JP2000014019A - Battery discharge value measurement device - Google Patents

Battery discharge value measurement device

Info

Publication number
JP2000014019A
JP2000014019A JP10174821A JP17482198A JP2000014019A JP 2000014019 A JP2000014019 A JP 2000014019A JP 10174821 A JP10174821 A JP 10174821A JP 17482198 A JP17482198 A JP 17482198A JP 2000014019 A JP2000014019 A JP 2000014019A
Authority
JP
Japan
Prior art keywords
discharge
battery
power
value
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10174821A
Other languages
Japanese (ja)
Other versions
JP3551767B2 (en
Inventor
Tadashi Tsuji
匡 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17482198A priority Critical patent/JP3551767B2/en
Publication of JP2000014019A publication Critical patent/JP2000014019A/en
Application granted granted Critical
Publication of JP3551767B2 publication Critical patent/JP3551767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correct a detection error. SOLUTION: An output power P1 and a discharge watthour Wh1 are detected. Further, a temperature and an internal resistance deterioration factor γ1 at that time are also detected. A corresponding temperature deterioration factor α1 is obtained by a temperature table. By using the output power P1, P1/(α1.γ1) is calculated to correct the internal resistance deterioration and the temperature deterioration into initial states and the estimated value of a discharge watthour Wh (P1/(α1.γ1)) is obtained in accordance with initial characteristics C. The obtained value is a discharge watthour before the capacitance deterioration and, if the value is multiplied by a capacitance deterioration factor β, an actual discharge watthour shown by characteristics D is obtained. The correction formula and a correction formula obtained by adding a detection error correction value ΔWh to the detection value Wh1 are made to be equal to each other to obtain a 1st calculation formula. When the discharge is progressed in a predetermined manner, 2nd and 3rd calculation formulae are obtained. By satisfying the formulae simultaneously, the detection error correction value ΔWh and the capacitance deterioration factor β can be obtained. By correcting the detection value of the discharge watthour with the detection error correction value ΔWh, the actual discharge watthour detection value can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、測定誤差を精度
よく補正して放電量を測定する放電量測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge amount measuring apparatus for measuring a discharge amount by accurately correcting a measurement error.

【0002】[0002]

【従来の技術】放電量を測定して残存容量を演算する装
置が電気自動車やハイブリッド車などで実用化されてい
る。これらの従来の装置では、残存容量の演算精度を向
上させるために、放電量の測定値を用いてバッテリの容
量劣化についても演算するようになっている。例えば出
力パワーと放電電力量の特性を用いる容量劣化測定で
は、初期特性を基本に、内部抵抗劣化を表すパラメータ
と容量劣化を表すパラメータを用いて出力パワー対放電
電力量の特性を表現する。内部抵抗パラメータと容量劣
化パラメータはそれぞれ図8、図9のように分離して求
める。
2. Description of the Related Art Devices for measuring the amount of discharge and calculating the remaining capacity have been put to practical use in electric vehicles and hybrid vehicles. In these conventional apparatuses, in order to improve the calculation accuracy of the remaining capacity, the capacity deterioration of the battery is also calculated using the measured value of the discharge amount. For example, in the capacity deterioration measurement using the characteristics of the output power and the discharge power amount, the characteristics of the output power versus the discharge power amount are expressed based on the initial characteristics by using a parameter indicating the internal resistance deterioration and a parameter indicating the capacity deterioration. The internal resistance parameter and the capacitance deterioration parameter are separately obtained as shown in FIGS.

【0003】図8は初期特性に対して容量劣化を分離し
て内部抵抗劣化を表示した図である。内部抵抗劣化係数
γは実際の特性と容量劣化補正特性で算出される。すな
わち実測によって電力積算値CAPWHを求める。そ
して容量劣化補正特性から出力可能パワーP(CAPW
/β)を求める。一方バッテリに対して出力パワー
を実測して実測値Pnを得る。
[0005] FIG. 8 is a diagram showing the internal resistance deterioration by separating the capacitance deterioration from the initial characteristics. The internal resistance deterioration coefficient γ is calculated based on the actual characteristics and the capacitance deterioration correction characteristics. That finding power accumulated value CAPWH n by actual measurement. Then, based on the capacity deterioration correction characteristic, the outputable power P (CAPW
H n / β). On the other hand, the output power is actually measured for the battery to obtain an actually measured value Pn.

【0004】バッテリの内部抵抗の劣化度合いを示す劣
化係数γは下式のように演算して求める。 γ=P/P(CAPWH/β) (1) γは図8に示すように放電の進行にしたがって求め、
前回の検出値γn−1と平均値をとって内部抵抗劣化係
数γとする。式(2)はその演算式を表示する。 γ=(γ−γn−1)/2 (2)
[0004] A deterioration coefficient γ indicating the degree of deterioration of the internal resistance of a battery is obtained by calculation as in the following equation. γ n = P n / P (CAPWH n / β) (1) γ n is determined according to the progress of the discharge as shown in FIG.
The average value of the previous detection value γ n−1 and the average value is taken as the internal resistance deterioration coefficient γ. Equation (2) displays the equation. γ = (γ n −γ n−1 ) / 2 (2)

【0005】図9は、初期特性に対して内部抵抗劣化を
分離して容量劣化を表示した図である。容量劣化係数β
は実際の特性と内部抵抗劣化補正特性で算出される。す
なわちバッテリの放電パワーPと放電電力量CAPW
を実測して求める。そして放電パワーPで内部抵
抗劣化補正特性から放電電力量の推定値Wh(P
γ)を求める。
FIG. 9 is a diagram showing the deterioration of the capacitance by separating the deterioration of the internal resistance from the initial characteristics. Capacity degradation coefficient β
Is calculated based on the actual characteristics and the internal resistance deterioration correction characteristics. That is, the discharge power Pn of the battery and the discharge power amount CAPW
Determined by measuring the H n. The discharge power P n estimates from the internal resistance deterioration correction characteristic discharge power amount Wh (P n /
γ).

【0006】バッテリの容量の劣化度合いを示す容量劣
化係数βは下式のように演算して求める。 β=CAPWH/Wh(P/γ) (3) βは図9のように放電の進行にしたがって求め、式
(4)に示すように前回の検出値βn−1と平均値をと
って容量劣化係数βとする。 β=(β−βn−1)/2 (4)
The capacity deterioration coefficient β indicating the degree of deterioration of the capacity of the battery is calculated by the following equation. β n = CAPWH n / Wh (P n / γ) (3) β n is determined according to the progress of the discharge as shown in FIG. 9, and as shown in equation (4), the previous detected value β n−1 and the average value To obtain a capacity deterioration coefficient β. β = (β n −β n−1 ) / 2 (4)

【0007】また内部抵抗劣化係数γは放電の初期に求
め、そのとき、容量の劣化を無視して求めることができ
る。容量劣化係数βは放電の末期に求め、そのとき、容
量劣化が占める割合が大きく、抵抗劣化を無視して容量
劣化係数を求めることができる。
The internal resistance deterioration coefficient γ can be obtained at the beginning of discharge, and can be obtained at this time ignoring the capacity deterioration. The capacity deterioration coefficient β is obtained at the end of discharge. At that time, the capacity occupation ratio is large, and the capacity deterioration coefficient can be obtained ignoring resistance deterioration.

【0008】このように容量劣化係数βと内部抵抗劣化
係数γを求め、それを用いて図10のように、初期特性
に対する修正を行うことによって内部抵抗劣化補正特性
と容量劣化補正特性が得られる。内部抵抗劣化と容量劣
化それぞれを補正可能にしたバッテリの総合的推定劣化
特性が得られる。この総合的推定劣化特性から、バッテ
リの推定放電電力量を演算可能になり、検出した放電電
力量とにより残存容量を精度よく推定することが可能に
なる。
As described above, the capacitance deterioration coefficient β and the internal resistance deterioration coefficient γ are obtained, and the correction of the initial characteristics is performed as shown in FIG. 10 to obtain the internal resistance deterioration correction characteristic and the capacitance deterioration correction characteristic. . A comprehensive estimated deterioration characteristic of the battery in which the internal resistance deterioration and the capacity deterioration can be corrected can be obtained. From the comprehensive estimated deterioration characteristic, the estimated discharge power amount of the battery can be calculated, and the remaining capacity can be accurately estimated based on the detected discharge power amount.

【0009】またバッテリには、最初から内部抵抗劣化
と容量劣化を分離した状態で求めることができるバッテ
リも存在する。これらバッテリでは、図11のように放
電電圧と放電電流の特性を利用して、初期特性から演算
する内部抵抗と、実測特性から演算する内部抵抗との比
を演算して内部抵抗γを求める。式(5)はその演算式
である。但し、Vは出力電圧、Iは出力電流、Rは内部
抵抗、Rは初期特性の抵抗、Rは実測特性の抵抗を
表す。 V=E−IR、 γ=R/R (5)
Some batteries can be obtained from the beginning in a state where internal resistance deterioration and capacity deterioration are separated from each other. In these batteries, using the characteristics of the discharge voltage and the discharge current as shown in FIG. 11, the ratio of the internal resistance calculated from the initial characteristics to the internal resistance calculated from the measured characteristics is calculated to obtain the internal resistance γ. Equation (5) is the operation equation. Here, V is the output voltage, I is the output current, R is the internal resistance, R 0 is the resistance of the initial characteristic, and R d is the resistance of the actually measured characteristic. V = E-IR, γ = R 0 / R d (5)

【0010】容量劣化係数は図12のように開放電圧
(無負荷出力電圧)と放電電気量の特性から求める。す
なわち容量規定電圧Vにおいて初期特性から、放電開
始時の電圧Vに対して電圧の変動量(V−V)か
ら放電電気量Cを算出する。またこれと同じように実
測の特性からCを算出する。CとCの比を容量劣
化係数βとする。
The capacity deterioration coefficient is obtained from the characteristics of the open circuit voltage (no-load output voltage) and the amount of discharged electricity as shown in FIG. That is, from the initial characteristic in a volume specified voltage V e, calculates the discharged amount of electricity C 0 from the amount of fluctuation of the voltage to the discharge starting voltage V f (V e -V f) . Similarly, Cd is calculated from the measured characteristics. The ratio between Cd and C0 is defined as a capacity deterioration coefficient β.

【0011】式(6)は放電電気量C及び容量劣化係数
βの数式表示式である。但し、Kは初期特性、実際の特
性の傾きである。 C=(V−V)/K β=C/C (6) このように内部抵抗劣化と容量劣化を分離した求めるバ
ッテリであっても、図10のように総合的推定劣化特性
を得ることができる。この総合的推定劣化特性から、バ
ッテリの放電可能電力量を推定することが可能になり、
放電電力量の実測値とで容量劣化を補正した残存容量の
推定が可能になる。電気自動車やハイブリッド車では、
バッテリの劣化に対応した車両制御や充放電制御を行う
ことが可能になる。
Equation (6) is an equation for expressing the amount of discharged electricity C and the capacity deterioration coefficient β. Here, K is the slope of the initial characteristic and the actual characteristic. C = (V f -V e) / K β = C d / C 0 (6) Even battery thus obtaining the separation of the internal resistance degradation and capacity degradation, the overall estimation deterioration characteristics as shown in FIG. 10 Can be obtained. From this comprehensive estimated deterioration characteristic, it becomes possible to estimate the dischargeable power amount of the battery,
It is possible to estimate the remaining capacity in which the capacity deterioration has been corrected with the actually measured value of the discharge power amount. For electric and hybrid vehicles,
Vehicle control and charge / discharge control corresponding to battery deterioration can be performed.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、バッテ
リの残存容量を推定するのに、放電量の検出が不可欠
で、それを検出するときに、センサが用いられる。セン
サによる検出は誤差を伴い、その結果、残存容量の推定
値に誤差が存在することになる。バッテリの充放電はそ
の残存容量の推定値に基づいて行うため、充放電を繰り
返して行う中で誤差が蓄積され拡大される。
However, detection of the amount of discharge is indispensable for estimating the state of charge of the battery, and a sensor is used for detecting the amount of discharge. The detection by the sensor involves an error, and as a result, an error exists in the estimated value of the remaining capacity. Since charging / discharging of the battery is performed based on the estimated value of the remaining capacity, errors are accumulated and expanded during repeated charging / discharging.

【0013】電気自動車の場合は、バッテリについて満
充電になったかどうかの検出を行い、満充電を検出する
と、残存容量を100%とし、放電量の検出出発点が新
たに与えられるから、誤差の蓄積はその時点でリセット
される。しかし、充電状態が20%〜80%に維持さ
れ、満充電や完全放電を行う機会のないハイブリッド車
では、そうしたリセットをすることがないので、誤差が
広がり一方で、実態と離れた制御が行われる恐れがある
という問題点があった。本発明は、上記の問題に鑑み、
放電量検出値の検出誤差について検出するようにし、そ
れを補正可能にした放電量測定装置を提供することを目
的としている。
In the case of an electric vehicle, it is detected whether or not the battery is fully charged. When the battery is fully charged, the remaining capacity is set to 100%, and a new detection starting point of the discharge amount is given. The accumulation is reset at that point. However, in a hybrid vehicle in which the state of charge is maintained at 20% to 80% and there is no opportunity to perform full charge or complete discharge, such resetting is not performed, so that the error is widened and control far from the actual state is performed. There was a problem that it might be The present invention, in view of the above problems,
It is an object of the present invention to provide a discharge amount measurement device that detects a detection error of a discharge amount detection value and can correct the error.

【0014】[0014]

【課題を解決するための手段】このため請求項1記載の
発明は、バッテリの出力パワー対放電電力量の初期特性
に関するデータを記憶する放電電力量初期特性記憶手段
と、バッテリの放電パワーを検出するパワー検出手段
と、バッテリの放電電力量を検出する放電電力量検出手
段と、バッテリの内部抵抗の劣化を示す抵抗劣化係数を
求める抵抗劣化係数演算手段と、抵抗劣化係数を用いて
前記検出されたバッテリの放電パワーを初期状態に補正
するパワー補正手段と、パワー補正手段によって初期状
態に補正した放電パワーに基づいて前記放電電力量初期
特性記憶手段から放電電力量の推定値を得る放電電力量
推定手段と、放電電力量の推定値に容量劣化係数を乗じ
るとともに、放電電力量の検出値に検出誤差補正値を加
え、両補正式を等しくさせた第1の演算式を求め、さら
に放電が所定値以上に進行した点で第1の演算式と同じ
ように第2の演算式を求め、第1の演算式と第2の演算
式を連立させて、解くことによって、誤差補正値と容量
劣化係数を演算し、検出誤差を補正した放電電力量検出
値、あるいは容量劣化を補正した放電電力量の推定値を
検出値とする容量劣化・オフセット補正演算手段とを有
するものとした。
According to the present invention, there is provided a discharge power initial characteristic storing means for storing data relating to an initial characteristic of output power versus discharge power of a battery, and detecting discharge power of the battery. Power detection means, a discharge power amount detection means for detecting the discharge power amount of the battery, a resistance deterioration coefficient calculation means for obtaining a resistance deterioration coefficient indicating deterioration of the internal resistance of the battery, and the detection using the resistance deterioration coefficient. Power correction means for correcting the discharged power of the battery to an initial state, and a discharge power amount for obtaining an estimated value of the discharge power amount from the discharge power amount initial characteristic storage means based on the discharge power corrected to the initial state by the power correction means. Estimating means and multiplying the estimated value of the discharge power by the capacity deterioration coefficient, add the detection error correction value to the detected value of the discharge power, and equalize both correction equations. The first arithmetic expression is obtained, and at the point where the discharge has progressed to a predetermined value or more, a second arithmetic expression is obtained in the same manner as the first arithmetic expression, and the first arithmetic expression and the second arithmetic expression are calculated. Simultaneously solving, the error correction value and the capacity deterioration coefficient are calculated, and the detected value of the discharged power amount corrected for the detection error or the estimated value of the discharged power amount corrected for the capacity deterioration is used as the detected value. And an offset correction calculating means.

【0015】請求項2記載の発明は、抵抗劣化係数演算
手段は、バッテリの初期特性としての内部抵抗を記憶
し、実際の放電電圧と放電電流の変化率から演算した内
部抵抗と初期特性の内部抵抗との比を演算することで内
部抵抗劣化係数を求めるものとした。
According to a second aspect of the present invention, the resistance deterioration coefficient calculating means stores the internal resistance as the initial characteristic of the battery, and calculates the internal resistance and the internal characteristic of the initial characteristic calculated from the actual discharge voltage and the change rate of the discharge current. The internal resistance deterioration coefficient was determined by calculating the ratio with the resistance.

【0016】請求項3記載の発明は、内部抵抗の演算を
SOC20%以上の充電状態で行うものとした。
According to a third aspect of the present invention, the calculation of the internal resistance is performed when the SOC is 20% or more.

【0017】請求項4記載の発明は、バッテリの温度と
出力パワーの劣化関係を示す温度劣化係数を記憶する温
度劣化係数記憶手段を設け、パワー補正手段は、温度劣
化係数を用いて、バッテリの出力パワーを初期特性と同
じ温度条件に補正するようにしたものとした。
According to a fourth aspect of the present invention, there is provided a temperature deterioration coefficient storing means for storing a temperature deterioration coefficient indicating a deterioration relationship between the battery temperature and the output power, and the power correction means uses the temperature deterioration coefficient to store the battery. The output power was corrected to the same temperature condition as the initial characteristics.

【0018】請求項5記載の発明は、バッテリの無負荷
出力電圧対放電電気量の初期特性に関するデータを記憶
する放電電気量初期特性記憶手段と、バッテリの無負荷
出力電圧を検出する無負荷電圧検出手段と、バッテリの
放電電気量を検出する放電電気量検出手段と、検出され
た無負荷出力電圧に基づいて前記放電電気量初期特性記
憶手段から、放電電気量の推定値を得る放電電気量推定
手段と、放電電気量推定手段によって推定された放電電
気量に容量劣化係数を乗じるとともに、前記放電電気量
の検出値に検出誤差補正値を加え、両補正式を等しくさ
せた第1の演算式を求め、さらに放電が所定値以上に進
行した点で第1の演算式と同じように第2の演算式を求
め、第1の演算式と第2の演算式を連立させて、解くこ
とによって、誤差補正値と容量劣化係数を演算し、検出
誤差を補正した放電電気量の検出値、あるいは容量劣化
を補正した放電電力量の推定値を検出値とする容量劣化
・オフセット補正演算手段とを有するものとした。
According to a fifth aspect of the present invention, there is provided a discharge electric quantity initial characteristic storing means for storing data relating to an initial characteristic of a battery no load output voltage versus a discharge electric quantity, and a no load voltage for detecting a no load output voltage of the battery. Detecting means, discharging electric quantity detecting means for detecting the discharging electric quantity of the battery, and discharging electric quantity for obtaining an estimated value of the discharging electric quantity from the discharging electric quantity initial characteristic storage means based on the detected no-load output voltage. Estimating means and a first operation for multiplying the electric discharge quantity estimated by the electric discharge quantity estimating means by a capacity deterioration coefficient, adding a detection error correction value to the detected value of the electric discharge quantity, and making both correction equations equal. Equations are obtained, and a second arithmetic equation is obtained in the same manner as the first arithmetic equation at the point where the discharge has progressed to a predetermined value or more, and the first arithmetic equation and the second arithmetic equation are simultaneously solved. The error Capacitance deterioration / offset correction calculation means that calculates a positive value and a capacity deterioration coefficient and uses the detected value of the amount of discharged electric power in which the detection error is corrected or the estimated value of the amount of discharged electric power in which the capacity deterioration is corrected as the detected value. And

【0019】請求項6記載の発明は、無負荷電圧検出手
段が検出された前記バッテリの出力電圧と出力電流の変
化率から無負荷出力電圧を算出するものとした。請求項
7記載の発明は、放電量の検出を充電状態がSOC80
%以下になってから行うものとした。
According to a sixth aspect of the present invention, the no-load output voltage is calculated from a change rate of the output voltage and the output current of the battery detected by the no-load voltage detecting means. According to a seventh aspect of the present invention, when the state of charge is detected as SOC80
% Or less.

【0020】[0020]

【作用】請求項1記載の発明では、バッテリの初期状態
を示す出力パワー対放電電力量の初期特性が記憶され
る。バッテリの放電パワーと抵抗劣化係数をそれぞれ検
出し、バッテリの放電パワーを抵抗劣化係数で初期状態
に補正する。これによって初期特性から、放電電力量を
求めることができる。この放電電力量に容量劣化係数を
掛けると、実際の放電量になる。
According to the first aspect of the present invention, an initial characteristic of output power versus discharge power indicating the initial state of the battery is stored. The battery discharge power and the resistance deterioration coefficient are detected, respectively, and the battery discharge power is corrected to the initial state by the resistance deterioration coefficient. As a result, the discharge power amount can be obtained from the initial characteristics. Multiplying this discharge power by the capacity deterioration coefficient results in the actual discharge.

【0021】一方放電量の検出値に検出誤差に相当する
検出誤差補正値に加えると、実際の放電量になる。それ
らを等しくさせて、2つの未知数を含む第1の演算式を
求める。また、放電が所定値以上に進行した点で得た第
2の演算式からも、第1の演算式とほぼ同じ容量劣化係
数と検出誤差が得られるので、両演算式を連立させるこ
とができる。この連立式を解くことで、容量劣化係数と
検出誤差補正値が求まる。それらを用いて、検出値ある
いは推定値を補正し、実際の放電量が検出される。
On the other hand, when the detection value of the discharge amount is added to the detection error correction value corresponding to the detection error, the actual discharge amount is obtained. By making them equal, a first operation expression including two unknowns is obtained. In addition, the second arithmetic expression obtained at the point where the discharge has progressed to a predetermined value or more can also obtain substantially the same capacity deterioration coefficient and detection error as those of the first arithmetic expression. . By solving this simultaneous equation, a capacity deterioration coefficient and a detection error correction value are obtained. The detected value or the estimated value is corrected using them, and the actual discharge amount is detected.

【0022】請求項2記載の発明では、バッテリの放電
電圧と放電電流の検出値を用いて、その変化率で内部抵
抗を演算して、内部抵抗劣化係数を求めるようにしたの
で、容量劣化と関わることなく、求めることができ、演
算が簡単になる。
According to the second aspect of the present invention, the internal resistance is calculated based on the rate of change using the detected values of the discharge voltage and the discharge current of the battery to obtain the internal resistance deterioration coefficient. It can be obtained without involvement, and the calculation becomes simple.

【0023】請求項3記載の発明では、SOC20%以
下の放電電流、電圧が不安定な放電末期を避けて、内部
抵抗劣化係数の演算を内部抵抗値の安定する時期に行
う。
According to the third aspect of the present invention, the calculation of the internal resistance deterioration coefficient is performed at a time when the internal resistance value is stabilized, avoiding the last stage of the discharge in which the discharge current and the voltage at the SOC of 20% or less are unstable.

【0024】請求項4記載の発明では、温度の変化はバ
ッテリの出力パワーの劣化に影響を及ぼす。温度と出力
パワーの劣化係数を用いることによって、パワーの検出
値をより初期特性に補正することが可能になり、高精度
で放電電力量を推定することが可能になる。これによっ
て、容量劣化の推定精度が向上する。
According to the fourth aspect of the invention, the change in the temperature affects the deterioration of the output power of the battery. By using the deterioration coefficient of the temperature and the output power, the detected value of the power can be corrected to the initial characteristic, and the discharge power amount can be estimated with high accuracy. As a result, the accuracy of estimation of capacity deterioration is improved.

【0025】請求項5記載の発明では、バッテリの初期
状態を示す無負荷電圧と放電電気量を記憶する。バッテ
リから検出された無負荷電圧によって、初期特性から放
電電気量の推定値を得る。この推定値に容量劣化が含ま
ないから、容量劣化係数を乗じて劣化後の放電電気量を
推定する。
According to the fifth aspect of the present invention, the no-load voltage indicating the initial state of the battery and the amount of discharged electricity are stored. Based on the no-load voltage detected from the battery, an estimated value of the amount of discharged electricity is obtained from the initial characteristics. Since the estimated value does not include capacity deterioration, the amount of discharged electricity after deterioration is estimated by multiplying by the capacity deterioration coefficient.

【0026】一方放電電気量の検出値に検出誤差に相当
する検出誤差補正値を加えて補正を行うと、推定値と等
しくなる。これを第1の演算式とする。そして、放電が
進行して、第2の演算式を得ると、容量劣化係数と検出
誤差の補正値が殆ど変らないので、第1の演算式と第2
の演算式を連立することができる。これを解くことで、
容量劣化係数と検出誤差補正係数が得られる。容量劣化
係数あるいは検出誤差補正を用いて推定値あるいは検出
値を補正すると、実際の放電量が求まる。
On the other hand, when a correction is made by adding a detection error correction value corresponding to a detection error to the detected value of the amount of discharged electricity, the detected value becomes equal to the estimated value. This is defined as a first arithmetic expression. When the discharge progresses and the second arithmetic expression is obtained, the capacity deterioration coefficient and the correction value of the detection error hardly change.
Can be simultaneously used. By solving this,
A capacity deterioration coefficient and a detection error correction coefficient are obtained. When the estimated value or the detected value is corrected using the capacity deterioration coefficient or the detection error correction, the actual discharge amount is obtained.

【0027】請求項7記載の発明では、放電量の検出を
充電状態が80%になってから行うため、放電の進行に
対して、容量劣化の影響が出現し、連立式の成立条件が
満たされるので、演算精度が高くなる。
According to the seventh aspect of the present invention, since the discharge amount is detected after the state of charge reaches 80%, the effect of capacity deterioration appears on the progress of discharge, and the condition for establishing the simultaneous equation is satisfied. Therefore, the calculation accuracy is increased.

【0028】[0028]

【発明の実施の形態】次に、実施例により発明の実施の
形態を説明する。図1は実施例の構成を示す全体図であ
る。電気自動車に搭載されるバッテリ1は駆動部7と接
続し、電力が交流に変えられてモータ8に供給される。
また、回生制動時、交流の電力が直流に変えられバッテ
リ1に回される。バッテリ1の出力端子に出力電圧と出
力電流を検出する電圧計2、電流計3が接続されてい
る。またバッテリ1の温度を測定するための温度計4も
バッテリ1の近傍に設置されている。バッテリ1の出力
電圧と出力電流及び温度検出値がそれぞれバッテリコン
トローラ5に出力されている。
Next, embodiments of the present invention will be described with reference to examples. FIG. 1 is an overall view showing the configuration of the embodiment. The battery 1 mounted on the electric vehicle is connected to the drive unit 7, and the power is changed to AC and supplied to the motor 8.
Also, during regenerative braking, AC power is converted to DC and passed to the battery 1. A voltmeter 2 and an ammeter 3 for detecting an output voltage and an output current are connected to an output terminal of the battery 1. A thermometer 4 for measuring the temperature of the battery 1 is also provided near the battery 1. The output voltage, output current, and temperature detection value of the battery 1 are output to the battery controller 5, respectively.

【0029】バッテリコントローラ5では、バッテリ1
の出力電圧と出力電流から放電電力量を積算して放電量
を演算する。また出力電圧と出力電流の変化でバッテリ
1の内部抵抗と出力パワーを演算して検出する。バッテ
リコントローラ5には、バッテリの初期特性として出力
パワー対放電電力量の特性が記憶されており、内部抵抗
の検出値と初期特性から演算された内部抵抗とで内部抵
抗劣化係数が演算される。その内部抵抗劣化係数で出力
パワーを劣化前の初期状態に補正する。これによって出
力パワー対放電電力量の初期特性から容量劣化前の放電
電力量が求められる。
In the battery controller 5, the battery 1
The discharge amount is calculated by integrating the discharge power amount from the output voltage and output current. In addition, it calculates and detects the internal resistance and output power of the battery 1 based on changes in the output voltage and output current. The battery controller 5 stores output power versus discharge power characteristics as the initial characteristics of the battery, and calculates the internal resistance deterioration coefficient from the detected value of the internal resistance and the internal resistance calculated from the initial characteristics. The output power is corrected to the initial state before deterioration by the internal resistance deterioration coefficient. Thus, the discharge power amount before capacity deterioration is obtained from the initial characteristics of output power versus discharge power amount.

【0030】出力電圧と出力電流の積算で検出した放電
電力量に検出誤差補正値を加え、初期特性から得た放電
電力量に容量劣化係数を乗じてそれぞれの補正式を得、
等しくさせることによって第1の演算式を得る。また放
電が所定値以上に進行したら、上記と同じように第2の
演算式を求め、第1の演算式と連立させることで、検出
誤差補正値と容量劣化係数を求める。測定誤差補正値を
用いて放電電力量の積算値を補正して、放電電力量の検
出値とする。
A detection error correction value is added to the discharge power amount detected by integrating the output voltage and the output current, and the discharge power amount obtained from the initial characteristics is multiplied by a capacity deterioration coefficient to obtain respective correction expressions.
By making them equal, a first arithmetic expression is obtained. When the discharge has progressed to a predetermined value or more, the second arithmetic expression is obtained in the same manner as described above, and the detection error correction value and the capacity deterioration coefficient are obtained by simultaneously establishing the first arithmetic expression. The integrated value of the discharge power amount is corrected using the measurement error correction value to obtain a detected value of the discharge power amount.

【0031】電気自動車には保証すべき出力パワーP
minが設定されている。バッテリコントローラ5は、
その出力パワーPminに対して、放電電力量を初期特
性から求め、容量劣化係数で、保証すべき放電電気量W
h(Pmin)を求める。この保証すべき放電量に対し
て、残存容量の度合いを示す充電状態を求める。その充
電状態に対応してモータ8の出力パワーPが演算され、
モータコントローラ6に出力される。モータコントロー
ラ6は出力パワーPに対応する制御指令を駆動部7に出
力し、所定の電力をモータ8に出力させる。
Output power P to be guaranteed for electric vehicles
min is set. The battery controller 5 includes:
With respect to the output power P min , the discharge power amount is obtained from the initial characteristics, and the discharge power amount W to be guaranteed is obtained by the capacity deterioration coefficient.
Find h (P min ). With respect to the amount of discharge to be guaranteed, a state of charge indicating the degree of the remaining capacity is obtained. The output power P of the motor 8 is calculated according to the state of charge,
Output to the motor controller 6. The motor controller 6 outputs a control command corresponding to the output power P to the drive unit 7 and causes the motor 8 to output predetermined power.

【0032】図2はバッテリコントローラ5における放
電量及び充電状態を演算する機能をブロックで示す図で
ある。電圧計2、電流計3からの電圧検出値Vと電流検
出値Iはそれぞれ電力積算容量演算部11と瞬時パワー
演算部12に出力される。電力積算容量演算部11で
は、バッテリの端子電圧と電流値から電力量を積算して
充放電された電力量を検出する。
FIG. 2 is a block diagram showing the function of the battery controller 5 for calculating the amount of discharge and the state of charge. The detected voltage value V and the detected current value I from the voltmeter 2 and the ammeter 3 are output to the power integrated capacity calculator 11 and the instantaneous power calculator 12, respectively. The power integration capacity calculation unit 11 integrates the power amount from the battery terminal voltage and the current value and detects the charged / discharged power amount.

【0033】瞬時パワー演算部12では、バッテリの端
子電圧と電流の変化で内部抵抗Rと無負荷端子電圧Eを
演算する。その演算結果から式(7)に従ってさらにそ
のときの瞬間出力パワーPを求める。パワーPと内部抵
抗Rはそれぞれパワー容量演算部13と内部抵抗劣化補
正演算部14に出力される。 P=V(E−V)/R (7) 但し、Vは放電停止電圧である。
The instantaneous power calculation unit 12 calculates the internal resistance R and the no-load terminal voltage E based on changes in the battery terminal voltage and current. From the calculation result, the instantaneous output power P at that time is further obtained according to the equation (7). The power P and the internal resistance R are output to the power capacity calculator 13 and the internal resistance deterioration correction calculator 14, respectively. P = V (E−V) / R (7) where V is a discharge stop voltage.

【0034】内部抵抗劣化補正演算部14は、瞬時パワ
ー演算部12からの内部抵抗Rと初期特性テーブルに記
憶してある初期特性としての電流、電圧特性から演算し
た内部抵抗値との比を演算し、抵抗劣化係数γを求め
る。温度補正テーブルはバッテリの温度検出値に対応し
た温度劣化係数αを内部抵抗劣化補正演算部14、パワ
ー容量演算部13、容量劣化・オフセット補正演算部1
5に出力する。
The internal resistance deterioration correction calculator 14 calculates the ratio between the internal resistance R from the instantaneous power calculator 12 and the internal resistance value calculated from the current and voltage characteristics as the initial characteristics stored in the initial characteristic table. Then, the resistance deterioration coefficient γ is obtained. The temperature correction table calculates the temperature deterioration coefficient α corresponding to the detected temperature value of the battery by calculating the internal resistance deterioration correction calculation unit 14, the power capacity calculation unit 13, and the capacity deterioration / offset correction calculation unit 1.
5 is output.

【0035】パワー容量演算部13では、瞬時パワー演
算部からのパワーPを、内部抵抗劣化補正演算部14か
らの内部抵抗劣化係数γと温度補正テーブルからの温度
劣化係数αを用いて初期特性と同じ条件に補正し、出力
パワー対放電電力量の初期特性を記憶してある初期特性
テーブルから対応する放電電力量Wh(P)を求める。
この放電電力量Wh(P)はバッテリの容量劣化が生じ
る前の放電電力量である。
The power capacity calculation unit 13 calculates the power P from the instantaneous power calculation unit and the initial characteristic using the internal resistance deterioration coefficient γ from the internal resistance deterioration correction calculation unit 14 and the temperature deterioration coefficient α from the temperature correction table. The same condition is corrected, and the corresponding discharge power Wh (P) is obtained from the initial characteristic table storing the initial characteristics of the output power versus the discharge power.
This discharge power amount Wh (P) is a discharge power amount before the capacity of the battery is deteriorated.

【0036】容量劣化・オフセット補正演算部16で
は、電力積算容量演算部11からの積算値Whに検出誤
差補正値ΔWh、パワー容量演算部13からの放電量推
定値Wh(P)に容量劣化係数βでそれぞれ補正を行っ
て等しくさせた第1の演算式を求める。そして規定以上
の放電電力量が放電したと判定されれば、上記と同じよ
うに第2の演算式を求めて、第1の演算式と連立させて
検出誤差補正値ΔWhと容量劣化係数βを求める。この
ように放電の進行にしたがって、演算式を求め、前回で
求めた演算式を連立させて容量劣化係数を演算する。そ
して演算された容量劣化係数は、前回の容量劣化係数と
平均値をとり、新たに検出した容量劣化係数βとする。
In the capacity deterioration / offset correction calculation section 16, the detection error correction value ΔWh is added to the integrated value Wh from the power integration capacity calculation section 11, and the capacity deterioration coefficient is added to the discharge amount estimation value Wh (P) from the power capacity calculation section 13. A first arithmetic expression that is corrected by β and equalized is obtained. If it is determined that the amount of discharge power equal to or more than the specified value has been discharged, a second arithmetic expression is obtained in the same manner as described above, and the detection error correction value ΔWh and the capacity deterioration coefficient β are calculated simultaneously with the first arithmetic expression. Ask. As described above, as the discharge progresses, an arithmetic expression is obtained, and the arithmetic expression obtained last time is simultaneously calculated to calculate the capacity deterioration coefficient. Then, the calculated capacity deterioration coefficient takes an average value with the previous capacity deterioration coefficient and sets it as a newly detected capacity deterioration coefficient β.

【0037】電力積算容量演算部11は、演算された検
出誤差補正値ΔWhを用いて放電電力の積算値Whを補
正し、実の放電電力量として実SOC演算部17に出力
する。パワー容量演算部13は、容量劣化係数βを用い
て、電気自動車の保証すべき出力パワーPminに対応
する放電電力量Wh(Pmin)を容量劣化補正して保
証すべき放電電力量を演算する。実SOC演算部17は
保証すべき放電電力量Wh(Pmin)・βに対して式
(8)により充電状態SOCを演算する。 SOC=1−{(Wh+ΔWh)/〔β・Wh(Pmin)〕} (8)
The power integrated capacity calculation unit 11 corrects the integrated value Wh of the discharge power using the calculated detection error correction value ΔWh, and outputs the corrected value to the actual SOC calculation unit 17 as the actual discharge power amount. The power capacity calculator 13 uses the capacity deterioration coefficient β to calculate the discharge power amount Wh (P min ) corresponding to the output power P min to be guaranteed of the electric vehicle by correcting the capacity deterioration and calculating the discharge power amount to be guaranteed. I do. The actual SOC calculation unit 17 calculates the state of charge SOC with respect to the discharge power amount Wh (P min ) · β to be assured by the equation (8). SOC = 1 − {(Wh + ΔWh) / [β · Wh (P min )]} (8)

【0038】次に、図3のフローチャートにしたがって
瞬時パワー演算部12及び内部抵抗劣化補正演算部14
における内部抵抗劣化係数の演算を説明する。まず、ス
テップ101において、実SOC演算部17の演算値S
OCが20%、好ましくは30%以上となったかを判断
し、以上の場合はステップ102へ進む。ステップ10
2においては、パワー演算条件が成立したかの判断を行
う。これはまず、放電電力量の積算値から所定値以上の
電力を放電したかどうかを判断する。所定値以上の電力
を放電した場合は、所定の電流領域内で、3つ異なる電
流検出領域から電流を検出できたかどうかを判断する。
これら条件をすべて満足した場合は、瞬時パワー演算部
12で内部抵抗Rを演算する。これは図11に示す従来
と同じように、3つの領域全ての電流値と電圧値に対し
て直線回帰演算して内部抵抗R、無負荷電圧Eを演算し
て、ステップ103へ進む。
Next, according to the flowchart of FIG. 3, the instantaneous power calculation unit 12 and the internal resistance deterioration correction calculation unit 14
The calculation of the internal resistance deterioration coefficient in the above will be described. First, in step 101, the operation value S of the actual SOC operation unit 17 is calculated.
It is determined whether or not the OC has reached 20%, preferably 30% or more. Step 10
In 2, it is determined whether the power calculation condition is satisfied. First, it is determined whether or not electric power equal to or more than a predetermined value has been discharged from the integrated value of the discharged electric energy. When the power equal to or more than the predetermined value is discharged, it is determined whether or not the current can be detected from three different current detection regions in the predetermined current region.
When all of these conditions are satisfied, the instantaneous power calculation unit 12 calculates the internal resistance R. In this case, as in the conventional case shown in FIG. 11, the internal resistance R and the no-load voltage E are calculated by performing a linear regression calculation on the current value and the voltage value in all three regions, and the process proceeds to step 103.

【0039】ステップ103において、内部抵抗劣化補
正演算部14は、瞬時パワー演算部12から内部抵抗R
を入力する。ステップ104において、初期特性として
電流、電圧を用いて直線回帰を演算して内部抵抗R
求める。ステップ105においては、内部抵抗RとR
の比である抵抗劣化係数γを演算して記憶する。
In step 103, the internal resistance deterioration correction calculating section 14 calculates the internal resistance R from the instantaneous power calculating section 12.
Enter In step 104, a linear regression is calculated using the current and the voltage as the initial characteristics to obtain the internal resistance R0 . In step 105, the internal resistances R and R 0
Is calculated and stored.

【0040】ステップ106においては、記憶された過
去の演算値との平均を演算する。ステップ107におい
て、演算値を更新してステップ101へ戻る。その後ス
テップ102で規定値以上の放電が判定され、そして3
つの電流域から電流が検出されると、新たな内部抵抗劣
化係数γが演算される。図4は放電の進行に対して内部
抵抗劣化係数の演算の過程を示す図である。充電状態の
異なる状態で内部抵抗R、R、Rをそれぞれ求
め、初期特性として示されるRとの除算でそれぞれの
内部抵抗劣化係数が算出される。それらの値を平均化処
理して内部抵抗劣化係数とする。これによって、突発的
な電流変動があっても内部抵抗劣化係数の算出にもたら
す影響を小さく抑えることができる。
In step 106, the average with the stored past calculated value is calculated. In step 107, the calculated value is updated, and the process returns to step 101. Thereafter, in step 102, a discharge equal to or greater than the specified value is determined.
When a current is detected from one current region, a new internal resistance deterioration coefficient γ is calculated. FIG. 4 is a diagram showing a process of calculating the internal resistance deterioration coefficient with respect to the progress of discharge. The internal resistances R 1 , R 2 , and R 3 are obtained in different states of charge, and the respective internal resistance deterioration coefficients are calculated by dividing by R 0 shown as the initial characteristics. The values are averaged to obtain an internal resistance deterioration coefficient. As a result, even if a sudden current fluctuation occurs, the influence on the calculation of the internal resistance deterioration coefficient can be suppressed to a small value.

【0041】次に、容量劣化係数と放電電電力量の積算
誤差補正値の演算を図5のフローチャートにしたがって
説明する。まず実SOC演算部17の演算値である充電
状態SOCが80%、好ましくは70%以下であるかど
うかを判断する。70%以下の場合は、ステップ202
へ進む。
Next, the calculation of the capacity deterioration coefficient and the integrated error correction value of the discharge electric power will be described with reference to the flowchart of FIG. First, it is determined whether or not the state of charge SOC calculated by the actual SOC calculation unit 17 is 80% or less, preferably 70% or less. If it is 70% or less, step 202
Proceed to.

【0042】ステップ202において、パワー演算条件
が成立したかの判断を行う。これは、電力積算容量演算
部11の積算値から所定値以上の電力を放電したか、か
つ所定電流領域内で、3つの異なる電流検出域から電流
を検出しかの判断である。こられの判断条件をすべて満
足した場合は、内部抵抗劣化係数が検出されるので、内
部抵抗の劣化を補正可能でステップ203へ進む。ステ
ップ203において、電力積算容量演算部11から放電
電力量積算値Wh を容量劣化・オフセット補正演算部
16に、瞬間パワー演算部12からのパワー演算値P
をパワー容量演算部13にそれぞれ記憶させる。
In step 202, power calculation conditions
It is determined whether or not is established. This is the power integration capacity calculation
Whether the electric power of a predetermined value or more has been discharged from the integrated value of the unit 11
Current from three different current detection areas within one predetermined current area
Is the only determination. All of these criteria are met
If added, the internal resistance deterioration coefficient is detected.
The process proceeds to step 203 because the deterioration of the partial resistance can be corrected. Stay
In step 203, discharge is performed from the
Integrated electric energy Wh 1Is the capacity deterioration / offset correction calculation unit
16, the power calculation value P from the instantaneous power calculation unit 121
Is stored in the power capacity calculation unit 13.

【0043】ステップ204において、温度補正テーブ
ル15から温度補正値α、内部抵抗劣化補正演算部1
4から内部抵抗劣化係数γをパワー容量演算部13に
記憶させる ステップ205において、パワー演算条件が成立したか
の判断を行う。これはステップ202と同じである。パ
ワー演算条件が成立した場合は、ステップ206へ進
む。ステップ206において、放電電力量の積算値Wh
が前回の演算値Whに対して所定値SAM以上の変
化があったかどうかを判断し、変化があればステップ2
07へ進む。
In step 204, the temperature correction value α 1 from the temperature correction table 15 and the internal resistance deterioration correction calculation unit 1
In step 205 of storing the internal resistance deterioration coefficient gamma 1 in the power capacity calculation unit 13 from 4 performs determination of whether the power calculation condition is satisfied. This is the same as step 202. When the power calculation condition is satisfied, the process proceeds to step 206. In step 206, the integrated value Wh of the discharge power amount
2 determines whether there has been a change of predetermined value or more SAM respect previous computed value Wh 1, step 2 if there is a change
Proceed to 07.

【0044】ステップ207では、ステップ203と同
様に放電電力量Wh、パワーPを容量劣化・オフセッ
ト補正演算部16、パワー容量演算部13に記憶させ
る。ステップ208では、ステップ204と同様に温度
劣化係数α、内部抵抗劣化係数γをパワー容量演算部
13に記憶させる。
In step 207, the discharge power amount Wh 2 and the power P are stored in the capacity deterioration / offset correction calculation section 16 and the power capacity calculation section 13 as in step 203. In step 208, the temperature deterioration coefficient α and the internal resistance deterioration coefficient γ 2 are stored in the power capacity calculation unit 13 as in step 204.

【0045】ステップ209において、温度劣化係数α
と内部抵抗劣化係数γを用いてパワーPを初期特
性に補正する。温度劣化係数αと内部抵抗劣化係数γ
を用いてパワーPを初期特性に補正する。その補正
値をもって、図6のように初期特性Cから対応する容量
劣化前の電力量Wh(P/α・γ)、Wh(P
/α・γ)を求める。
In step 209, the temperature deterioration coefficient α
1And internal resistance deterioration coefficient γ1Power P using1The initial features
Correct for sex. Temperature degradation coefficient α2And internal resistance deterioration coefficient γ
2Power P using2Is corrected to the initial characteristics. The correction
The corresponding capacitance from the initial characteristic C as shown in FIG.
Electric energy Wh (P1/ Α1・ Γ1), Wh (P 2
/ Α2・ Γ2).

【0046】これに容量劣化係数を乗じると、D線で示
す実際の放電電力量になる。一方電力量検出値Wh
Whに検出誤差補正値ΔWhを加え実際の放電電力量
に等しくさせると、以下のように連立式を立てられる。 Wh−ΔWh=β・Wh(P/α・γ) Wh−ΔWh=β・Wh(P/α・γ) そしてステップ210において、連立方程式を解くこと
によって容量劣化係数β、電力量積算値の検出誤差補正
値ΔWhを求める。
When this is multiplied by the capacity deterioration coefficient, the actual discharge power amount shown by the line D is obtained. On the other hand, the detected power amount Wh 1 ,
If is equal to the actual amount of electric power discharged added detection error correction value ΔWh in Wh 2, can be raised simultaneous equations as follows. Wh 1 −ΔWh = β · Wh (P 1 / α 1 · γ 1 ) Wh 2 −ΔWh = β · Wh (P 1 / α 2 · γ 2 ) Then, in step 210, the simultaneous equation is solved to solve the capacity deterioration coefficient. β, a detection error correction value ΔWh of the integrated electric energy value is obtained.

【0047】ステップ211においては、容量劣化係数
β、検出誤差補正値ΔWhを過去2回の検出値と平均値
をとり、その平均値を新たに検出したものとして従来値
を更新し、記憶する。
In step 211, the capacity deterioration coefficient β and the detection error correction value ΔWh are averaged with the past two detection values, and the average value is updated and stored as the newly detected average value.

【0048】本実施例は以上のように構成され、温度劣
化と内部抵抗劣化をそれぞれ補正して初期特性から放電
電力量を求める。この放電電力量に容量劣化係数を乗じ
て実際の放電電力量の演算式を求める。一方放電電力を
積算して放電電力量の検出する。その積算値、検出誤差
補正値を加えて実際の放電電力量の演算式を得る。この
両式を等しくさせた第1の演算式に所定の放電が進行し
た点で、第1と同じように第2の演算式を求め、連立式
を立てて容量劣化係数と検出誤差係数を演算する。これ
によって、容量劣化係数を高精度に求めることができ
る。そして放電電力量の検出値を検出誤差補正値で補正
すると、高精度の放電量が検出される。また容量劣化が
高精度補正されることで、充電状態が高精度に演算され
ることになる。
This embodiment is configured as described above, and the temperature deterioration and the internal resistance deterioration are respectively corrected to obtain the discharge power amount from the initial characteristics. The discharge power amount is multiplied by the capacity deterioration coefficient to obtain a calculation formula of the actual discharge power amount. On the other hand, the discharge power is integrated to detect the discharge power amount. An arithmetic expression for the actual discharge power amount is obtained by adding the integrated value and the detection error correction value. At the point where the predetermined discharge has progressed to the first arithmetic expression in which these two expressions are made equal, a second arithmetic expression is obtained in the same manner as in the first expression, and a simultaneous equation is established to calculate the capacity deterioration coefficient and the detection error coefficient. I do. As a result, the capacity deterioration coefficient can be obtained with high accuracy. Then, when the detected value of the discharge power amount is corrected by the detection error correction value, a highly accurate discharge amount is detected. Further, by correcting the capacity deterioration with high accuracy, the state of charge is calculated with high accuracy.

【0049】次に、第2の実施例について説明する。第
1の実施例では、放電電流と放電電圧を用いて内部抵抗
を演算し、初期特性の内部抵抗との比からパワー比を演
算し、温度と抵抗劣化の補正を行った。一方、Li−i
on電池のように放電電気量と開放電圧の相関に再現性
のある電池では、容量劣化が抵抗劣化と分離し直接容量
比を用いることができる。したがって、図2の構成で
は、瞬間パワー演算部12で演算される無負荷電圧Eを
容量劣化・オフセット補正演算部16’に出力すれば、
容量劣化・オフセット補正演算部16’はパワー検出値
Pなしでも容量劣化と無負荷電圧の検出誤差補正値を演
算できる。これによって、パワー演算に関わる処理を省
略でき、装置の構成が簡単になる。
Next, a second embodiment will be described. In the first embodiment, the internal resistance is calculated using the discharge current and the discharge voltage, the power ratio is calculated from the ratio of the internal resistance of the initial characteristics, and the temperature and the resistance deterioration are corrected. On the other hand, Li-i
In a battery such as an on-battery having a reproducible correlation between the amount of discharged electricity and the open-circuit voltage, the capacity deterioration is separated from the resistance deterioration, and the capacity ratio can be used directly. Therefore, in the configuration of FIG. 2, if the no-load voltage E calculated by the instantaneous power calculation unit 12 is output to the capacity deterioration / offset correction calculation unit 16 ′,
The capacity deterioration / offset correction calculation unit 16 'can calculate a capacity deterioration and a no-load voltage detection error correction value without the power detection value P. As a result, the processing relating to the power calculation can be omitted, and the configuration of the device can be simplified.

【0050】すなわち、図7に示すように異なる充電状
態で無負荷電圧E、E、Eを得た場合、実測値A
、Ah、Ahでは、放電電気量の積算誤差が含
まれる。その他の無負荷電圧に対してもC線から実測値
を得ることができる。これらの値に、ΔCを用いて補正
すると、バッテリの実際の放電特性を示すB線になる。
一方初期特性Aからは初期の放電電気量C(E)、C
(E)、C(E)が得られる。これを容量劣化係数
βで補正すると、同じ実際の放電特性が得られる。これ
を等しくさせると、第1の演算式が得られる。そして容
量劣化と検出誤差は放電電気量の変化が所定範囲内で
は、同じ値を示すものとみなすことができるから、放電
を進んだ状態で、新たに第2の演算式を求め、第1の演
算式と連立させることで、容量劣化係数と検出誤差を補
正する検出誤差補正値を求めることができる。その後は
第1の実施例と同じように残存容量を示す充電状態を演
算することができる。
That is, as shown in FIG. 7, when the no-load voltages E 1 , E 2 , and E 3 are obtained in different charging states, the measured values A
h 1 , Ah 2 , and Ah 3 include an integration error of the amount of discharged electricity. Actual measured values can be obtained from the C line for other no-load voltages. When these values are corrected using ΔC, a B line indicating the actual discharge characteristics of the battery is obtained.
On the other hand, from the initial characteristic A, the initial discharge electricity amount C (E 1 ), C
(E 2 ) and C (E 3 ) are obtained. If this is corrected by the capacity deterioration coefficient β, the same actual discharge characteristics can be obtained. By making these equal, a first operation expression is obtained. Since the capacity deterioration and the detection error can be regarded as showing the same value when the change in the amount of discharged electricity is within a predetermined range, a second arithmetic expression is newly obtained while the discharge is advanced, and The detection error correction value that corrects the capacity deterioration coefficient and the detection error can be obtained by being combined with the arithmetic expression. Thereafter, the state of charge indicating the remaining capacity can be calculated as in the first embodiment.

【0051】[0051]

【発明の効果】請求項1記載の発明では、バッテリの初
期状態を示す出力パワー対放電電力量の初期特性が記憶
される。バッテリの放電パワーと抵抗劣化係数をそれぞ
れ検出し、バッテリの放電パワーを抵抗劣化係数で初期
状態に補正する。これによって初期特性から、放電電力
量を求めることができる。この放電電力量に容量劣化係
数を掛けると、実際の放電量になる。
According to the first aspect of the present invention, the initial characteristics of the output power versus the discharge power indicating the initial state of the battery are stored. The battery discharge power and the resistance deterioration coefficient are detected, respectively, and the battery discharge power is corrected to the initial state by the resistance deterioration coefficient. As a result, the discharge power amount can be obtained from the initial characteristics. Multiplying this discharge power by the capacity deterioration coefficient results in the actual discharge.

【0052】一方放電量の検出値に検出誤差に相当する
検出誤差補正値に加えると、実際の放電量になる。それ
らを等しくさせて、2つの未知数を含む第1の演算式を
求める。また、放電が所定値以上に進行した点で得た第
2の演算式からも、第1の演算式とほぼ同じ容量劣化係
数と検出誤差が得られるので、両演算式を連立させるこ
とができる。この連立式を解くことで、容量劣化係数と
検出誤差補正値が求まる。それらを用いて、検出値ある
いは推定値を補正し、実際の放電量が検出される。
On the other hand, when the detection value of the discharge amount is added to the detection error correction value corresponding to the detection error, the actual discharge amount is obtained. By making them equal, a first operation expression including two unknowns is obtained. In addition, the second arithmetic expression obtained at the point where the discharge has progressed to a predetermined value or more can also obtain substantially the same capacity deterioration coefficient and detection error as those of the first arithmetic expression. . By solving this simultaneous equation, a capacity deterioration coefficient and a detection error correction value are obtained. The detected value or the estimated value is corrected using them, and the actual discharge amount is detected.

【0053】請求項2記載の発明では、バッテリの放電
電圧と放電電流の検出値を用いて、その変化率で内部抵
抗を演算して、内部抵抗劣化係数を求めるようにしたの
で、容量劣化と関わることなく、求めることができ、演
算が簡単になる。
According to the second aspect of the present invention, the internal resistance is calculated at the rate of change using the detected values of the discharge voltage and the discharge current of the battery to obtain the internal resistance deterioration coefficient. It can be obtained without involvement, and the calculation becomes simple.

【0054】請求項3記載の発明では、放電電流、電圧
が不安定な放電末期を避けて、内部抵抗劣化係数の演算
を内部抵抗値の安定する時期に行う。
According to the third aspect of the invention, the calculation of the internal resistance deterioration coefficient is performed at a time when the internal resistance value is stabilized, avoiding the end of discharge in which the discharge current and voltage are unstable.

【0055】請求項4記載の発明では、温度の変化はバ
ッテリの出力パワーの劣化に影響を及ぼす。温度と出力
パワーの劣化係数を用いることによって、パワーの検出
値をより初期特性に補正することが可能になり、高精度
で放電電力量を推定することが可能になる。これによっ
て、容量劣化の推定精度が向上する。
According to the fourth aspect of the invention, the change in temperature affects the deterioration of the output power of the battery. By using the deterioration coefficient of the temperature and the output power, the detected value of the power can be corrected to the initial characteristic, and the discharge power amount can be estimated with high accuracy. As a result, the accuracy of estimation of capacity deterioration is improved.

【0056】請求項5記載の発明では、バッテリの初期
状態を示す無負荷電圧と放電電気量を記憶する。バッテ
リから検出された無負荷電圧によって、初期特性から放
電電気量の推定値を得る。この推定値に容量劣化が含ま
ないから、容量劣化係数を乗じて劣化後の放電電気量を
推定する。
According to the fifth aspect of the invention, the no-load voltage indicating the initial state of the battery and the amount of discharged electricity are stored. Based on the no-load voltage detected from the battery, an estimated value of the amount of discharged electricity is obtained from the initial characteristics. Since the estimated value does not include capacity deterioration, the amount of discharged electricity after deterioration is estimated by multiplying by the capacity deterioration coefficient.

【0057】一方放電電気量の検出値に検出誤差に相当
する検出誤差補正値を加えて補正を行うと、推定値と等
しくなる。これを第1の演算式とする。そして、放電が
進行して、第2の演算式を得ると、容量劣化係数と検出
誤差の補正値が殆ど変らないので、第1の演算式と第2
の演算式を連立することができる。これを解くことで、
容量劣化係数と検出誤差補正係数が得られる。容量劣化
係数あるいは検出誤差補正を用いて推定値あるいは検出
値を補正すると、実際の放電量が求まる。
On the other hand, when a correction is made by adding a detection error correction value corresponding to a detection error to the detected value of the amount of discharged electricity, the detected value becomes equal to the estimated value. This is defined as a first arithmetic expression. When the discharge progresses and the second arithmetic expression is obtained, the capacity deterioration coefficient and the correction value of the detection error hardly change.
Can be simultaneously used. By solving this,
A capacity deterioration coefficient and a detection error correction coefficient are obtained. When the estimated value or the detected value is corrected using the capacity deterioration coefficient or the detection error correction, the actual discharge amount is obtained.

【0058】請求項7記載の発明では、放電量の検出を
充電状態がSOC80%になってから行うため、放電の
進行に対して、容量劣化の影響が出現する領域で、連立
式の成立条件が満たされるので、高い演算精度が安定し
て得られる。
According to the seventh aspect of the present invention, since the detection of the discharge amount is performed after the state of charge becomes 80% of the SOC, the condition for establishing the simultaneous equation is satisfied in a region where the effect of capacity deterioration appears on the progress of discharge. Is satisfied, high calculation accuracy can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の全体の構成を示す図である。FIG. 1 is a diagram showing an entire configuration of an embodiment.

【図2】発明に関わる構成を示す図である。FIG. 2 is a diagram showing a configuration according to the invention.

【図3】内部抵抗劣化の演算流れを示すフローチャート
である。
FIG. 3 is a flowchart showing a calculation flow of internal resistance deterioration.

【図4】内部抵抗劣化後の特性(実際の特性)と初期特
性の関係を示す図である。
FIG. 4 is a diagram showing a relationship between characteristics (actual characteristics) after internal resistance deterioration and initial characteristics.

【図5】容量劣化係数および検出誤差補正値の演算の流
れを示す図である。
FIG. 5 is a diagram showing a flow of calculation of a capacity deterioration coefficient and a detection error correction value.

【図6】容量劣化係数と検出誤差補正値の演算原理を示
す図である。
FIG. 6 is a diagram illustrating a principle of calculating a capacity deterioration coefficient and a detection error correction value.

【図7】第2の実施例を示す図である。FIG. 7 is a diagram showing a second embodiment.

【図8】従来例における内部抵抗劣化係数の演算を示す
説明図である。
FIG. 8 is an explanatory diagram showing calculation of an internal resistance deterioration coefficient in a conventional example.

【図9】従来例における容量劣化係数の演算を示す説明
図である。
FIG. 9 is an explanatory diagram showing calculation of a capacity deterioration coefficient in a conventional example.

【図10】総合的推定劣化特性を示す図である。FIG. 10 is a diagram showing overall estimated deterioration characteristics.

【図11】他の内部抵抗劣化係数の演算の説明図であ
る。
FIG. 11 is an explanatory diagram of calculation of another internal resistance deterioration coefficient.

【図12】他の容量劣化係数の演算の説明図である。FIG. 12 is an explanatory diagram of calculation of another capacity deterioration coefficient.

【符号の説明】[Explanation of symbols]

1 バッテリ 2 電圧計 3 電流計 4 温度計 5 バッテリコントローラ 6 モータコントローラ 7 駆動部 8 モータ 11 電力積算容量演算部(放電電力量検出手
段、放電電気量検出手段) 12 瞬間パワー演算部(パワー検出手段、無負
荷電圧検出手段) 13 パワー容量演算部(放電電力量初期特性記
憶手段、パワー補正手段、放電電力量推定手段、放電電
気量初期特性記憶手段、放電電気量推定手段) 14 内部抵抗劣化補正演算部(抵抗劣化係数演
算手段) 15 温度補正テーブル(温度劣化係数記憶手
段) 16、16’ 容量劣化・オフセット補正演算部
(容量劣化・オフセット補正演算手段) 17 実SOC演算部
REFERENCE SIGNS LIST 1 battery 2 voltmeter 3 ammeter 4 thermometer 5 battery controller 6 motor controller 7 driving unit 8 motor 11 integrated power capacity calculation unit (discharge power amount detection means, discharge electricity amount detection means) 12 instantaneous power calculation unit (power detection means) , No-load voltage detecting means) 13 power capacity calculating section (discharge power amount initial characteristic storage means, power correction means, discharge power amount estimating means, discharge power amount initial characteristic storing means, discharge power amount estimating means) 14 internal resistance deterioration correction Calculation section (resistance deterioration coefficient calculation means) 15 Temperature correction table (temperature deterioration coefficient storage means) 16, 16 'Capacity deterioration / offset correction calculation section (capacity deterioration / offset correction calculation means) 17 Actual SOC calculation section

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 バッテリの出力パワー対放電電力量の初
期特性に関するデータを記憶する放電電力量初期特性記
憶手段と、前記バッテリの放電パワーを検出するパワー
検出手段と、前記バッテリの放電電力量を検出する放電
電力量検出手段と、前記バッテリの内部抵抗の劣化を示
す抵抗劣化係数を求める抵抗劣化係数演算手段と、前記
抵抗劣化係数を用いて前記検出されたバッテリの放電パ
ワーを初期状態に補正するパワー補正手段と、前記パワ
ー補正手段によって初期状態に補正した放電パワーに基
づいて前記放電電力量初期特性記憶手段から放電電力量
の推定値を得る放電電力量推定手段と、前記放電電力量
の推定値に容量劣化係数を乗じるとともに、放電電力量
の検出値に検出誤差補正値を加え、両補正式を等しくさ
せた第1の演算式を求め、さらに放電が所定値以上に進
行した点で第1の演算式と同じように第2の演算式を求
め、第1の演算式と第2の演算式を連立させて、解くこ
とによって、検出誤差補正値と容量劣化係数を演算し、
検出誤差を補正した放電電力量検出値、あるいは容量劣
化を補正した放電電力量の推定値を検出値とする容量劣
化・オフセット補正演算手段とを有することを特徴とす
るバッテリの放電量測定装置。
1. A discharge power amount initial characteristic storage means for storing data relating to an initial characteristic of an output power versus a discharge power amount of a battery, a power detection means for detecting a discharge power of the battery, and a discharge power amount of the battery. Means for detecting the amount of discharge power to be detected, means for calculating a resistance deterioration coefficient indicating the deterioration of the internal resistance of the battery, and means for correcting the detected discharge power of the battery to an initial state using the resistance deterioration coefficient Power correction means, a discharge power amount estimation means for obtaining an estimated value of the discharge power amount from the discharge power amount initial characteristic storage means based on the discharge power corrected to the initial state by the power correction means, A first arithmetic expression that multiplies the estimated value by the capacity deterioration coefficient, adds a detection error correction value to the detected value of the discharge power, and makes both correction expressions equal. The second arithmetic expression is obtained in the same manner as the first arithmetic expression at the point where the discharge has progressed to a predetermined value or more, and the first arithmetic expression and the second arithmetic expression are simultaneously solved. Calculate the detection error correction value and capacity deterioration coefficient,
A battery discharge amount measuring device, comprising: a capacity deterioration / offset correction calculation unit that uses a detected value of the discharged power amount corrected for the detection error or an estimated value of the discharged power amount corrected for the capacity deterioration as a detection value.
【請求項2】 前記抵抗劣化係数演算手段は、前記バッ
テリの初期特性としての電流、電圧内部抵抗を記憶し、
実際の放電電圧と放電電流の変化率から演算した内部抵
抗と初期特性の内部抵抗との比を演算することで内部抵
抗劣化係数を求めることを特徴とする請求項1記載のバ
ッテリの放電量測定装置。
2. The resistance deterioration coefficient calculation means stores current and voltage internal resistance as initial characteristics of the battery,
2. The battery discharge amount measurement according to claim 1, wherein an internal resistance deterioration coefficient is obtained by calculating a ratio of an internal resistance calculated from a change rate of an actual discharge voltage and a discharge current to an internal resistance of an initial characteristic. apparatus.
【請求項3】 前記内部抵抗の演算は、SOC20%以
上の充電状態で行うことを特徴とする請求項2記載のバ
ッテリの放電量測定装置。
3. The battery discharge amount measuring device according to claim 2, wherein the calculation of the internal resistance is performed in a state of charge of SOC of 20% or more.
【請求項4】 バッテリの温度と出力パワーの劣化関係
を示す温度劣化係数を記憶する温度劣化係数記憶手段を
設け、前記パワー補正手段は、温度劣化係数を用いて、
バッテリの出力パワーを前記初期特性と同じ温度条件に
補正するようにしたことを特徴とする請求項1記載のバ
ッテリの放電量測定装置。
4. A temperature deterioration coefficient storage means for storing a temperature deterioration coefficient indicating a deterioration relation between a battery temperature and an output power, wherein the power correction means uses the temperature deterioration coefficient to
2. The apparatus according to claim 1, wherein the output power of the battery is corrected to the same temperature condition as the initial characteristic.
【請求項5】 バッテリの無負荷出力電圧対放電電気量
の初期特性に関するデータを記憶する放電電気量初期特
性記憶手段と、前記バッテリの無負荷出力電圧を検出す
る無負荷電圧検出手段と、前記バッテリの放電電気量を
検出する放電電気量検出手段と、前記検出された無負荷
出力電圧に基づいて前記放電電気量初期特性記憶手段か
ら、放電電気量の推定値を得る放電電気量推定手段と、
前記放電電気量推定手段によって推定された放電電気量
に容量劣化係数を乗じるとともに、前記放電電気量の検
出値に検出誤差補正値を加え、両補正式を等しくさせた
第1の演算式を求め、さらに放電が所定値以上に進行し
た点で第1の演算式と同じように第2の演算式を求め、
第1の演算式と第2の演算式を連立させて、解くことに
よって、誤差補正値と容量劣化係数を演算し、検出誤差
を補正した放電電気量の検出値、あるいは容量劣化を補
正した放電電力量の推定値を放電量の検出値とする容量
劣化・オフセット補正演算手段とを有することを特徴と
するバッテリの放電量測定装置。
5. A discharge electric quantity initial characteristic storing means for storing data relating to an initial characteristic of a no-load output voltage versus a discharge electric quantity of a battery; a no-load voltage detecting means for detecting a no-load output voltage of the battery; A discharge electricity quantity detection means for detecting a discharge electricity quantity of the battery; and a discharge electricity quantity estimation means for obtaining an estimated value of the discharge electricity quantity from the discharge electricity quantity initial characteristic storage means based on the detected no-load output voltage. ,
In addition to multiplying the amount of discharge electricity estimated by the amount-of-discharge estimation unit by a capacity deterioration coefficient, a detection error correction value is added to the detected value of the amount of discharge electricity, and a first arithmetic expression that equalizes both correction formulas is obtained. A second arithmetic expression is obtained in the same manner as the first arithmetic expression at a point where the discharge has progressed to a predetermined value or more;
An error correction value and a capacity deterioration coefficient are calculated by simultaneously solving the first calculation formula and the second calculation formula, and the detection value of the discharge electric quantity corrected for the detection error or the discharge corrected for the capacity deterioration. A battery discharge amount measuring device, comprising: a capacity deterioration / offset correction calculating unit that uses an estimated value of the power amount as a detected value of the discharge amount.
【請求項6】 前記無負荷電圧検出手段は、検出された
前記バッテリの出力電圧と出力電流の変化率から無負荷
出力電圧を算出することを特徴とする請求項6記載のバ
ッテリの放電量測定装置。
6. The battery discharge amount measurement according to claim 6, wherein the no-load voltage detection means calculates a no-load output voltage from the detected change rate of the output voltage and the output current of the battery. apparatus.
【請求項7】 前記放電量の検出は、充電状態がSOC
80%以下になってから行うことを特徴とする請求項1
または5記載のバッテリの放電量測定装置。
7. The method according to claim 7, wherein the detection of the discharge amount is performed when the state of charge is SOC.
2. The method according to claim 1, wherein the step is performed after the rate becomes 80% or less.
Or the battery discharge amount measuring device according to 5.
JP17482198A 1998-06-22 1998-06-22 Battery discharge meter Expired - Fee Related JP3551767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17482198A JP3551767B2 (en) 1998-06-22 1998-06-22 Battery discharge meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17482198A JP3551767B2 (en) 1998-06-22 1998-06-22 Battery discharge meter

Publications (2)

Publication Number Publication Date
JP2000014019A true JP2000014019A (en) 2000-01-14
JP3551767B2 JP3551767B2 (en) 2004-08-11

Family

ID=15985261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17482198A Expired - Fee Related JP3551767B2 (en) 1998-06-22 1998-06-22 Battery discharge meter

Country Status (1)

Country Link
JP (1) JP3551767B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084603A (en) * 2000-06-20 2002-03-22 Bae Systems Controls Inc Energy control system for hybrid electric rolling stock
JP2003051341A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Residual capacity meter for battery
WO2003096040A1 (en) * 2002-05-14 2003-11-20 Sony Corporation Battery capacity calculation method
WO2005010540A1 (en) * 2003-07-29 2005-02-03 Panasonic Ev Energy Co., Ltd. Method and device for estimating charge/discharge electricity amount of secondary cell
JP2012189373A (en) * 2011-03-09 2012-10-04 Furukawa Electric Co Ltd:The Secondary battery condition detection device and secondary battery condition detection method
JP2012531604A (en) * 2009-07-01 2012-12-10 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Calibration method for electrochemical storage battery
KR20170139973A (en) * 2016-06-10 2017-12-20 주식회사 엘지화학 Apparatus and method for counting a cycle of a battery
KR20170139968A (en) * 2016-06-10 2017-12-20 주식회사 엘지화학 Apparatus and method for counting a cycle of a battery
JP2020156228A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Battery control device for vehicle
CN115575824A (en) * 2022-11-21 2023-01-06 陕西银河景天电子有限责任公司 Battery electric quantity estimation method and device for autonomous learning
CN116500475A (en) * 2023-04-28 2023-07-28 江苏果下科技有限公司 Energy storage acquisition method and system with real-time SOC correction compensation
WO2023245973A1 (en) * 2022-06-21 2023-12-28 深圳市正浩创新科技股份有限公司 Soc calculation method, control circuit and electronic device
CN115575824B (en) * 2022-11-21 2024-04-30 陕西银河景天电子有限责任公司 Autonomous learning battery power estimation method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795472B (en) * 2019-03-14 2020-04-14 合肥工业大学 PHEV power distribution online compensation system and method based on road condition fluctuation quantity

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084603A (en) * 2000-06-20 2002-03-22 Bae Systems Controls Inc Energy control system for hybrid electric rolling stock
JP2003051341A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Residual capacity meter for battery
WO2003096040A1 (en) * 2002-05-14 2003-11-20 Sony Corporation Battery capacity calculation method
US7091698B2 (en) 2002-05-14 2006-08-15 Sony Corporation Battery capacity calculating method
CN100343686C (en) * 2002-05-14 2007-10-17 索尼株式会社 Battery capacity calculating method
WO2005010540A1 (en) * 2003-07-29 2005-02-03 Panasonic Ev Energy Co., Ltd. Method and device for estimating charge/discharge electricity amount of secondary cell
US7557584B2 (en) 2003-07-29 2009-07-07 Panasonic Ev Energy Co., Ltd. Method and device for estimating charge/discharge electricity amount of secondary cell
US7728598B2 (en) 2003-07-29 2010-06-01 Panasonic Ev Energy Co., Ltd. Method and apparatus for estimating the charge/discharge electricity amount of secondary batteries
KR101070339B1 (en) 2003-07-29 2011-10-06 프라임어스 이브이 에너지 가부시키가이샤 2 method and device for estimating charge/discharge electricity amount of secondary cell
JP2012531604A (en) * 2009-07-01 2012-12-10 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Calibration method for electrochemical storage battery
JP2012189373A (en) * 2011-03-09 2012-10-04 Furukawa Electric Co Ltd:The Secondary battery condition detection device and secondary battery condition detection method
KR20170139973A (en) * 2016-06-10 2017-12-20 주식회사 엘지화학 Apparatus and method for counting a cycle of a battery
KR20170139968A (en) * 2016-06-10 2017-12-20 주식회사 엘지화학 Apparatus and method for counting a cycle of a battery
KR102091772B1 (en) 2016-06-10 2020-03-20 주식회사 엘지화학 Apparatus and method for counting a cycle of a battery
KR102091773B1 (en) 2016-06-10 2020-03-20 주식회사 엘지화학 Apparatus and method for counting a cycle of a battery
JP2020156228A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Battery control device for vehicle
JP7088096B2 (en) 2019-03-20 2022-06-21 トヨタ自動車株式会社 Vehicle battery control device
WO2023245973A1 (en) * 2022-06-21 2023-12-28 深圳市正浩创新科技股份有限公司 Soc calculation method, control circuit and electronic device
CN115575824A (en) * 2022-11-21 2023-01-06 陕西银河景天电子有限责任公司 Battery electric quantity estimation method and device for autonomous learning
CN115575824B (en) * 2022-11-21 2024-04-30 陕西银河景天电子有限责任公司 Autonomous learning battery power estimation method and device
CN116500475A (en) * 2023-04-28 2023-07-28 江苏果下科技有限公司 Energy storage acquisition method and system with real-time SOC correction compensation
CN116500475B (en) * 2023-04-28 2023-11-10 江苏果下科技有限公司 Energy storage acquisition method and system with real-time SOC correction compensation

Also Published As

Publication number Publication date
JP3551767B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
KR102452548B1 (en) Apparatus for determination battery degradation, system having the same and method thereof
EP1688754B1 (en) Battery management apparatus
EP3214456B1 (en) Secondary battery state detection device and secondary battery state detection method
JP4984527B2 (en) Secondary battery charge state estimation device and charge state estimation method
KR102080632B1 (en) Battery management system and its operating method
US5606243A (en) Battery state judging apparatus
CN1322627C (en) Device and method for valuting recharge rate of cell
JP5324196B2 (en) Battery degradation estimation method and apparatus
JP5535968B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
JP2002189066A (en) Method for estimating remaining capacity of secondary battery
JP2003197275A (en) Estimating method of polarized voltage of secondary battery, estimating method and device of residual capacity of secondary battery, as well as battery pack system
WO2008099298A1 (en) Method and apparatus for determination of the state-of-charge (soc) of a rechargeable battery
JP2006242880A (en) Condition detector for power supply device, power supply device, and initial characteristic extractor used for power supply device
WO2019230033A1 (en) Parameter estimation device, parameter estimation method, and computer program
JP3006298B2 (en) Battery remaining capacity meter
JP2006098135A (en) Device for estimating degree of deterioration in battery
CN103777146A (en) Electric storage condition detecting apparatus
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
JP3715265B2 (en) Battery status determination device
JP3551767B2 (en) Battery discharge meter
JP7183576B2 (en) Secondary battery parameter estimation device, secondary battery parameter estimation method and program
JP4110639B2 (en) Battery remaining capacity calculation device
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
CN110873842A (en) Power supply system
TWI758760B (en) Battery control device and battery capacity estimation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees