
#8、#9は、熱間圧延後に急冷するとともに750℃
で20時間の焼鈍を行ったものである。
As the raw materials for the above two kinds of dissolution, electrolytic iron, electrolytic nickel and electrolytic manganese, ferrosilicon, and iron sulfide were used. After hot forging these ingots to a thickness of 5 mm, heat treatment was performed at 1250 ° C. for 2 hours as homogenization annealing, and then hot rolling was performed at 1150 ° C. The cooling conditions at this time are as follows: rapid cooling to 650 ° C. or less after hot rolling (10
° C / min) and slow cooling (0.1 ° C / min). Some of these hot-rolled strips were annealed at 750 ° C. for 20 hours, cold-rolled to a thickness of 1.5 mm, and brightly annealed. Then, further cold-rolled to 0.25 mm,
The final bright baking was performed at 800 ° C. Further, samples subjected to temper rolling to 0.20 mm were used as test materials, and their component compositions are shown in Table 1. In Table 1, what was melted in the vacuum melting furnace was # 2, # 5, # 6, and # 7, and the other # 1, # 3, # 4, # 8, # 9, and # 10 were It was produced in an atmospheric melting furnace. Also, # 1 to # 6,
# 8 and # 9 are quenched after hot rolling and 750 ° C
For 20 hours.

【0028】[0028]

【表1】 [Table 1]

【0029】得られた供試材に打抜き試験を行って評価
した。打抜き試験は、実験室用3ton精密金型プレス
機にて板厚に対して3%のクリアランスを設定し、5m
m角の穴を圧延方向に対して直角に10mm間隔で5個
開けることにより実施した。評価内容は図3に示す最大
バリ高さ、打抜き面の破断面/剪断面比率、剪断抵抗
(KN・mm)、および、新たに本発明で定義した剪断
抵抗の圧延方向と圧延直角方向の異方性の尺度であるL
/T値(圧延方向の剪断抵抗/圧延直角方向の剪断抵
抗)とし、各測定値を表1に併記した。また、各供試材
の介在物分布についても評価内容と共に表1に併記し
た。
The obtained test material was evaluated by performing a punching test. In the punching test, a 3% clearance was set with respect to the plate thickness using a 3 ton precision mold press for a laboratory, and 5 m was used.
This was carried out by drilling five m-square holes at 10 mm intervals perpendicular to the rolling direction. The evaluation contents are the maximum burr height shown in FIG. 3, the fracture surface / shear surface ratio of the punched surface, the shear resistance (KN · mm), and the difference in the shear resistance newly defined in the present invention between the rolling direction and the direction perpendicular to the rolling direction. L, a measure of anisotropy
/ T value (shear resistance in the rolling direction / shear resistance in the direction perpendicular to the rolling direction), and the measured values are also shown in Table 1. Table 1 also shows the inclusion distribution of each test material together with the contents of the evaluation.

【0030】表1から判るように、請求項1の条件(B
系介在物長さおよび個々の介在物の大きさ)を満たす#
1〜#5、#7、#10では、剪断抵抗異方性比L/T
がともに1に近く異方性が小さいとともに、最大バリ高
さの値も小さく、優れた打抜き性を示している。これに
対して、請求項1の条件を満たさない#8、#9では、
L/Tが1よりもかなり小さく、異方性が大きいことが
判る。また、#7、#10とそれ以外の供試材の剪断抵
抗を比較して明らかなように、カーバイドを分散させた
ものでは剪断抵抗が小さくなっている。なお、#6につ
いては、請求項1の条件を満たさず、しかも、Mn/S
の値が高くかつMnSの個数が極めて少ないため、L/
Tおよび最大バリ高さが非常に大きくなっている。
As can be seen from Table 1, the condition (B)
System inclusion length and individual inclusion size) #
1 to # 5, # 7 and # 10, the shear resistance anisotropy ratio L / T
Are close to 1 and the anisotropy is small, the value of the maximum burr height is small, and excellent punchability is exhibited. On the other hand, in # 8 and # 9 which do not satisfy the condition of claim 1,
It can be seen that L / T is much smaller than 1 and the anisotropy is large. Further, as is apparent from a comparison of the shear resistance between # 7 and # 10 and the other test materials, the shear resistance is small in the case where carbide is dispersed. In addition, about # 6, the condition of Claim 1 is not satisfied, and moreover, Mn / S
Is high and the number of MnS is extremely small, L /
T and the maximum burr height are very large.

【0031】なお、MnSの分布状態の測定に関して
は、バフ研磨後SPEED法にて電解を行った表面をX
線マイクロアナライザーにより50μm×50μmの範
囲を各試料10視野観察し、マッピングにてMnSの分
布を点としてカウントし、その平均を1mm平方あたり
の数として求めた。
For the measurement of the distribution state of MnS, the surface subjected to electrolysis by the SPEED method after buffing was subjected to X-ray irradiation.
Using a line microanalyzer, a range of 50 μm × 50 μm was observed in 10 visual fields of each sample, and the distribution of MnS was counted as points by mapping, and the average was determined as the number per 1 mm 2.

【0032】[0032]

【発明の効果】以上のように本発明によれば、剪断抵抗
の異方性を低減することができるので、リードフレーム
材の打抜き工程でのバリ発生による材料不具合や、ハン
ドリングによる不具合がなくなるとともに、金型の寿命
を大幅に向上することが期待でき、近年のICパッケー
ジ用リードフレーム材の高精細化、高信頼性化および生
産効率の向上に対して優れた部品を供給することが可能
となる。
As described above, according to the present invention, since the anisotropy of the shear resistance can be reduced, the material defect due to the occurrence of burrs in the punching step of the lead frame material and the defect due to the handling are eliminated. It is expected that the life of the mold can be greatly improved, and it is possible to supply parts that are excellent in improving the definition, reliability and production efficiency of lead frame materials for IC packages in recent years. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 B系介在物を示す図である。FIG. 1 is a view showing a B-based inclusion.

【図2】 剪断抵抗を説明するための線図である。FIG. 2 is a diagram for explaining a shear resistance.

【図3】 バリの発生状況およびその大きさの定義を示
す断面図である。
FIG. 3 is a cross-sectional view showing a state of occurrence of burrs and a definition of the size thereof.

【符号の説明】[Explanation of symbols]

L…B系非金属介在物の圧延延長長さ。 L: Rolling extension length of B-based nonmetallic inclusions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 轟 秀和 神奈川県川崎市川崎区小島町4番2号 日 本冶金工業株式会社研究開発本部技術研究 所内 (72)発明者 渡辺 純 神奈川県川崎市川崎区小島町4番2号 日 本冶金工業株式会社研究開発本部技術研究 所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidekazu Todoro 4-2 Kojimacho, Kawasaki-ku, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Nippon Metallurgical Industry Co., Ltd. Research and Development Headquarters Technical Research Institute (72) Inventor Jun Watanabe Kawasaki-shi, Kawasaki-shi, Kanagawa Prefecture 4-2 Kojima-cho, Ward Nihon Metallurgical Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Niを30〜50重量%含有したFe−
Ni系リードフレーム用合金において、個々の非金属介
在物の大きさが5μm以下であり、かつ、非金属介在物
のなかでもB系の非金属介在物の圧延方向の延長長さが
20μm以下であることを特徴とする打抜き加工性に優
れるFe−Ni系リードフレーム用合金。
1. An Fe-containing alloy containing 30 to 50% by weight of Ni.
In the Ni-based lead frame alloy, the size of each non-metallic inclusion is 5 μm or less, and among the non-metallic inclusions, the extension length in the rolling direction of the B-based non-metallic inclusion is 20 μm or less. An Fe-Ni-based lead frame alloy excellent in punching workability.
【請求項2】 Niを30〜50重量%含有したFe−
Ni系リードフレーム用合金において、個々の非金属介
在物の大きさが5μm以下であり、かつ、非金属介在物
のなかでもB系の非金属介在物の圧延方向の延長長さが
20μm以下であり、さらに、粒径0.02〜2μmの
MnSを主体とする硫化物を1000〜10000個/
mmの割合で分散させたことを特徴とする打抜き加工
性に優れるリードフレーム用合金。
2. An Fe-containing alloy containing 30 to 50% by weight of Ni.
In the Ni-based lead frame alloy, the size of each non-metallic inclusion is 5 μm or less, and among the non-metallic inclusions, the extension length in the rolling direction of the B-based non-metallic inclusion is 20 μm or less. In addition, 1,000 to 10,000 sulfides mainly composed of MnS having a particle size of 0.02 to 2 μm /
An alloy for a lead frame excellent in punching workability, characterized by being dispersed at a ratio of 2 mm 2 .
【請求項3】 前記合金の素材を900〜1200℃の
範囲にて熱間圧延し、熱間圧延後の冷却を熱間圧延温度
から650℃まで少なくとも5℃/秒の冷却速度で行
い、冷却後の熱延帯を500℃以下の温度で巻き取り、
さらに、この熱延帯をコイル焼鈍炉において700〜9
00℃の温度で10hr以上保持することにより、合金
組織中に微細なカーバイドを析出させたことを特徴とす
る請求項1または2に記載の打抜き加工性に優れるリー
ドフレーム用合金。
3. The alloy material is hot-rolled in a temperature range of 900 to 1200 ° C., and cooling after hot rolling is performed at a cooling rate of at least 5 ° C./sec from a hot rolling temperature to 650 ° C. Winding the hot strip after winding at a temperature of 500 ° C. or less,
Further, this hot-rolled strip is placed in a coil annealing furnace at 700 to 9%.
The lead-frame alloy according to claim 1 or 2, wherein fine carbides are precipitated in the alloy structure by maintaining the alloy at a temperature of 00 ° C for 10 hours or more.
【請求項4】 重量%で、C:0.005〜0.05
%、Si:0.005〜0.5%、Mn:0.1〜1.
0%、Cr:0.5%以下、S:0.0005〜0.0
2%を含有し、残部が実質的にFeよりなり、かつ、合
金中のMnの含有量とSの含有量の比Mn/Sが50〜
150の範囲であることを特徴とする請求項1〜3のい
ずれかに記載の打抜き加工性に優れるリードフレーム用
合金。
4. In% by weight, C: 0.005 to 0.05
%, Si: 0.005 to 0.5%, Mn: 0.1 to 1.%.
0%, Cr: 0.5% or less, S: 0.0005 to 0.0
2%, the balance being substantially Fe, and the ratio Mn / S of the Mn content to the S content in the alloy is 50 to 50%.
The lead frame alloy according to any one of claims 1 to 3, wherein the alloy has excellent punching workability.
JP18730198A 1998-07-02 1998-07-02 Fe-Ni lead frame alloy with excellent punching characteristics Expired - Lifetime JP3450711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18730198A JP3450711B2 (en) 1998-07-02 1998-07-02 Fe-Ni lead frame alloy with excellent punching characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18730198A JP3450711B2 (en) 1998-07-02 1998-07-02 Fe-Ni lead frame alloy with excellent punching characteristics

Publications (2)

Publication Number Publication Date
JP2000017398A true JP2000017398A (en) 2000-01-18
JP3450711B2 JP3450711B2 (en) 2003-09-29

Family

ID=16203615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18730198A Expired - Lifetime JP3450711B2 (en) 1998-07-02 1998-07-02 Fe-Ni lead frame alloy with excellent punching characteristics

Country Status (1)

Country Link
JP (1) JP3450711B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004007A (en) * 2000-04-21 2002-01-09 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY COLD ROLLED SHEET AND METHOD FOR REFINING Fe-Ni ALLOY
EP1445341A1 (en) * 2001-10-22 2004-08-11 Nippon Yakin kogyo Co., Ltd. Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL
JP2011105370A (en) * 2009-11-20 2011-06-02 Ishizuka Glass Co Ltd Pilfer-proof cap and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004007A (en) * 2000-04-21 2002-01-09 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY COLD ROLLED SHEET AND METHOD FOR REFINING Fe-Ni ALLOY
EP1445341A1 (en) * 2001-10-22 2004-08-11 Nippon Yakin kogyo Co., Ltd. Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL
EP1445341A4 (en) * 2001-10-22 2004-12-15 Nippon Yakin Kogyo Co Ltd Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL
JP2011105370A (en) * 2009-11-20 2011-06-02 Ishizuka Glass Co Ltd Pilfer-proof cap and method for manufacturing the same

Also Published As

Publication number Publication date
JP3450711B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
US8715431B2 (en) Copper alloy plate for electric and electronic parts having bending workability
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
US6699337B2 (en) Copper-base alloys having improved punching properties on press and a process for producing them
KR102009755B1 (en) Copper alloy wire material and manufacturing method thereof
EP2410068B1 (en) Duplex stainless steel plate having excellent press moldability
JP2006283060A (en) Copper alloy material and its manufacturing method
RU2409693C2 (en) High-strength sheet of non-structured electro-technical steel
CN103443309B (en) Copper alloy sheet material and process for producing same
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP2010007174A (en) Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2006200014A (en) Copper alloy having high strength and high electric conductivity
JP3946684B2 (en) Hot work tool steel
JP2000017398A (en) Fe-Ni ALLOY FOR LEAD FRAME, EXCELLENT IN BANKABILITY
KR20030004452A (en) Hardened fe-ni alloy for making integrated circuit grids and method for making same
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP3356993B2 (en) Fe-Ni-based lead frame alloy and Fe-Ni-based press-punched product with excellent punching workability
JP3356992B2 (en) Fe-Ni-based lead frame material excellent in punching workability, Fe-Ni-based press-punched product, and method of punching Fe-Ni-based material
JPWO2010071220A1 (en) Copper alloy sheet for electrical and electronic parts and method for producing the same
JP3069482B2 (en) Fe-Ni alloy cold rolled sheet with excellent plating and punching properties
JP3299227B2 (en) Fe-Ni lead frame material with excellent etching processability
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JPH09263891A (en) Iron-nickel alloy material, having high strength and low thermal expansion and excellent in punchability, and its production
JP6686796B2 (en) Fe-Ni alloy, soft magnetic material, soft magnetic material, and method for manufacturing soft magnetic material
JP3224186B2 (en) Method for producing high-strength low-thermal-expansion Fe-Ni-based alloy material excellent in punchability
WO2011039885A1 (en) Cold-rolled steel sheet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term