JP2000012762A - Electrical/electronic equipment component material superior in corrosion resistance and manufacture thereof - Google Patents

Electrical/electronic equipment component material superior in corrosion resistance and manufacture thereof

Info

Publication number
JP2000012762A
JP2000012762A JP10176173A JP17617398A JP2000012762A JP 2000012762 A JP2000012762 A JP 2000012762A JP 10176173 A JP10176173 A JP 10176173A JP 17617398 A JP17617398 A JP 17617398A JP 2000012762 A JP2000012762 A JP 2000012762A
Authority
JP
Japan
Prior art keywords
alloy
noble metal
electronic equipment
corrosion resistance
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10176173A
Other languages
Japanese (ja)
Other versions
JP3836257B2 (en
Inventor
Toshio Tani
俊夫 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17617398A priority Critical patent/JP3836257B2/en
Publication of JP2000012762A publication Critical patent/JP2000012762A/en
Application granted granted Critical
Publication of JP3836257B2 publication Critical patent/JP3836257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrical/electronic equipment component material which is superior in resistance against corrosion and oxidation. SOLUTION: An Ni or an Ni alloy film as thick as 0.2 μm or above is formed on one part or over the entire surface of an electrical/electronic equipment part material formed of Cu or Cu alloy material or a Fe alloy material, the crystal orientation planes (220) and (111) of an Ni or an Ni alloy film are obtained from the diffractions of X-rays impinging vertically on the surface of an electrical/electronic equipment part material with an Ni or an Ni alloy film on its surface, and the diffraction intensity ratio of the diffraction intensity I(220) of the crystal orientation plane (220) to the diffraction intensity I(111) of the crystal orientation plane (111), or the diffraction intensity ratio I(220)/I(111) is set at 0.5:1 or above, or the diffracted intensity ratio I(220)/I(200) is set at 0.5:1 or above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気電子機器に用
いられる部品又は材料とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component or a material used for electric and electronic equipment and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、Fe系材料やCu又はCu合金材
料が個別半導体や集積回路パッケージ用のリード線やリ
ードピン、リードフレームなどのリード材料として用い
られている。さらにはソケット類やコネクタ、スイッチ
類の端子や接点バネ等々の導電材料として用いられてい
る。これらは導電性や熱伝導性、機械的強度や加工性、
耐食性、或は経済性など、何れもCu系やFe−Ni系
合金の優れた特性を利用したものである。また、最近の
半導体集積回路技術、回路形成技術、部品実装技術の発
展はめざましく、これらに多用される材料、特に半導体
パッケージ用リード材料用途のCu合金材料において種
々の合金開発がなされ、これが端子、接点バネなどのコ
ンタクト材料用途にも応用されるようになっている。そ
して、これらの多くが部品材料の信頼性を向上させるた
めに、めっきを始めとする種々の表面処理が施されて使
用されている。
2. Description of the Related Art Conventionally, Fe-based materials, Cu or Cu alloy materials have been used as lead materials for lead wires, lead pins, lead frames and the like for individual semiconductors and integrated circuit packages. Further, it is used as a conductive material for terminals of sockets, connectors, switches, and contact springs. These are conductive and thermal conductive, mechanical strength and workability,
Both of them make use of the excellent properties of Cu-based and Fe-Ni-based alloys such as corrosion resistance and economy. In recent years, the development of semiconductor integrated circuit technology, circuit formation technology, and component mounting technology has been remarkable, and various alloys have been developed for materials frequently used for these, particularly Cu alloy materials for use as lead materials for semiconductor packages. It is also being applied to contact material applications such as contact springs. Many of these are used after being subjected to various surface treatments such as plating in order to improve the reliability of component materials.

【0003】例えば、前述の用途のうち、多くの必要特
性と厳しい信頼性を要求されるIC用リードフレームを
例として以下に説明する。その断面の例を図1に、平面
の例を図2に示すように、フレームのタブ部1に素子
(例えばSiチップ)2がエポキシなどの接着剤や半田
又はAu−Siなどの金属ろうなどの接着層3を介して
ダイボンドされる。そして、素子上の電極パッド4とフ
レームのインナーリード端部5とは、Auなどの金属細
線6を介してワイヤボンディングされる。さらにこれら
はエポキシなどの樹脂7により封止モールドされ、フレ
ームのアウターリード部8の多くはSn又はSn−Pb
めっきされた後に曲げなどの加工をうけてパッケージが
作られている。
[0003] For example, among the above-mentioned applications, an IC lead frame requiring many required characteristics and strict reliability will be described below as an example. An example of the cross section is shown in FIG. 1 and an example of the plane is shown in FIG. 2. As shown in FIG. Is die-bonded through the adhesive layer 3 of FIG. Then, the electrode pad 4 on the element and the inner lead end 5 of the frame are wire-bonded via a thin metal wire 6 such as Au. Further, these are sealed and molded with a resin 7 such as epoxy, and most of the outer lead portions 8 of the frame are made of Sn or Sn-Pb.
Packages are made after plating and other processing such as bending.

【0004】例えばこのリードフレームに、基材として
古くからのコバール合金(Fe−Ni−Co系)や42
アロイに代表されるFe−Ni系合金に加え、最近では
各種特性を向上させた様々なCu合金材料が多用されて
いる。Fe−Ni系合金は熱伝導性、導電率には劣るも
のの、機械的強度が高い上に熱膨張率がシリコンチップ
や封止材料に近く、他方、Cu系材料は熱、電気の良導
体でもあり、従来劣っていた強度も近年飛躍的に改善さ
れたためである。特にCu系材料は、半導体パッケージ
や配線材料、接合部品の高密度化、小型化に伴って、さ
らに高強度、高導電性のリードフレームやコンタクト材
料が要求される様になり、これに対応して銅マトリック
ス中に合金元素を微細に析出させて、強度と導電率の向
上を図った析出硬化型の銅合金も種々開発され用いられ
ている。これら銅合金の具体例を以下に示す。
For example, an old Kovar alloy (Fe—Ni—Co type) or 42
In addition to Fe-Ni alloys typified by alloys, recently, various Cu alloy materials having improved various properties have been frequently used. Fe-Ni alloys are inferior in thermal conductivity and electrical conductivity, but have high mechanical strength and a coefficient of thermal expansion close to that of silicon chips and encapsulating materials, while Cu-based materials are good conductors of heat and electricity. This is because the strength, which was conventionally poor, has been dramatically improved in recent years. In particular, Cu-based materials require higher-strength, higher-conductivity lead frames and contact materials as semiconductor packages, wiring materials, and joining parts become denser and smaller. Various precipitation hardening type copper alloys have been developed and used in which the alloy elements are finely precipitated in a copper matrix to improve strength and electrical conductivity. Specific examples of these copper alloys are shown below.

【0005】Cu−Sn系(例えば4Sn−0.1P,
6Sn−0.1P,8Sn−0.1P,3.5Sn−
0.2Cr−0.1P),Cu−Zn系(例10Z
n),Cu−Fe系(例2.4Fe−0.3Zn−0.
04P,1.5Fe−0.6Sn−0.8Co−0.1
P,1Fe−0.5Sn−0.5Zn−0.02P,
0.1Fe−0.03P),Cu−Co系(例0.3C
o−0.1P),Cu−Ni−Sn系(例9.5Ni−
2.3Sn,0.1Ni−2.5Sn−0.1P),C
u−Zr系(例0.15Zr),Cu−Sn−Cr系
(例0.25Sn−0.25Cr−0.2Zn,0.1
5Sn−0.1Cr),Cu−Be系(例1.7Be−
0.3Co,0.5Be−2.5Co),Cu−Ni−
Si系(例3Ni−0.6Si−0.52Zn)等。
[0005] Cu-Sn type (for example, 4Sn-0.1P,
6Sn-0.1P, 8Sn-0.1P, 3.5Sn-
0.2Cr-0.1P), Cu-Zn type (Example 10Z)
n), Cu-Fe system (Example 2.4Fe-0.3Zn-0.
04P, 1.5Fe-0.6Sn-0.8Co-0.1
P, 1Fe-0.5Sn-0.5Zn-0.02P,
0.1Fe-0.03P), Cu-Co type (Example 0.3C
o-0.1P), Cu-Ni-Sn system (Example 9.5Ni-
2.3Sn, 0.1Ni-2.5Sn-0.1P), C
u-Zr type (Example 0.15Zr), Cu-Sn-Cr type (Example 0.25Sn-0.25Cr-0.2Zn, 0.1
5Sn-0.1Cr), Cu-Be-based (Example 1.7Be-
0.3Co, 0.5Be-2.5Co), Cu-Ni-
Si-based (Example 3Ni-0.6Si-0.52Zn) and the like.

【0006】電気電子機器に用いられるこれらの部品材
料は、前述の導電率、強度などの1次特性のほかに、主
に表面性状に関係する多くの2次特性−例えば、耐酸化
性、ボンディング性、半田付け性、接点特性、モールド
性、耐食性など−を必要とするため、多くは全面又は一
部を表面処理したり、めっきなどの表面被膜を形成した
後に用いられている。これらの表面特性は、電気電子部
品製品の製造工程や最終性能に、大きな影響を及ぼす重
要な特性であることから、従来より様々な改良提案もな
されて来ている。その主なものはめっきによる被膜形成
であり、多数の提案がなされ、実用化されてきた。
[0006] These component materials used in electric and electronic equipment have many secondary properties mainly related to surface properties, such as oxidation resistance and bonding, in addition to the aforementioned primary properties such as conductivity and strength. In many cases, it is used after treating the entire surface or a part of the surface or forming a surface film such as plating, because of the necessity of such properties as solderability, solderability, contact characteristics, moldability, and corrosion resistance. Since these surface properties are important properties that greatly affect the manufacturing process and final performance of electrical and electronic component products, various improvement proposals have been made conventionally. The main one is film formation by plating, and many proposals have been made and put to practical use.

【0007】このような従来実用化されているリードフ
レーム製品の表面形態は以下の様にまとめることができ
る。即ち、ワイヤボンディングされるインナーリード部
やダイパッド部上への部分Agめっき、又は下地Cuめ
っきや下地Niめっきを介しての部分Agめっき、或は
全面Niめっきなどである。他方、貴金属めっきを省い
たり、基材上に直接Au細線でワイヤボンディングを行
う方法も、ごく一部の簡単なトランジスタ等で用いられ
ているものの、信頼性に乏しく広くは用いられていな
い。そして、めっきの有無に関らず、樹脂モールド後の
アウターリード部には、半田付けのためにSn又はSn
−Pbめっきが施されてきた。
[0007] The surface morphology of such lead frame products conventionally put to practical use can be summarized as follows. That is, partial Ag plating on the inner lead portion or die pad portion to be wire-bonded, partial Ag plating via underlying Cu plating or underlying Ni plating, or overall Ni plating. On the other hand, methods of omitting noble metal plating and performing wire bonding directly on a substrate with Au fine wires have been used for only a few simple transistors and the like, but are not widely used because of poor reliability. Regardless of the presence or absence of plating, the outer lead portion after resin molding is provided with Sn or Sn for soldering.
-Pb plating has been applied.

【0008】ところで、最近実用化され始めたリードフ
レームに、特公昭63−49382号や特開平4−11
5558号に示される、リードフレーム全面へ下地Ni
又はNi合金めっきを介してPdめっきしたもの、或は
その後さらにAuめっきを施したものが有る。これらは
ボンディングと共に半田付けもそのまま可能であるため
に、アウターリード部へ予めSn−Pbめっきなどを施
す必要も無い等、多くの利点が有り、今後様々な半導体
パッケージへ適用されると思われる。また、リードフレ
ーム用途以外にも、ダイオードやトランジスタの個別半
導体、IC、コンデンサ、抵抗、水晶振動子などの気密
端子用リード線や接点端子を始めとするコンタクト材料
において、Niめっきを施した後、AgやAu、或はP
d、Pd合金などのめっき皮膜を形成したCu又はCu
合金やFe系合金から成る部材も用いられ、これらも貴
金属めっきリードフレームと同様に、今後さらに普及し
ていく傾向にある。
Incidentally, lead frames which have recently come into practical use include Japanese Patent Publication No. Sho 63-49382 and Japanese Patent Laid-Open No.
No. 5558, the entire surface of the lead frame is covered with Ni
Alternatively, some of them are plated with Pd via Ni alloy plating, and some are further plated with Au thereafter. Since these can be directly soldered together with bonding, they have many advantages such as no need to apply Sn-Pb plating or the like to the outer lead portions in advance, and are expected to be applied to various semiconductor packages in the future. In addition to lead frame applications, Ni plating is applied to contact materials such as lead wires and contact terminals for hermetic terminals such as individual semiconductors of diodes and transistors, ICs, capacitors, resistors, crystal oscillators, etc. Ag, Au, or P
Cu or Cu with a plating film such as d or Pd alloy formed
Alloy and Fe-based alloy members are also used, and like the noble metal-plated lead frames, these tend to become more widespread in the future.

【0009】[0009]

【発明が解決しようとする課題】これらCu又はCu合
金やFe系合金基材上へ形成されるNi又はNi合金被
膜は、その上層への被膜形成の有無に関わらず、ピンホ
ールが無く、平滑均一に基材全表面を被覆した被膜が望
まれる。それは後の部品製造工程中に必ず存在する加熱
工程において、ピンホールが有ると熱酸化によって酸化
銅が表層に現われて、ワイヤボンディング性やモールド
性、はんだ濡れ性、及び経時耐食性を低下させることに
繋がるからである。しかしながら、1)基材の素材欠陥
や基材表面へ分散析出している元素、化合物、或は表面
の凹凸形状等による基材側要因と、2)一般に脱脂後中
和酸活性による工程がめっき前処理に用いられるが、表
面の酸化層は除去されるものの、加工変質層最上層の非
晶質乃至は微細結晶層が残存するために、結晶粒が微細
になり過ぎて被膜が寸断され易いなどの理由により、通
常は必ずピンホールを有する。これに加えてさらに、一
般にNiめっきは柱状晶であるために、ピンホールより
小さなマイクロポロシティーも比較的多く存在するの
で、なお一層前述の特性低下に至る場合が有る。Niめ
っき後にさらに上層めっきを施す場合には、めっき時に
ピンホールからめっき液が浸透残存して、後の部品信頼
性を低下させることはもちろんである。
The Ni or Ni alloy film formed on the Cu or Cu alloy or Fe-based alloy substrate has no pinholes and is smooth regardless of whether or not a film is formed on the Ni or Ni alloy film. It is desirable to have a coating that uniformly covers the entire surface of the substrate. This is because in the heating process that is always present in the subsequent component manufacturing process, if there is a pinhole, copper oxide appears on the surface layer due to thermal oxidation, reducing wire bonding property, moldability, solder wettability, and corrosion resistance over time. Because they are connected. However, 1) substrate-side factors such as material defects of the substrate or elements and compounds dispersed and precipitated on the substrate surface, and 2) a process generally based on neutralizing acid activity after degreasing. Although used for pretreatment, although the oxide layer on the surface is removed, the amorphous or fine crystal layer on the top layer of the work-affected layer remains, so that the crystal grains become too fine and the coating is easily cut. For such reasons, it always has a pinhole. In addition, since the Ni plating is generally a columnar crystal, there is a relatively large amount of microporosity smaller than that of the pinhole. In the case where the upper layer plating is further performed after the Ni plating, the plating solution permeates and remains from the pinholes during the plating, so that the reliability of the subsequent parts is reduced.

【0010】特に深刻な問題となりうるのは、Cu又は
Cu合金やFe系合金基材上へのNi又はNi合金被膜
形成の後に、さらにその上層への貴金属又は貴金属合金
層被覆の被膜構成を成す部品又は材料の場合である。こ
れらは上記の様に今後大きく伸びようとしている製品形
態であるが、各被膜元素間の単極電位差が大き過ぎるこ
とを原因として、Ni等の基材バリア被膜単体の場合に
比べると、はるかに腐食が起こり易くなるという耐食性
低下、加熱時耐酸化性、ひいてはワイヤボンディング性
やはんだ濡れ性等の諸性能低下をもたらすという問題が
ある。リード部材やコンタクト部材が用いられる、半導
体やコネクタ、スイッチなどのパッケージされた部品に
おいても、内部へ徐々に浸透して来る水分や微量アニオ
ンが存在しており、基材に対するバリア被膜とはいえ、
前述の様なNi又はNi合金被膜の通常避け得ないピン
ホールを通して、基材成分のCuやFeが上層の貴金属
との大きな単極電位差を駆動力として酸化、並びに腐食
反応を起こしてしまい、腐食試験を行うとひどい場合に
は緑青や赤さびの生成を伴う場合もある。特に前述のよ
うな、AgめっきからPdめっき、及至はPdめっき後
Au薄層めっきへの移行は、基材−最外層貴金属元素間
の単極電位差がさらに広がることになるため、益々耐食
性低下が大きな問題となって来ている。従来用いられて
いる下地Niめっき後Auめっきされるコンタクト部材
での耐食性、特に暴露雰囲気にもよるガス腐食劣化など
も依然大きな問題となっている。
A particularly serious problem is that, after forming a Ni or Ni alloy film on a Cu or Cu alloy or Fe-based alloy substrate, a noble metal or noble metal alloy layer coating is further formed thereon. This is the case for parts or materials. These are the product forms that are about to grow significantly in the future as described above, but due to the fact that the unipolar potential difference between the respective coating elements is too large, it is far more compared to the case of the base barrier coating such as Ni alone. There is a problem that the corrosion resistance is easily reduced, the oxidation resistance during heating is lowered, and various properties such as wire bonding property and solder wettability are reduced. Even in packaged parts such as semiconductors, connectors, and switches, where lead members and contact members are used, moisture and trace anions that gradually penetrate into the interior are present, and although they are barrier coatings for substrates,
Through the pinholes of the Ni or Ni alloy film which cannot be avoided as described above, the base material components Cu and Fe are oxidized by a large unipolar potential difference from the noble metal in the upper layer as a driving force and cause a corrosion reaction, thereby causing corrosion. In severe cases, the test may be accompanied by the formation of patina or red rust. In particular, as described above, the transition from Ag plating to Pd plating, or from Pd plating to Au thin layer plating, results in a further increase in the unipolar potential difference between the base material and the outermost noble metal element. It is becoming a big problem. Corrosion resistance of the conventionally used contact members plated with Ni and then plated with Au, particularly gas corrosion degradation due to the exposure atmosphere, remains a serious problem.

【0011】他方、前述の様に基材バリア被膜のピンホ
ールの多少、大小は、素材に大きく左右される場合が多
い。通常様々な表面欠陥を有するのが素材であり、また
通常のめっき前処理では除去できない酸化物や元素の残
留があるために、このような箇所ではめっき欠陥が発生
し易くなる。昨今の高強度、高導電性を目的とした基材
マトリックス中に様々な合金元素を析出させた材料を用
いた場合には、めっき欠陥要因はさらに多くなる。前述
のFe−Ni、Fe−Ni−Co合金や様々なCu合金
では、製造工程中の熱処理や大気酸化、内部酸化によっ
て、添加金属の酸化物が表層にも生成しており、さらに
析出型合金の場合には表層又は母材マトリックス中に多
数の微細な晶出物、析出物として金属間化合物や酸化
物、元素が分散析出してもいる。これら酸化物や晶出、
析出物は難溶性のものが多いために、表面処理に際して
は障害となる。これらの表面への残留は部品材料表面の
清浄化と酸化膜除去を難しくし、また、めっきなど表面
被膜形成の場合にはピンホールや不めっき、突起上電着
などの被膜欠陥原因となり易く、耐食性を大きく損なう
結果となる。
On the other hand, as described above, the size and size of the pinholes in the substrate barrier coating often largely depend on the material. Usually, the material has various surface defects, and since there are residual oxides and elements that cannot be removed by ordinary plating pretreatment, plating defects are likely to occur in such places. In the case where a material in which various alloy elements are precipitated in a substrate matrix for the purpose of high strength and high conductivity in recent years is used, the cause of plating defects is further increased. In the above-mentioned Fe-Ni, Fe-Ni-Co alloys and various Cu alloys, oxides of additional metals are also formed on the surface layer by heat treatment during the manufacturing process, atmospheric oxidation, and internal oxidation. In the case of, a large number of fine crystallized and precipitated intermetallic compounds, oxides and elements are dispersed and precipitated in the surface layer or the matrix of the base material. These oxides and crystallization,
Since many of the precipitates are hardly soluble, they hinder the surface treatment. Residuals on these surfaces make it difficult to clean the component material surface and remove the oxide film, and when forming a surface film such as plating, it is likely to cause film defects such as pinholes, non-plating, and electrodeposition on protrusions. The result is a significant loss of corrosion resistance.

【0012】また前述のとおり、バリア被膜のピンホー
ルの存在は、貴金属との基材電食をもたらすだけでな
く、パッケージング工程などにおけるダイボンディング
後ポストキュアやモールド後の熱履歴により基材元素を
酸化させるという弊害をも生じさせる。基材酸化物はボ
ンディング性、モールド性、特に半田付け性を大きく劣
化させるために、パッケージング工程の加熱条件が制約
されるという問題に繋がる。基材元素が腐食するこれら
の場合には、そのバリア被膜であるべきNi又はNi合
金被膜にピンホール等の被膜欠陥が無ければ、例え上層
が貴金属被膜の場合でも電位差腐食は容易には起こり得
ないと考えることも出来る。そこで、めっき被膜を本来
必要な厚さ以上にまで厚くしてピンホール等の防止を図
るという方法が考えられる。しかしながら前述の様に、
一般の柱状結晶タイプのNi系被膜を厚く形成してもマ
イクロポロシティーは無くならないので、依然としてな
お、耐食性、耐酸化性は改善されないままであり、根本
的な改良部品材料や解決方法が求められていた。このよ
うに従来から用いられて来た、特に電気電子機器用途の
Cu又はCu合金やFe系合金から成る基材にNi又は
Ni合金バリア被膜を形成した電気電子機器用部品材
料、或はさらにその上層に貴金属や貴金属合金を被覆し
た部品材料には、特に耐食性や耐酸化性に劣るという問
題点があり、今後多用される傾向に有る貴金属乃至白金
族元素の性質と、部品材料やその最終製品の使用環境の
広がり−例えば、電子部品工場の林立する東南アジア地
域を始めとする高湿度、高クロライド雰囲気、強酸性雨
の高腐食環境−とともに、今後益々大きく問題化する傾
向にあった。
As described above, the presence of the pinholes in the barrier film not only causes the base material to be corroded with the noble metal, but also causes post-curing after die bonding in a packaging process and the like, and heat history after molding to prevent the base material element from being damaged. The harmful effect of oxidizing is also caused. Since the base material oxide greatly deteriorates the bonding property, the moldability, particularly the solderability, it leads to the problem that the heating conditions in the packaging step are restricted. In these cases where the base element is corroded, potential difference corrosion can easily occur even if the upper layer is a noble metal film if the Ni or Ni alloy film to be the barrier film has no film defects such as pinholes. You can think that there is no. In view of this, a method is conceivable in which the plating film is made thicker than originally required to prevent pinholes and the like. However, as mentioned above,
Even if a general columnar crystal type Ni-based coating is formed thickly, the microporosity does not disappear, so the corrosion resistance and oxidation resistance still remain unimproved, and fundamentally improved parts materials and solutions are required. I was As described above, a component material for an electric / electronic device in which a Ni or Ni alloy barrier coating is formed on a substrate made of Cu or a Cu alloy or an Fe-based alloy particularly used for an electric / electronic device, or furthermore, Part materials with a noble metal or noble metal alloy coated on the upper layer have a problem that they are particularly inferior in corrosion resistance and oxidation resistance, and properties of noble metals or platinum group elements, which are likely to be frequently used in the future, and component materials and their final products With the spread of the use environment of, for example, the high humidity, high chloride atmosphere, and the highly corrosive environment of the strong acid rain in the Southeast Asia region where the electronic component factories are growing, the tendency has been that the problem will become more and more serious in the future.

【0013】[0013]

【課題を解決するための手段】本発明はかかる現状、今
後の動向に鑑みて成されたものであり、電気電子機器用
途に多用される耐食性に優れるNi又はNi合金被膜を
少なくとも1層表層に有する電気電子機器用部品材料
を、或はNi又はNi合金被膜に加え、さらに貴金属又
は貴金属合金層を少なくとも1層表層に有する、耐食性
のほか、加熱時耐酸化性やワイヤボンディング性、はん
だ濡れ性などにも優れるCu又はCu合金、乃至はFe
系合金から成る電気電子機器用途の部品材料、並びにそ
の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such current and future trends, and has at least one Ni or Ni alloy coating film having excellent corrosion resistance frequently used in electric and electronic equipment applications. In addition to the electrical or electronic equipment component material or Ni or Ni alloy coating, and further having at least one noble metal or noble metal alloy layer on the surface layer, in addition to corrosion resistance, oxidation resistance during heating, wire bonding property, solder wettability Such as Cu or Cu alloy, or Fe
It is an object of the present invention to provide a component material for electric and electronic devices, which is composed of a system alloy, and a method for producing the same.

【0014】即ち、本発明は、(1)CuもしくはCu
合金基材、又はFe合金基材から成る電気電子機器用部
品材料表面の一部及至全面に、少なくとも1層のNi又
はNi合金被膜を有し、且つ、その被膜の合計の厚さが
0.2μm以上である電気電子機器用部品材料におい
て、表面に対して垂直乃至ほぼ垂直に入射させたX線回
折から得られるNi又はNi合金被膜の結晶配向面(2
20)面の回折強度I(220) と(111)面の回折強度
(111) との回折強度比I(220) /I(111) が0.5以
上であるか、又は回折強度I(220) と(200)面の回
折強度I(200) との回折強度比I(220) /I(200)
0.5以上であることを特徴とする耐食性に優れる電気
電子機器用部品材料、(2)前記電気電子機器用部品材
料において、Ni又はNi合金被膜の上層に、さらに少
なくとも1層の貴金属又は貴金属合金被膜を有し、且
つ、それら貴金属又は貴金属合金被膜厚さの合計が0.
01μm以上1μm以下であることを特徴とする(1)
項に記載の耐食性に優れる電気電子機器用部品材料、
(3)前記貴金属又は貴金属合金の主要元素がAu、A
g、Pdのうちの少なくとも1種であることを特徴とす
る(2)項に記載の耐食性に優れる電気電子機器用部品
材料、(4)CuもしくはCu合金基材、又はFe合金
基材から成る電気電子機器用部品材料表面の一部乃至全
面に、少なくとも1層のNi又はNi合金めっき被膜を
有するか、又はさらに少なくとも1層の貴金属又は貴金
属合金被膜を有する電気電子機器用部品材料を製造する
に当り、前記Ni又はNi合金めっき被膜形成に先立っ
て、アルカリカソード脱脂処理、基材表層溶解処
理、アルカリアノード処理、酸洗処理、の各工程を
→→→の順番に少なくとも各1回ずつ実施する
前処理を行うことを特徴とする(1)、(2)又は
(3)項に記載の耐食性に優れる電気電子機器用部品材
料の製造方法、及び(5)前記基材表層溶解処理に用い
る処理液が、酸と過酸化物と可溶性フッ化物及び過硫酸
塩のうち、少なくとも1種又は2種以上を含有するもの
であり、且つ、酸と過酸化物を含む場合は処理液中の含
有比を酸/過酸化物≧0.5(モル比)とすることを特
徴とする(4)項に記載の耐食性に優れる電気電子機器
用部品材料の製造方法を提供するものである。前記Ni
又はNi合金被膜形成は、カソード電流密度15A/d
2 〜40A/dm2 のめっきにて行うことが好まし
い。また、前記Ni又はNi合金被膜形成は、液温10
℃〜45℃のめっき液を用いるめっきにより行うことが
好ましく、Ni濃度10g/dm3 〜50g/dm3
めっき液を用いるめっきにより行うことが好ましい。さ
らに、前記貴金属又は貴金属合金の主要元素はAu、A
g、Pdのうちの少なくとも1種であることが部品用途
の機能上、好ましい。
That is, the present invention relates to (1) Cu or Cu
At least one layer of Ni or a Ni alloy film is provided on a part or the entire surface of a component material for electric / electronic equipment composed of an alloy base material or an Fe alloy base material, and the total thickness of the coating is 0. In a component material for electrical and electronic equipment having a thickness of 2 μm or more, the crystal orientation plane (2) of a Ni or Ni alloy film obtained from X-ray diffraction perpendicularly or substantially perpendicularly incident on the surface.
20) the diffraction intensity of the plane I (220) and (111) diffraction intensity ratio of the diffraction intensity I (111) of the plane I (220) / or I (111) is 0.5 or more, or the diffraction intensity I ( 220) and (200) plane component material for electrical and electronic equipment having excellent corrosion resistance, wherein the diffraction intensity ratio I (220) / I (200) is 0.5 or more between the diffraction intensity I (200) of, (2) In the electrical / electronic device component material, at least one noble metal or noble metal alloy coating is further provided on the Ni or Ni alloy coating, and the total thickness of the noble metal or noble metal alloy coating is 0.
Characterized in that it is not less than 01 μm and not more than 1 μm (1)
Component materials for electrical and electronic equipment with excellent corrosion resistance described in section
(3) The main elements of the noble metal or noble metal alloy are Au and A
g or Pd, wherein the component material for electrical and electronic equipment having excellent corrosion resistance according to item (2), (4) a Cu or Cu alloy substrate, or an Fe alloy substrate A component material for an electric / electronic device having at least one layer of Ni or a Ni alloy plating film on at least a part or the entire surface of the component material for an electric / electronic device or further having at least one layer of a noble metal or a noble metal alloy film is manufactured. Prior to the formation of the Ni or Ni alloy plating film, the steps of alkali cathode degreasing treatment, substrate surface dissolution treatment, alkali anode treatment, and pickling treatment are performed at least once each in the order of →→→. (1), (2) or (3), a method for producing a component material for electrical and electronic equipment having excellent corrosion resistance, and (5) a method for dissolving the base material surface layer. When the treatment liquid used for the treatment contains at least one or more of an acid, a peroxide, a soluble fluoride and a persulfate, and contains an acid and a peroxide, the treatment liquid (4) A method for producing a component material for electric / electronic equipment having excellent corrosion resistance according to the item (4), wherein the content ratio is acid / peroxide ≧ 0.5 (molar ratio). . The Ni
Alternatively, the formation of the Ni alloy film is performed at a cathode current density of 15 A / d.
It is preferable to perform plating by m 2 to 40 A / dm 2 . The formation of the Ni or Ni alloy film is performed at a liquid temperature of 10 ° C.
° C. It is preferably carried out by plating using a plating solution to 45 ° C., it is preferably performed by plating using the plating solution of the Ni concentration 10g / dm 3 ~50g / dm 3 . Further, the main elements of the noble metal or noble metal alloy are Au, A
It is preferable that at least one of g and Pd be used for parts.

【0015】[0015]

【発明の実施の形態】前記(1)〜(5)項の本発明の
基材にはCuもしくはCu合金、Fe−Ni合金、又は
Fe−Ni−Co合金、ステンレスなどのFe系合金が
用いられる。この発明の基材表面乃至基材表層に形成さ
れる少なくとも1層のNi又はNi合金のうち、Ni合
金には、Ni−Co、Ni−Pd、Ni−P、Ni−B
などの合金が用いられる。また、基材上に形成されたN
i又はNi合金被膜上層に、さらに少なくとも1層被覆
される貴金属又は貴金属合金とは、例えば、Au、P
t、Ir、Pd、Ag、Rh、Ru、Osなどの、Cu
よりも標準単極電位の貴な貴金属や白金族元素、及びこ
れらの合金、Au−Ag、Pd−Au、Pd−Ag、P
d−Niなどを言い、各種電気電子機器用途に応じた好
適な種類が適宜選択適用される。但し、実際上は、A
g、Au、Pd、或いはこれらの1種又は2種以上を主
要元素(成分)とする合金を用いるのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The base material of the present invention in the above items (1) to (5) is made of Cu or a Cu alloy, an Fe-Ni alloy, or an Fe-based alloy such as an Fe-Ni-Co alloy or stainless steel. Can be Among the Ni or Ni alloy of at least one layer formed on the surface of the base material or the surface layer of the base material of the present invention, the Ni alloy includes Ni-Co, Ni-Pd, Ni-P, and Ni-B.
An alloy such as this is used. In addition, N formed on the substrate
The noble metal or noble metal alloy further coated at least one layer on the upper layer of the i or Ni alloy coating is, for example, Au, P
Cu such as t, Ir, Pd, Ag, Rh, Ru, Os
Noble metals and platinum group elements with a standard unipolar potential, and alloys thereof, Au-Ag, Pd-Au, Pd-Ag, P
It refers to d-Ni or the like, and a suitable type according to various electric and electronic device applications is appropriately selected and applied. However, in practice, A
It is preferable to use g, Au, Pd, or an alloy containing one or more of these as main elements (components).

【0016】本発明においてNi又はNi合金被膜の合
計の厚さを0.2μm以上とする。0.2μm未満では
薄過ぎ、ピンホールが多く、前処理しても結晶配向面
(220)面が十分に形成されないからである。上限は
特には設けないが、被膜の厚さは用途部品のコストと性
能との兼合いから決められ、通常厚くとも3〜5μm程
度であり、曲げ加工される用途にはせいぜい1〜2μm
に止めることが望ましい。さらには貴金属又は貴金属合
金被膜を有する場合に、その厚さを0.01〜1μmと
する。その理由は、あまり薄すぎると、ワイヤボンディ
ング性、半田付け性、接点特性などの電気電子機器用途
特性を満たさないためであり、厚すぎるとコストが上昇
して好ましくない点に加え、貴金属乃至貴金属合金によ
っては被膜の割れや下地Ni又はNi合金皮膜からの剥
離を生ずる様になるためである。
In the present invention, the total thickness of the Ni or Ni alloy coating is set to 0.2 μm or more. If the thickness is less than 0.2 μm, the crystal orientation plane (220) is not sufficiently formed even if pretreatment is performed because the thickness is too thin and the number of pinholes is large. There is no particular upper limit, but the thickness of the coating is determined in consideration of the cost and performance of the parts used, and is usually at most about 3 to 5 μm, and at most 1 to 2 μm for bending applications.
It is desirable to stop at. Further, when a noble metal or noble metal alloy coating is provided, its thickness is set to 0.01 to 1 μm. The reason is that if it is too thin, it will not satisfy the characteristics of electric and electronic devices such as wire bonding properties, solderability, and contact characteristics, and if it is too thick, the cost increases, which is not preferable. This is because, depending on the alloy, cracking of the coating or peeling from the underlying Ni or Ni alloy coating may occur.

【0017】本発明者らは種々研究を重ねた結果、Ni
又はNi合金被膜に形成した結晶配向面(220)面は
原子が密度高く集合し、しかも二次元的に生長しつつ被
膜形成される面であるために、平滑でレベリング性が良
く、耐食性に優れること、及び、この結晶配向面(22
0)面の回折強度I(220) と(111)面もしくは(2
00)面の回折強度I(111) もしくはI(200) との比で
示される値が表面めっき被膜の耐食性に対応することを
見い出した。この様な(220)面を一定比率以上に、
リッチに形成したNi又はNi合金被膜には、単純に原
子を積み上げてパッキング構造とした(111)面や
(200)面の柱状晶タイプに発生し易い、ピンホール
やマイクロポロシティーが殆ど見られなくなる。一方、
Niの粉末や、本発明に開示の方法によらない、通常の
めっき被膜形成では、(111)面>>(200)面>
>(220)面の順の割合で配向が起こる。したがって
(220)面リッチとはならない。本発明の電気電子機
器用途の部品材料に要求される耐食性能レベルは、垂直
乃至ほぼ垂直に入射させたX線回折から得られるNi又
はNi合金被膜の結晶配向面において、前記のように、
(220) /I(111) ≧0.5であるか、或はI(220)
(200) ≧0.5である場合に相当する。(ここでほぼ
垂直とは垂直方向と10°の角度をなす範囲内をい
う。)この様な条件のNi又はNi合金バリア被膜を形
成すると、必然的にピンホールやポロシティーの少ない
被膜が形成される。それ故、前述の、従来の問題点が解
決し、さらに、上層に貴金属又は貴金属合金被膜を形成
した場合には、耐電位差腐食性能としての耐食性に大き
な効果が得られることになる。
The present inventors have conducted various studies and found that Ni
Alternatively, the crystal orientation plane (220) formed on the Ni alloy film is a surface on which atoms are gathered at a high density and the film is formed while growing two-dimensionally, so that it is smooth, has good leveling properties, and has excellent corrosion resistance. And the crystal orientation plane (22
0) plane diffraction intensity I (220) and (111) plane or (2)
It has been found that the value indicated by the ratio to the ( 00) plane diffraction intensity I (111) or I (200) corresponds to the corrosion resistance of the surface plating film. Such a (220) plane is more than a certain ratio,
In the richly formed Ni or Ni alloy coating, pinholes and microporosity, which are likely to occur in the columnar crystal type of the (111) plane and the (200) plane which are simply formed by stacking atoms into a packing structure, are observed. Disappears. on the other hand,
In a normal plating film formation not using the Ni powder or the method disclosed in the present invention, the (111) plane >> (200) plane >>
Orientation occurs in the order of> (220) plane. Therefore, the (220) plane is not rich. Corrosion resistance performance level required for component materials for use in electrical and electronic equipment of the present invention is, as described above, in the crystal orientation plane of Ni or Ni alloy coating obtained from X-ray diffraction perpendicularly or substantially perpendicularly incident.
I (220) / I (111) ≧ 0.5 or I (220) /
This corresponds to the case where I (200) ≧ 0.5. (Here, “substantially perpendicular” means within a range that forms an angle of 10 ° with the perpendicular direction.) When a Ni or Ni alloy barrier film under such conditions is formed, a film having few pinholes and porosity is inevitably formed. Is done. Therefore, the above-mentioned conventional problems are solved, and when a noble metal or noble metal alloy film is formed on the upper layer, a great effect is obtained on corrosion resistance as potential difference corrosion resistance.

【0018】本発明で規定される、Ni又はNi合金被
膜の特定の回折強度比は、前記Ni又はNi合金被膜形
成に先立って、少なくともアルカリカソード脱脂処理
及び基材表層溶解処理を行うか、さらに、の工程
に付加してアルカリアノード処理及び酸洗処理を行
うことによって達成できる。この方法は前記工程→
又は→→→の各工程を順番に少なくとも各1回
ずつ実施する前処理方法である。のアルカリカソード
脱脂処理は、水酸化ナトリウム、炭酸ナトリウム、メタ
ケイ酸ナトリウム、リン酸三ナトリウムなどの水溶液に
界面活性剤等の添加剤を加えた、通常のアルカリ系脱脂
液を用いて、カソード側に保持して電解脱脂を行うもの
である。
The specific diffraction intensity ratio of the Ni or Ni alloy film specified in the present invention is determined by performing at least an alkali cathode degreasing treatment and a substrate surface dissolution treatment prior to the formation of the Ni or Ni alloy film. And an alkali anodic treatment and an acid washing treatment in addition to the above steps. This method is based on the above steps →
Or, it is a pretreatment method in which the steps of →→→ are sequentially performed at least once each. The alkaline cathode degreasing treatment is performed by adding a surfactant and other additives to an aqueous solution such as sodium hydroxide, sodium carbonate, sodium metasilicate, and trisodium phosphate. This is to carry out electrolytic degreasing while holding.

【0019】の基材表層溶解処理は、(i)硫酸や、
硝酸などの基材溶解性を有する酸、(ii)過酸化水素、
オゾンなどの過酸化物、(iii)過硫酸アンモニウム、過
硫酸ナトリウムなどの過硫酸塩、(iv)フッ化水素水や
酸性又は中性フッ化アンモニウム、酸性又は中性フッ化
ナトリウム、酸性又は中性フッ化カリウムなどの可溶性
フッ化物のうち、少なくとも1種又は2種以上を含む水
溶液が用いられる。ただし、以下に詳述するように、単
独で水溶液として用いることができるのは、(i)の酸
のうち、酸化性、基材溶解性の酸(硝酸等)の場合又は
(iii)の過硫酸塩の場合である。これらはそれぞれ使用
される基材の種類、合金組成、製品用途によって選択さ
れる。但し、酸と過酸化物を含有する場合には、その含
有比を酸/過酸化物≧0.5(モル比)とするのがよ
い。の基材表層溶解処理の好ましい実施態様は、処理
液として1)酸と過酸化物を含有するか、2)酸と可溶
性フッ化物を含有するか、或は3)酸と過酸化物と可溶
性フッ化物を含有するか、の何れかである。この場合、
前記の1)と3)の場合にはさらに、酸と過酸化物の処
理液中の含有比を酸/過酸化物≧0.5(モル比)とす
るのが好ましい。の基材表層溶解処理の基本的な作用
として、(i)の酸は表面酸化皮膜を溶解する作用を有
し、(ii)の過酸化物は酸素イオンを遊離して基材を酸
化させる作用を有し、酸と共存して基材表層を溶解す
る。但し、硝酸などは単独でも、酸化力を有し、溶解し
得る。また、(iv)の可溶性フッ化物にはフッ素イオン
を遊離して析出物をも分解して溶解させる作用が有る。
酸と過酸化物の含有モル比が0.5未満の様な、酸に対
する過酸化物の濃度が極端に高い場合には、基材表面を
溶解するのではなく、却って表面を酸化皮膜が生成する
までに酸化してしまう様になるので注意を要する。(ii
i)の過硫酸塩は、低溶解作用又は低酸化作用として単
独又は(i)、(ii)、(iv)と複合して用いられる。
通常は室温に近い温度で浸漬処理される。例えば、通常
の銅又は銅合金の場合には、(i)、(ii)、(iii)、
(iv)の何れをも含む水溶液も用いることが出来るが、
42アロイや4〜10wt%程度の高Sn含有Cu合
金、或は前述した元素や金属間化1合物などを析出させ
て機械的性能を改善させたCu合金などは、(i)又は
(ii)、或は(i)又は(iii)と共に(iv)の可溶性フ
ッ化物を含有して、析出物を分解、溶解し得る水溶液を
使用する方が良い。特に、Ni2 SiやFex Pなどの
難溶性の析出物を含有した、Cu−Ni−Si系のコル
ソン合金やCu−Fe−P系合金はフッ化物を含有した
酸−過酸化物系、乃至は酸−過硫酸塩水溶液を用いた方
が良い。これら過酸化水素など過酸化物の分解防止、安
定剤として公知の脂肪族アルコールを添加しても何ら差
し支えない。これらは市販もされており、CPB40や
CPE1000(三菱瓦斯化学(株))、或はIC−3
33やエバエッチCA−30(荏原ユージライト
(株))などを用いても良い。
The substrate surface layer dissolution treatment of (i) sulfuric acid or
An acid having a substrate solubility such as nitric acid, (ii) hydrogen peroxide,
Peroxides such as ozone, (iii) persulfates such as ammonium persulfate and sodium persulfate, (iv) aqueous hydrogen fluoride or acidic or neutral ammonium fluoride, acidic or neutral sodium fluoride, acidic or neutral An aqueous solution containing at least one or two or more soluble fluorides such as potassium fluoride is used. However, as described in detail below, among the acids of (i), those which can be used alone as an aqueous solution are oxidizing and substrate-soluble acids (such as nitric acid) or (iii) In the case of sulfate. These are selected depending on the type of base material, alloy composition, and product use. However, when an acid and a peroxide are contained, the content ratio is preferably set to acid / peroxide ≧ 0.5 (molar ratio). Preferred embodiments of the substrate surface layer dissolving treatment of (1) include, as a treatment liquid, 1) an acid and a peroxide, 2) an acid and a soluble fluoride, or 3) an acid, a peroxide and a soluble Or containing fluoride. in this case,
In the cases 1) and 3), the content ratio of the acid and the peroxide in the treatment liquid is preferably set to be acid / peroxide ≧ 0.5 (molar ratio). As a basic function of the substrate surface layer dissolution treatment of (1), the acid (i) has a function of dissolving the surface oxide film, and the peroxide (ii) has a function of releasing oxygen ions to oxidize the substrate. And dissolves the substrate surface layer in the presence of an acid. However, nitric acid or the like alone has oxidizing power and can be dissolved. Further, the soluble fluoride of (iv) has an action of releasing fluorine ions and decomposing and dissolving the precipitates.
When the concentration of peroxide to acid is extremely high, such as when the molar ratio of acid to peroxide is less than 0.5, an oxide film is formed on the surface instead of dissolving the substrate surface. Care must be taken because it will be oxidized by the end of the process. (ii
The persulfate of i) is used alone or in combination with (i), (ii) and (iv) as a low dissolving action or a low oxidizing action.
Usually, the immersion treatment is performed at a temperature close to room temperature. For example, in the case of ordinary copper or copper alloy, (i), (ii), (iii),
Although an aqueous solution containing any of (iv) can be used,
(I) or (ii) a 42 alloy, a Cu alloy having a high Sn content of about 4 to 10 wt%, or a Cu alloy obtained by precipitating the above-mentioned elements or intermetallic compounds to improve mechanical performance. ) Or an aqueous solution containing the soluble fluoride of (iv) together with (i) or (iii) and capable of decomposing and dissolving the precipitate is preferred. In particular, Cu-Ni-Si-based Corson alloys and Cu-Fe-P-based alloys containing hardly soluble precipitates such as Ni 2 Si and Fe x P are acid-peroxide-based containing fluoride, Alternatively, it is better to use an aqueous acid-persulfate solution. A known aliphatic alcohol may be added as a stabilizer to prevent or decompose peroxides such as hydrogen peroxide. These are also commercially available, such as CPB40 and CPE1000 (Mitsubishi Gas Chemical Co., Ltd.) or IC-3
33 or Evaetch CA-30 (EBARA Uzilight Co., Ltd.) or the like may be used.

【0020】のアルカリアノード処理とは、例えば、
前出のアルカリ脱脂液と同類の水溶液やスマット除去
用のアルカリ水溶液中などで基材をアノード側に分極し
て処理することをいう。これにより表面に露出している
難溶性の元素や合金、或はこれらの酸化物をアノード溶
解させたり、アノード溶出し難いものでもマトリックス
のCuやFe、Niほかの固溶成分のアノード溶出によ
って、或は酸素ガスを発生させて、析出化合物を物理的
に表層から脱落させる作用を有し、後のめっきなどの被
膜形成工程でピンホール等の被膜欠陥の原因になる表面
残留物質を極力除くことが出来る。前記析出元素の例と
してはCrがあり、析出化合物としてはBe−Cu,Z
r−Cu,Fe−P,Ti−Ni,Ti−Ni−Sn,
Ni−Si,Ni−Snの各系などがある。
The alkali anodic treatment of, for example,
This refers to a process in which the substrate is polarized toward the anode side in an aqueous solution similar to the aforementioned alkaline degreasing solution or an alkaline aqueous solution for removing smut. Thereby, the hardly soluble elements and alloys exposed on the surface, or the oxides thereof, are anodic-dissolved, and even those which are hardly anodic-eluted, due to the anodic elution of Cu, Fe, Ni and other solid-soluble components of the matrix, Alternatively, it has the effect of generating oxygen gas to physically drop the precipitated compound from the surface layer, and to remove as much as possible residual material on the surface that causes film defects such as pinholes in the film formation process such as plating. Can be done. Examples of the precipitated element include Cr, and the precipitated compound is Be-Cu, Z
r-Cu, Fe-P, Ti-Ni, Ti-Ni-Sn,
There are Ni-Si and Ni-Sn systems.

【0021】次にの酸洗処理はアルカリアノード処理
後に行われる。アルカリアノード処理によると、基材表
面のマトリックスと、場合によって表面に残留している
析出元素や金属間化合物が酸化するために、その後めっ
きなどの被膜形成前に酸化膜を溶解除去して表面を活性
化する必要がある。それ故、アノード処理後の酸洗処
理を行う。Cu系合金には通常硫酸水溶液や可溶性フッ
化物含有水溶液が、Fe系合金には塩酸水溶液や硫酸水
溶液など、何れも酸化皮膜を溶解し得る、非酸化性の酸
又は中性の希薄水溶液が用いられ、通常室温前後の液温
条件にて浸漬処理される。従って、硝酸などの酸化性、
基材溶解性を有する酸は本処理には適さない。本発明に
おいては及び、又は、及びからなる前処理に
比べ〜の前処理を行う方が(220)面の優先生長
促進の点でより優れる。
The next pickling treatment is performed after the alkali anodic treatment. According to the alkali anodic treatment, the matrix on the substrate surface and, in some cases, the precipitated elements and intermetallic compounds remaining on the surface are oxidized. Need to be activated. Therefore, pickling treatment after the anodic treatment is performed. For Cu-based alloys, a sulfuric acid aqueous solution or a soluble fluoride-containing aqueous solution is usually used, and for an Fe-based alloy, a non-oxidizing acid or a neutral dilute aqueous solution that can dissolve an oxide film, such as a hydrochloric acid aqueous solution or a sulfuric acid aqueous solution, is used. The immersion treatment is usually performed at a liquid temperature of about room temperature. Therefore, oxidizing properties such as nitric acid,
Acids having substrate solubility are not suitable for this treatment. In the present invention, performing the pretreatment of (1) to (2) is superior to the pretreatment consisting of and / or in terms of promoting preferential growth of the (220) plane.

【0022】尚、〜の処理を行う場合、その順序
は、→→→の順番に実施する必要がある。但
し、この間や前後に他の処理を行うことは可能であり、
最終的にめっきなどの被膜形成前にこの順に少なくとも
各1回の処理が実施されていれば良い。すなわち、〜
の各工程を行う場合には、前の工程が直前に行われる
ようにする。例えば、(1)必ずめっきなどの被膜形成
前には酸洗工程を入れ、(2)基材表面溶解処理を行
った後には必ずアルカリアノード処理を少なくとも1
回実施した後酸洗を実施し、さらにはアノード処理
を行った後には基材溶解処理を行わずに次の酸洗処
理するか、又はアノード処理後再び基材溶解処理を
する場合には酸洗前に必ず再びアルカリアノード処
理を行わなければならない。これら一連の前処理を実施
すると、前述したピンホールやポロシティーが少なく、
しかも(220)面の優先生長した耐食性に優れるNi
又はNi合金被膜が得られる。さらに貴金属被覆後の耐
食性は、この様な被膜形成の前処理方法を実施しないも
のと比べると、なお一層大きな効果が得られていること
が判明した。尚、何れの処理の後にも水洗処理は必要で
あり、さらにはめっき直前には脱イオン水洗浄してめっ
き液の汚染防止を図ることが望ましい。
When the processing of (1) to (4) is performed, the processing must be performed in the order of →→→. However, it is possible to perform other processing during this time or before and after.
It suffices that at least one treatment is performed in this order before a film such as plating is finally formed. That is, ~
When each of the steps is performed, the previous step is performed immediately before. For example, (1) an acid pickling step is always performed before forming a film such as plating, and (2) an alkali anodic treatment is always performed at least once after performing a substrate surface dissolution treatment.
After pickling, pickling is performed, and after the anodizing treatment, the next pickling treatment is performed without performing the substrate dissolving treatment. Before washing, the alkali anode treatment must be performed again. By performing a series of these pretreatments, the pinholes and porosity described above are reduced,
Moreover, the preferentially grown Ni of the (220) plane is excellent in corrosion resistance.
Alternatively, a Ni alloy coating is obtained. Further, it has been found that the corrosion resistance after the noble metal coating has a still greater effect as compared with the case where the pretreatment method for forming the coating is not performed. It is to be noted that a water washing treatment is required after any of the treatments, and it is desirable to carry out a washing with deionized water immediately before plating to prevent contamination of the plating solution.

【0023】例えばめっき条件について言えば、本発明
においてNi又はNi合金めっきにおけるカソード電流
密度は15〜40A/dm2 が好ましい。また、Ni又
はNi合金めっき液の温度は10〜45℃、Ni又はN
i合金めっき液の濃度は10〜50g/dm3 が好まし
い。めっき条件をこのようにした電析Ni又はNi合金
被膜の耐食性は、さらに一段と優れるものとできる。こ
れらのめっき条件は、より平滑に電析させ得る傾向が有
り、基材をより均一に被覆してピンホールの生成を抑止
し、耐食性に優れる(220)面の優先生長を促し、他
の配向面に対する生成割合が高まる結果となる。電流密
度範囲は、高い方が耐食性に優れる被膜が形成され易い
が、高過ぎると電流集中が勝る結果、イオン供給が不足
となり、却ってピンホールやめっき欠陥が発生する理由
から15〜40A/dm2 が好ましい。また、めっき液
の温度は低い方が耐食性に優れる傾向にあるが、余りに
液温が低いと電流密度が高い場合にはヤケ状の電着とな
ってしまい、却って基材の均一被覆性を落とすので、1
0℃を下限とし、上限は被膜の平滑被覆性、耐食性を落
とさない温度として45℃が好ましい。この温度範囲で
はスルファミン酸塩を主成分とする液を用いる場合には
スルファミン酸の酸化分解防止にもなる。Ni又はNi
合金めっき液の金属濃度範囲の限定は、低金属濃度ほ
ど、より平滑でピンホールの少ない耐食性に優れるめっ
き被膜が得られる傾向にあることから、50g/dm3
を上限とし、低濃度が良好とは言え、めっき設備によっ
ては金属イオン補給の観点からはある程度の濃度維持が
必要であることから下限を10g/dm3 とすることが
好ましい。
For example, regarding the plating conditions, in the present invention, the cathode current density in Ni or Ni alloy plating is preferably 15 to 40 A / dm 2 . The temperature of the Ni or Ni alloy plating solution is 10 to 45 ° C.
The concentration of the i-alloy plating solution is preferably 10 to 50 g / dm 3 . The corrosion resistance of the electrodeposited Ni or Ni alloy film having such plating conditions can be further improved. These plating conditions tend to allow the electrodeposition to be performed more smoothly, cover the substrate more evenly, suppress the formation of pinholes, promote preferential growth of the (220) plane, which is excellent in corrosion resistance, and promote other orientations. This results in a higher generation ratio for the surface. The higher the current density range is, the more easily a film having excellent corrosion resistance is formed. However, if the current density range is too high, the current concentration is superior, resulting in insufficient ion supply, and rather, 15 to 40 A / dm 2 because pinholes and plating defects occur. Is preferred. Also, the lower the temperature of the plating solution, the better the corrosion resistance tends to be, but if the solution temperature is too low, if the current density is high, it will result in burnt-like electrodeposition, rather reducing the uniform coverage of the substrate So 1
The lower limit is 0 ° C., and the upper limit is preferably 45 ° C. as a temperature at which the smooth coatability and corrosion resistance of the coating are not deteriorated. In this temperature range, when a liquid containing a sulfamate as a main component is used, oxidative decomposition of sulfamate can be prevented. Ni or Ni
The range of the metal concentration of the alloy plating solution is limited as the lower the metal concentration, the more likely it is to obtain a plated film with less pinholes and excellent corrosion resistance. Therefore, 50 g / dm 3
It can be said that the low concentration is good, and the lower limit is preferably 10 g / dm 3 because it is necessary to maintain a certain concentration from the viewpoint of metal ion replenishment depending on the plating equipment.

【0024】本発明において被膜形成される前記貴金属
又は貴金属合金の主要元素がAu、Ag、Pdのうちの
少なくとも1種である場合、これらは基材バリアとして
のNi又はNi合金上に被覆した場合にも、単極電位が
高いために特に耐食性、加熱時の耐酸化性が問題となり
易い。しかしながら、本発明による表層被膜構成、及び
被膜形成、製造方法によれば、優れた耐食性能、耐酸化
性能を備えた電気電子機器用途部品材料が可能となる。
When the main element of the noble metal or noble metal alloy to be formed in the present invention is at least one of Au, Ag, and Pd, these are coated on Ni or Ni alloy as a base material barrier. In particular, since the unipolar potential is high, corrosion resistance and oxidation resistance during heating tend to be particularly problematic. However, according to the constitution of the surface layer film, the film formation and the production method according to the present invention, a component material for electric and electronic equipment having excellent corrosion resistance and oxidation resistance can be obtained.

【0025】[0025]

【実施例】以下に、本発明を実施例により具体的に詳細
に説明する。 実施例1 次に挙げる厚さ0.25mmのCu合金とFe合金の板
を、幅34mm、長さ172mmの28pinのフレー
ム8連のリードフレームにエッチング加工したものを耐
食性評価用基材として用いた。また、リード線評価とし
て、0.5mmφ、長さ150mmのAg入りCu線も
両試験用に基材として用いた。Cu−2.3wt%Fe
−0.1wt%Zn−0.1wt%P(Cu−Fe
系),Cu−2wt%Sn−0.1wt%Fe−0.0
3wt%P(Cu−Sn−Fe系),Cu−2.5wt
%Ni−0.6wt%Si−0.5wt%Zn(Cu−
Ni−Si系),Cu−8wt%Sn−0.2wt%P
(Cu−Sn−P系),62wt%Cu−17wt%N
i−21wt%Zn(Cu−Ni−Zn系),Fe−4
2wt%Ni(Fe−Ni系),Cu−0.03wt%
Ag(Cu−Ag系/線)。めっき前処理として次の様
な処理を組み合わせて行った。アルカリカソード脱
脂:クリーナ160(メルテックス(株))6wt%水
溶液、60℃中でカソード電流密度3A/dm2 での電
解脱脂、基材表面溶解処理:溶解処理液として、1)
10wt%硫酸と3wt%過酸化水素を含有した水溶
液、2)10wt%硫酸と1wt%酸性フッ化アンモニ
ウムを含有した水溶液、3)10wt%硫酸と3wt%
過酸化水素、1wt%酸性フッ化アンモニウムを含有し
た水溶液、の3種類を適宜用いた。表面溶解処理をする
場合、Cu−Ni−Si系合金とFe−Ni系合金に
3)液を、Cu−高Sn−P系には2)液を用い、その
他は1)液を用いて室温にて20秒浸漬処理した。ア
ルカリアノード処理:の液を別途建浴し、60℃でア
ノード電流密度4A/dm2 でアノード処理した。酸
洗処理:10wt%硫酸水溶液に、但しFe−Ni系合
金のみ5wt%塩酸水溶液に、室温で30秒浸漬処理し
た。用いた工程は、→、→、→→、→
→→、の4通りで、各処理後には水洗を行い、め
っき前には脱イオン水洗浄を行った。続いて、基材バリ
ア被膜のNi又はNi合金被膜を、次に挙げる各めっき
液を用いて、カソード電流密度は8A/dm2 〜20A
/dm2 の範囲で、液温は下に記載のないものは25℃
〜60℃、Ni濃度は30g/dm3 〜90g/dm3
の条件にて、適宜選択して行った。
The present invention will be described below in more detail with reference to examples. Example 1 A plate of the following Cu alloy and Fe alloy having a thickness of 0.25 mm was etched into a 28-pin 28-pin lead frame having a width of 34 mm and a length of 172 mm and used as a base for corrosion resistance evaluation. . As a lead wire evaluation, a Cu wire containing Ag having a diameter of 0.5 mm and a length of 150 mm was also used as a base material for both tests. Cu-2.3wt% Fe
-0.1wt% Zn-0.1wt% P (Cu-Fe
System), Cu-2wt% Sn-0.1wt% Fe-0.0
3wt% P (Cu-Sn-Fe system), Cu-2.5wt
% Ni-0.6 wt% Si-0.5 wt% Zn (Cu-
Ni-Si), Cu-8wt% Sn-0.2wt% P
(Cu-Sn-P type), 62wt% Cu-17wt% N
i-21 wt% Zn (Cu-Ni-Zn based), Fe-4
2wt% Ni (Fe-Ni system), Cu-0.03wt%
Ag (Cu-Ag system / wire). The following treatments were combined as the plating pretreatment. Alkaline cathode degreasing: Cleaner 160 (Meltex Co., Ltd.) 6 wt% aqueous solution, electrolytic degreasing at 60 ° C. at a cathode current density of 3 A / dm 2 , base material surface dissolution treatment: as dissolution treatment solution 1)
Aqueous solution containing 10 wt% sulfuric acid and 3 wt% hydrogen peroxide, 2) aqueous solution containing 10 wt% sulfuric acid and 1 wt% ammonium acid fluoride, 3) 10 wt% sulfuric acid and 3 wt%
Three types of hydrogen peroxide and an aqueous solution containing 1 wt% ammonium ammonium fluoride were used as appropriate. In the case of performing the surface melting treatment, a 3) solution is used for the Cu-Ni-Si-based alloy and the Fe-Ni-based alloy, a 2) solution is used for the Cu-high Sn-P-based alloy, and the 1) solution is used for the others. For 20 seconds. Alkaline anodic treatment: The solution was separately prepared in a bath, and anodized at 60 ° C. with an anodic current density of 4 A / dm 2 . Pickling treatment: Dipping treatment was carried out at room temperature for 30 seconds in a 10 wt% sulfuric acid aqueous solution, except for a Fe-Ni alloy, in a 5 wt% hydrochloric acid aqueous solution. The steps used were: →, →, →→, →
In each of the four cases, water washing was performed after each treatment, and deionized water washing was performed before plating. Subsequently, the cathode current density of the Ni or Ni alloy coating of the base material barrier coating was set to 8 A / dm 2 to 20 A using the following plating solutions.
/ Dm 2 , and the liquid temperature is 25 ° C. unless described below.
6060 ° C., Ni concentration 30 g / dm 3 〜90 g / dm 3
Under the conditions described above.

【0026】Niめっき液:Ni(NH2 SO32
4H2 O 160g/dm3 、H3BO3 30g/d
3 Ni−Co合金めっき液:Ni(NH2 SO32 ・4
2 O 160g/dm3 、Co(NH2 SO32
4H2 O 10g/dm3 、H3 BO3 30g/dm
3 Ni−P合金めっき液:NiSO4 ・6H2 O 175
g/dm3 、H3 PO4 50g/dm3 、H3 PO3
1g/dm3 、75℃ Ni−B合金めっき液:NiSO4 ・6H2 O 175
g/dm3 、(CH33 N・BH3 50g/dm
3 、65℃ Ni−Pd合金めっき液:パラブライト−TN20(日
本高純度化学(株))水洗、脱イオン水洗に続いて、
(1)乾燥して貴金属被覆の無い供試材としたもの、
(2)そのほかは貴金属又は貴金属合金被覆を行った。
めっき液は次に挙げるものを用いた。 Pdめっき液:パラブライト−SST−L(日本高純度
化学(株))、60℃、3A/dm2 Auめっき液:アフタープレーティング(日本高純度化
学(株))、50℃、1A/dm2 Agめっき液:KAg(CN)2 50g/dm3 、K
CN 70g/dm3、KOH 10g/dm3 、KC
3 20g/dm3 、25℃、3A/dm2 Pd−Auめっき液:AURUNA549(デグサジャ
パン(株))、55℃、0.5A/dm2 Pd−Agめっき液:パラブライト−SST−WABP
(日本高純度化学(株))、65℃、2A/dm2 Pd−Niめっき液:PdNi466(デグサジャパン
(株))、45℃、10A/dm2 Ptめっき液:プラタネックスIII LS(日本エレクト
ロプレーティング・エンジニヤーズ)、75℃、2A/
dm2 Irめっき液:イリデックス100(日本エレクトロプ
レーティング・エンジニヤーズ)、85℃、0.15A
/dm2 Rhめっき液:ローデックス(日本エレクトロプレーテ
ィング・エンジニヤー ズ)、50℃、1.3A/dm2Ruめっき液:ルテネ
ックス(日本エレクトロプレーティング・エンジニヤー
ズ)、60℃、1A/dm2
Ni plating solution: Ni (NH 2 SO 3 ) 2.
4H 2 O 160 g / dm 3 , H 3 BO 3 30 g / d
m 3 Ni-Co alloy plating solution: Ni (NH 2 SO 3) 2 · 4
H 2 O 160 g / dm 3 , Co (NH 2 SO 3 ) 2.
4H 2 O 10 g / dm 3 , H 3 BO 3 30 g / dm 3
3 Ni-P alloy plating solution: NiSO 4 · 6H 2 O 175
g / dm 3 , H 3 PO 4 50 g / dm 3 , H 3 PO 3
1 g / dm 3 , 75 ° C. Ni-B alloy plating solution: NiSO 4 .6H 2 O 175
g / dm 3 , (CH 3 ) 3 N · BH 3 50 g / dm
3 , 65 ° C Ni-Pd alloy plating solution: Parabright-TN20 (Japan High Purity Chemical Co., Ltd.)
(1) dried and used as a test material without precious metal coating,
(2) In addition, noble metal or noble metal alloy coating was performed.
The following plating solutions were used. Pd plating solution: Parabright-SST-L (Japan High Purity Chemical Co., Ltd.), 60 ° C., 3 A / dm 2 Au plating solution: after plating (Japan High Purity Chemical Co., Ltd.), 50 ° C., 1 A / dm 2 Ag plating solution: KAg (CN) 2 50 g / dm 3 , K
CN 70 g / dm 3 , KOH 10 g / dm 3 , KC
O 3 20 g / dm 3 , 25 ° C., 3 A / dm 2 Pd-Au plating solution: AURUNA549 (Degussa Japan Co., Ltd.), 55 ° C., 0.5 A / dm 2 Pd-Ag plating solution: Parabright-SST-WABP
(Japan High Purity Chemical Co., Ltd.), 65 ° C., 2 A / dm 2 Pd-Ni plating solution: PdNi466 (Degussa Japan Co., Ltd.), 45 ° C., 10 A / dm 2 Pt plating solution: Platanex III LS (Nippon Electron Plating Engineers), 75 ° C, 2A /
dm 2 Ir plating solution: Iridex 100 (Japan Electroplating Engineers), 85 ° C., 0.15 A
/ Dm 2 Rh plating solution: Rodex (Japan Electroplating Engineers), 50 ° C., 1.3 A / dm 2 Ru plating solution: Lutenex (Japan Electroplating Engineers), 60 ° C., 1 A / dm 2

【0027】水洗、脱イオン水洗後乾燥して供試材とし
た。以上の基本的なめっき処理工程をもとに作製した本
発明例(No.1〜47)、比較例(No.48、4
9)、従来例(No.50〜63)の供試材(各n=
2)の各種条件を表1〜3に示した。従来例のNo.6
1〜63にAgめっき部材を比較評価したが、密着性保
持のために公知のシアン化Cuとシアン化Na含有液に
よるCuストライク下地めっきを行った。尚、No.4
5とNo.55はNi→Pd−Ni→Ni→Pdの4層
の被膜構成、No.46とNo.56はNi→Pd→P
d−Ni→Pd→Auの5層構成であり、各被膜の厚さ
は蛍光X線で測定してめっき時間を調整した。全てにつ
いて供試材の一部をX線回折法によってNi又はNi合
金被膜の生長面を測定し、各々のI(220) /I(111)
(220) /I(200) の比を表中に示した。X線は試料に
対して垂直に入射させるパウダー法にて2θ=30°〜
100°まで回折測定した。装置はリガクガイガーフレ
ックスRAD−Bシステム((株)リガク)を用い、タ
ーゲットは銅、X線管電圧40kV、管電流30mAの
条件であった。フレーム形状試料をJISZ 2371
に基づいた塩水噴霧試験をCu合金について24時間、
Fe合金については3時間実施した。そして、下記表に
示すように、目視外観により相対的に7段階評価した。
但し、貴金属被覆の無いNi又はNi合金被覆だけの供
試材の評価は、貴金属被覆の有る供試材に比べて厳しい
評価を行った。電気電子機器用途における耐食性能の許
容レベルは段階5以上である。
After washing with water and deionized water, the material was dried and dried. Examples of the present invention (Nos. 1 to 47) and comparative examples (Nos. 48 and 4) manufactured based on the above basic plating process.
9), the test materials of the conventional examples (No. 50 to 63) (each n =
Tables 1 to 3 show various conditions of 2). No. of the conventional example. 6
Ag-plated members were comparatively evaluated in Nos. 1 to 63, and a Cu strike base plating using a known Cu cyanide and Na cyanide-containing solution was performed to maintain adhesion. In addition, No. 4
5 and No. 5 No. 55 is a four-layer coating structure of Ni → Pd-Ni → Ni → Pd. 46 and no. 56 is Ni → Pd → P
It had a five-layer structure of d-Ni → Pd → Au, and the thickness of each film was measured by X-ray fluorescence to adjust the plating time. For all of the test materials, the growth surface of the Ni or Ni alloy coating was measured by the X-ray diffraction method, and the ratio of I (220) / I (111) to I (220) / I (200) was determined. It is shown in the table. X-ray is 2θ = 30 ° ~
Diffraction measurement was performed up to 100 °. The apparatus used was a Rigaku Geiger Flex RAD-B system (Rigaku Corporation) with a target of copper, an X-ray tube voltage of 40 kV, and a tube current of 30 mA. JISZ 2371 frame-shaped sample
24 hours salt spray test on Cu alloy based on
The test was performed for 3 hours for the Fe alloy. Then, as shown in the following table, the visual appearance was evaluated relatively in seven stages.
However, the evaluation of the test material having only the Ni or Ni alloy coating without the noble metal coating was stricter than the test material having the noble metal coating. The allowable level of corrosion resistance performance for electrical and electronic equipment is level 5 or higher.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】表1、2及び3の結果から分かるように、
従来例No.50〜59は、X線回折強度比I(220) /I
(111) 及びI(220) /I(200) の値のいずれもが0.5
未満であり、表面めっき被膜の耐食性が悪い。これに対
し、本発明例No.1〜47はI(220) /I(111) 及びI
(220) /I(200) の少なくとも一方が0.5以上であ
り、耐食性が良い。また、比較例のNo.48及び49の
結果から明らかなように、Ni又はNi合金被膜の厚さ
が0.2μm未満では、たとえX線回折強度比I(220)
/I(111)及びI(220) /I(200) が0.5以上でも目
的とする耐食性のよい表面めっき被膜が得られなかっ
た。また、従来例のNo.61〜63との比較から分か
るように、本発明例のNo.6〜47はNi又はNi合金
上の貴金属種が、標準単極電位差の大きい貴金属元素で
あるにもかかわらず、従来例と同等以上の特性を有する
ことが判る。また、これらは合金種や、線、フレームの
形状によらない。なお、前処理についてみてみると、前
処理工程として→、→→又は→→→
を行う場合に、X線回折強度比I(220) /I(111) 及び
/又はI(220) /I(200) を0.5以上とすることがで
きた。この場合、No.4とNo.5、No.9とN
o.10、No.22とNo.23、No.25とN
o.26、No.30とNo.31の比較から明らかな
ように、前処理が工程→もしくは→→の場合
よりも、工程→→→の場合の方がX線回折強度
比I(220) /I(111) 及びI(220) /I(200) が大き
く、表面めっき被膜の耐食性が、より優れる。
As can be seen from the results of Tables 1, 2 and 3,
Conventional examples Nos. 50 to 59 have an X-ray diffraction intensity ratio I (220) / I
Both (111) and I (220) / I (200) are 0.5
And the corrosion resistance of the surface plating film is poor. On the other hand, Examples Nos. 1 to 47 of the present invention have I (220) / I (111) and I
At least one of (220) / I (200) is 0.5 or more, and has good corrosion resistance. As is clear from the results of Comparative Examples Nos. 48 and 49, when the thickness of the Ni or Ni alloy coating is less than 0.2 μm, even if the X-ray diffraction intensity ratio I (220)
Even if / I (111) and I (220) / I (200) were 0.5 or more, the desired surface plating film having good corrosion resistance could not be obtained. In addition, the conventional example No. As can be seen from the comparison with Nos. 61 to 63, Nos. 6 to 47 of the present invention are equivalent to the conventional examples, although the noble metal species on Ni or Ni alloy is a noble metal element having a large standard monopolar potential difference. It turns out that it has the above characteristics. In addition, they do not depend on the type of alloy, the shape of the wire or the frame. As for the pretreatment, →, →→ or →→→
, The X-ray diffraction intensity ratios I (220) / I (111) and / or I (220) / I (200) could be made 0.5 or more. In this case, no. 4 and No. 5, no. 9 and N
o. 10, No. 22 and No. 22. 23, no. 25 and N
o. 26, no. 30 and No. As is clear from the comparison of No. 31, the X-ray diffraction intensity ratios I (220) / I (111) and I (220) are higher in the case of the step →→→ than in the case of the step → or →→ in the pretreatment. / I (200) is large, and the corrosion resistance of the surface plating film is more excellent.

【0032】実施例2 次に、基材へのNiバリア被膜の形成方法に関し、めっ
き条件の相違による供試材耐食性を試験評価して、No.
64〜No.76として表4に示した。前処理には実施例
1の→→→を用い、Niめっき液も実施例1と
同じ液を用い、カソード電流密度を5A/dm2 〜43
A/dm2 、液温を8℃〜50℃、Ni濃度を8g/d
3 〜70g/dm3 の範囲でそれぞれ変化させて、実
施例1のフレーム形状部材をn=2で0.6μm〜1.
1μmの厚さのNiめっき、その後0.1μm厚さのP
dめっきをした。各工程間には水洗を、めっき前には脱
イオン水洗をそれぞれ実施した。これらを実施例1と同
様に、X線回折測定と塩水噴霧試験を行った。実施例1
と同様に外観評価と共に実態顕微鏡観察による微視的腐
食評価も行い、表には平均の評価結果を示した。
Example 2 Next, with respect to a method of forming a Ni barrier film on a substrate, the corrosion resistance of a test material due to a difference in plating conditions was tested and evaluated.
The results are shown in Table 4 as 64 to No. 76. The pretreatment was performed using →→→ of Example 1, the same Ni plating solution as in Example 1 was used, and the cathode current density was 5 A / dm 2 to 43.
A / dm 2 , liquid temperature 8 ° C. to 50 ° C., Ni concentration 8 g / d
m 3 to 70 g / dm 3 , respectively, and the frame-shaped member of Example 1 is 0.6 μm to 1.
1 μm thick Ni plating, then 0.1 μm thick P
d plated. Water washing was performed between each step, and deionized water washing was performed before plating. These were subjected to an X-ray diffraction measurement and a salt spray test in the same manner as in Example 1. Example 1
In the same manner as in the above, together with the appearance evaluation, microscopic corrosion evaluation by observation with a stereoscopic microscope was performed, and the average evaluation results are shown in the table.

【0033】[0033]

【表4】 [Table 4]

【0034】表4から明らかなように、本発明例の供試
材は、外観評価ではすべて良好な耐食性評価結果を示し
ているが、良好な中でも微視的な評価からは、それぞれ
の中にもさらに若干の違いを示している。即ち、条件で
は、Niめっき条件によってさらに良好な耐食性特性を
得ることが可能で、それはカソード電流密度、液温、さ
らにはNi濃度の限定条件から得られることがわかる。
As is apparent from Table 4, the test materials of the present invention all showed good corrosion resistance evaluation results in the appearance evaluation, but among the good ones, the microscopic evaluation showed Also shows a slight difference. In other words, it can be seen that under the conditions, even better corrosion resistance characteristics can be obtained depending on the Ni plating conditions, which can be obtained from the limited conditions of the cathode current density, the liquid temperature, and the Ni concentration.

【0035】[0035]

【発明の効果】以上に詳述したように、本発明の電気電
子機器用部品材料は表面めっき被膜の耐食性が優れる。
したがって今後の使用が拡大する傾向に有る、Cu又は
Cu合金、Fe合金基材にNiなどのバリア被膜を形成
し、さらにその上層に様々な特性を有する貴金属や白金
族元素を被覆した被膜構成の部材において、優れた特性
に反して大きな問題となる、耐食性や加熱工程後のはん
だ濡れ性などの劣化問題を解決することが可能になる。
本発明の製造方法によれば、特性向上のみならず経済性
の点でも有利な上記の新規部材を製造することができ
る。
As described above in detail, the component material for electric and electronic equipment of the present invention has excellent corrosion resistance of the surface plating film.
Therefore, the use of Cu or Cu alloy, which tends to expand in the future, a barrier film such as Ni is formed on a Fe alloy base material, and a film structure in which a noble metal or a platinum group element having various properties is further coated thereon. In the member, it is possible to solve deterioration problems such as corrosion resistance and solder wettability after a heating step, which are serious problems contrary to excellent characteristics.
According to the production method of the present invention, it is possible to produce the above-mentioned novel member which is advantageous not only in the improvement of the characteristics but also in the economic efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般に使用されているリードフレームによるパ
ッケージの一例の断面図
FIG. 1 is a cross-sectional view of an example of a package using a commonly used lead frame.

【図2】一般に使用されているリードフレームの一例の
平面図
FIG. 2 is a plan view of an example of a commonly used lead frame.

【符号の説明】[Explanation of symbols]

1 タブ部 2 素子 3 接着層 4 電極パッド 5 インナーリード端部 6 金属細線 7 樹脂 8 アウターリード部 DESCRIPTION OF SYMBOLS 1 Tab part 2 Element 3 Adhesive layer 4 Electrode pad 5 Inner lead end part 6 Thin metal wire 7 Resin 8 Outer lead part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CuもしくはCu合金基材、又はFe合
金基材から成る電気電子機器用部品材料表面の一部及至
全面に、少なくとも1層のNi又はNi合金被膜を有
し、且つ、その被膜の合計の厚さが0.2μm以上であ
る電気電子機器用部品材料において、表面に対して垂直
乃至ほぼ垂直に入射させたX線回折から得られるNi又
はNi合金被膜の結晶配向面(220)面の回折強度I
(220) と(111)面の回折強度I(111) との回折強度
比I(220) /I(111) が0.5以上であるか、又は回折
強度I(220) と(200)面の回折強度I(200) との回
折強度比I(220) /I(200) が0.5以上であることを
特徴とする耐食性に優れる電気電子機器用部品材料。
At least one Ni or Ni alloy coating is provided on a part or the entire surface of a component material for electric / electronic equipment comprising a Cu or Cu alloy base or an Fe alloy base, and the coating is provided. The crystal orientation plane of the Ni or Ni alloy coating obtained by X-ray diffraction perpendicularly or substantially perpendicularly incident on the surface of the component material for electrical and electronic equipment having a total thickness of 0.2 μm or more (220) Surface diffraction intensity I
The diffraction intensity ratio I (220) / I (111) between the diffraction intensity I (111) of the (220) and (111) planes is 0.5 or more, or the diffraction intensity I (220) and the (200) plane parts material for electrical and electronic equipment having excellent corrosion resistance, wherein the diffraction intensity ratio I (220) / I (200 ) is 0.5 or more between the diffraction intensity I (200) of.
【請求項2】 前記電気電子機器用部品材料において、
Ni又はNi合金被膜の上層に、さらに少なくとも1層
の貴金属又は貴金属合金被膜を有し、且つ、それら貴金
属又は貴金属合金被膜厚さの合計が0.01μm以上1
μm以下であることを特徴とする請求項1に記載の耐食
性に優れる電気電子機器用部品材料。
2. The electric / electronic device component material according to claim 1,
At least one layer of a noble metal or noble metal alloy coating is further provided on the Ni or Ni alloy coating, and the total thickness of the noble metal or noble metal alloy coating is 0.01 μm or more and 1
2. The component material for electrical and electronic equipment having excellent corrosion resistance according to claim 1, wherein the thickness is not more than μm.
【請求項3】 前記貴金属又は貴金属合金の主要元素が
Au、Ag、Pdのうちの少なくとも1種であることを
特徴とする請求項2に記載の耐食性に優れる電気電子機
器用部品材料。
3. The component material for electrical and electronic equipment having excellent corrosion resistance according to claim 2, wherein the main element of the noble metal or the noble metal alloy is at least one of Au, Ag, and Pd.
【請求項4】 CuもしくはCu合金基材、又はFe合
金基材から成る電気電子機器用部品材料表面の一部乃至
全面に、少なくとも1層のNi又はNi合金めっき被膜
を有するか、又はさらに少なくとも1層の貴金属又は貴
金属合金被膜を有する電気電子機器用部品材料を製造す
るに当り、前記Ni又はNi合金めっき被膜形成に先立
って、アルカリカソード脱脂処理、基材表層溶解処
理、アルカリアノード処理、酸洗処理、の各工程を
→→→の順番に少なくとも各1回ずつ実施する
前処理を行うことを特徴とする請求項1、2又は3に記
載の耐食性に優れる電気電子機器用部品材料の製造方
法。
4. At least one layer of Ni or a Ni alloy plating film on a part or the whole surface of a component material for electric / electronic devices composed of a Cu or Cu alloy base material or an Fe alloy base material, or at least one more. In producing a component material for an electric / electronic device having one layer of a noble metal or noble metal alloy coating, prior to the formation of the Ni or Ni alloy plating film, an alkali cathode degreasing treatment, a base material surface dissolution treatment, an alkali anode treatment, an acid 4. A component material for electrical and electronic equipment having excellent corrosion resistance according to claim 1, wherein a pretreatment is carried out in which each step of the washing process is performed at least once each in the order of →→→. Method.
【請求項5】 前記基材表層溶解処理に用いる処理液
が、酸と過酸化物と可溶性フッ化物及び過硫酸塩のう
ち、少なくとも1種又は2種以上を含有するものであ
り、且つ、酸と過酸化物を含む場合は処理液中の含有比
を酸/過酸化物≧0.5(モル比)とすることを特徴と
する請求項4に記載の耐食性に優れる電気電子機器用部
品材料の製造方法。
5. The treatment liquid used for the substrate surface layer dissolution treatment contains at least one or more of an acid, a peroxide, a soluble fluoride, and a persulfate, and 5. The component material for electrical and electronic equipment having excellent corrosion resistance according to claim 4, wherein the content ratio in the treatment liquid when acid and peroxide are included is 0.5 / molar ratio. Manufacturing method.
JP17617398A 1998-06-23 1998-06-23 Manufacturing method of component materials for electrical and electronic equipment with excellent corrosion resistance Expired - Fee Related JP3836257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17617398A JP3836257B2 (en) 1998-06-23 1998-06-23 Manufacturing method of component materials for electrical and electronic equipment with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17617398A JP3836257B2 (en) 1998-06-23 1998-06-23 Manufacturing method of component materials for electrical and electronic equipment with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2000012762A true JP2000012762A (en) 2000-01-14
JP3836257B2 JP3836257B2 (en) 2006-10-25

Family

ID=16008948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17617398A Expired - Fee Related JP3836257B2 (en) 1998-06-23 1998-06-23 Manufacturing method of component materials for electrical and electronic equipment with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3836257B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277256A (en) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd Lead wire and thermoelectric module comprising the same
JP2006150646A (en) * 2004-11-26 2006-06-15 Process Lab Micron:Kk Metal mask, screen process printing plate and solder bump forming method
JP2007312387A (en) * 2006-05-18 2007-11-29 Taitien Electronics Co Ltd Crystal oscillator module
JP2013110363A (en) * 2011-11-24 2013-06-06 Tdk Corp Ceramic electronic component
JP2021533574A (en) * 2018-09-25 2021-12-02 ▲蘇▼州▲ユン▼冢▲電▼子科技股▲フン▼有限公司 Base and voice coil motors with electrical elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277256A (en) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd Lead wire and thermoelectric module comprising the same
JP2006150646A (en) * 2004-11-26 2006-06-15 Process Lab Micron:Kk Metal mask, screen process printing plate and solder bump forming method
JP4670005B2 (en) * 2004-11-26 2011-04-13 株式会社プロセス・ラボ・ミクロン Metal mask, screen printing plate and solder bump forming method
JP2007312387A (en) * 2006-05-18 2007-11-29 Taitien Electronics Co Ltd Crystal oscillator module
JP2013110363A (en) * 2011-11-24 2013-06-06 Tdk Corp Ceramic electronic component
JP2021533574A (en) * 2018-09-25 2021-12-02 ▲蘇▼州▲ユン▼冢▲電▼子科技股▲フン▼有限公司 Base and voice coil motors with electrical elements
JP7111886B2 (en) 2018-09-25 2022-08-02 ▲蘇▼州▲ユン▼冢▲電▼子科技股▲フン▼有限公司 Base and voice coil motor with electrical elements

Also Published As

Publication number Publication date
JP3836257B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US7808109B2 (en) Fretting and whisker resistant coating system and method
US20050121330A1 (en) Chromium-free antitarnish adhesion promoting treatment composition
EP1762641A2 (en) Metal duplex and method
US7488408B2 (en) Tin-plated film and method for producing the same
WO2017179447A1 (en) Lead frame material and method for producing same
JP4639701B2 (en) Metal plate having tin plating film, electronic component including the same, and method for producing tin plating film
JPH09148508A (en) Lead frame for semiconductor device and plastic molded type semiconductor device using the same
JPH10284667A (en) Material for electric electronic device component having superior corrosion resistance and oxidation resistance
JP3836257B2 (en) Manufacturing method of component materials for electrical and electronic equipment with excellent corrosion resistance
EP3427297A1 (en) Lead-frame structure, lead-frame, surface mount electronic device and methods of producing same
JPH07326701A (en) Conductive material for electric-electronic part, lead frame and semiconductor integrated circuit using the same
JP7096955B1 (en) A plating structure provided with a Ni electrolytic plating film and a lead frame containing the plating structure.
JPH048883B2 (en)
JP3403299B2 (en) Plating method of lead frame for semiconductor device
JPH0987899A (en) Production of copper alloy material for electronic apparatus
JPH0373962B2 (en)
JPH10284666A (en) Electronic component device
JP2001185836A (en) Wiring board, method and device for producing wiring board
JPH09223771A (en) Electronic component lead member and its manufacture
JPS6240753A (en) Semiconductor lead frame
JPH09330827A (en) Conductive material for electronic part and manufacture thereof
KR20070017949A (en) Chromium-free antitarnish adhesion promoting treatment composition
JPH07307426A (en) Copper base string for electronic device part and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees