JP2000012531A - Plasma processing method - Google Patents

Plasma processing method

Info

Publication number
JP2000012531A
JP2000012531A JP10188263A JP18826398A JP2000012531A JP 2000012531 A JP2000012531 A JP 2000012531A JP 10188263 A JP10188263 A JP 10188263A JP 18826398 A JP18826398 A JP 18826398A JP 2000012531 A JP2000012531 A JP 2000012531A
Authority
JP
Japan
Prior art keywords
pressure
plasma
processing
processing chamber
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10188263A
Other languages
Japanese (ja)
Other versions
JP3508986B2 (en
Inventor
Hironori Godaiin
弘典 後醍院
Naoki Sakurai
直樹 桜井
Fumihiko Higuchi
文彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP18826398A priority Critical patent/JP3508986B2/en
Publication of JP2000012531A publication Critical patent/JP2000012531A/en
Application granted granted Critical
Publication of JP3508986B2 publication Critical patent/JP3508986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable plasma to be quickly stabilized in a process of etching an Si film layer with use of Cl2. SOLUTION: A wafer W is mounted on a lower electrode 106 disposed within a processing chamber 104 of an etching apparatus 100, and a predetermined rate of Cl2 is introduced into the chamber 104. A pressure in the chamber 104 is set at an initial level by adjusting the amount of Cl2 to be discharged. The initial pressure is found by processing the wafer W having a coverage ratio (of an area of an SiO2 divided by an area of an Si film layer) varying depending on the flow rate of Cl2, finding a difference between internal pressures of the chamber 104 before and after plasma generation, and adding a value obtained from the coverage ratio and pressure difference to a processing pressure value. When a high frequency power is supplied to a lower electrode 104 for plasma generation after the internal pressure of the chamber 104 reaches the initial pressure, the pressure dropped after the plasma generation becomes substantially equal to the processing pressure, and thus stable plasma can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,プラズマ処理方法
に関する。
[0001] The present invention relates to a plasma processing method.

【0002】[0002]

【従来の技術】従来,被処理体を構成するSi膜層や,
SiO2膜層で被覆されたSi膜層をエッチングする際
には,Cl2や,Cl2にO2やN2を添加した混合ガスが
処理ガスとして使用されている。例えば,Cl2により
Si膜層をエッチングする場合には,まず被処理体が配
置された処理室内に所定流量のCl2を導入すると共
に,処理室内雰囲気の排気量を適宜調整し,処理室内の
圧力を所定の処理(設定)圧力に上昇させる。その後,
例えば処理室内に放電を生じさせてプラズマを生成し,
該プラズマによって上記Si膜層にエッチング処理を施
している。
2. Description of the Related Art Conventionally, a Si film layer constituting an object to be processed,
When etching the Si film layer covered with the SiO 2 film layer, Cl 2 or a mixed gas obtained by adding O 2 or N 2 to Cl 2 is used as a processing gas. For example, when etching a Si film layer with Cl 2 , first, a predetermined flow rate of Cl 2 is introduced into a processing chamber in which an object to be processed is placed, and the amount of exhaust of the atmosphere in the processing chamber is appropriately adjusted. The pressure is increased to a predetermined process (set) pressure. afterwards,
For example, a plasma is generated by generating a discharge in the processing chamber,
The plasma is used to etch the Si film layer.

【0003】また,上述の如く,Cl2でSi膜層にエ
ッチング処理を施すプロセスでは,プラズマの生成と同
時に,一時的に処理室内の圧力が相対的に上昇した後,
その直後に処理室内の圧力が急激に低下する。このよう
に,処理室内の圧力が処理圧力よりも相対的に低下した
状態では,プラズマが安定せず,被処理体に均一な処理
を施すことが困難となる。そこで,上記エッチングプロ
セスでは,処理室内雰囲気の排気量を適宜調整し,プラ
ズマ生成後に低下した処理室内の圧力を処理圧力にまで
昇圧させて,プラズマの安定化を図っている。
Further, as described above, in the process of etching the Si film layer with Cl 2 , the pressure in the processing chamber is temporarily increased relatively at the same time as the plasma is generated.
Immediately after that, the pressure in the processing chamber rapidly decreases. As described above, when the pressure in the processing chamber is relatively lower than the processing pressure, the plasma is not stable, and it is difficult to perform uniform processing on the object. Therefore, in the above-described etching process, the amount of exhaust in the atmosphere in the processing chamber is appropriately adjusted, and the pressure in the processing chamber, which has been reduced after plasma generation, is increased to the processing pressure to stabilize the plasma.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,上述し
たエッチングプロセスでは,プラズマ生成前後,すなわ
ちプラズマ生成前に設定した処理圧力と,プラズマ生成
後に低下した処理室内圧力との圧力差が大きいために,
その低下した圧力を上記処理室内雰囲気の排気量調整の
みで処理圧力まで上昇させるためには10数秒程度かか
ることがある。その結果,処理室内の圧力が処理圧力に
回復するまでは,プラズマの状態が不安定になり,均一
な処理を行うことができないだけではなく,プラズマが
消えて処理を進行させることができなくなることもあ
る。
However, in the above-described etching process, since the pressure difference between the processing pressure set before and after plasma generation, that is, before plasma generation, and the processing chamber pressure reduced after plasma generation is large,
In order to increase the reduced pressure to the processing pressure only by adjusting the displacement of the atmosphere in the processing chamber, it may take about 10 seconds or more. As a result, until the pressure in the processing chamber recovers to the processing pressure, the state of the plasma becomes unstable, and not only cannot uniform processing be performed, but also the plasma disappears and the processing cannot be performed. There is also.

【0005】また,エッチング装置には,通常,生成さ
れたプラズマが不安定な場合に警告を発し,かつ処理を
停止して,処理中の被処理体を保護する保安装置が設け
られており,該装置の作動時間は,上記以外のエッチン
グプロセスでは,被処理体を確実に保護するべく,5秒
程度に設定されている。しかしながら,上記プロセスで
は,上述の如く,プラズマ生成後10数秒程度はプラズ
マが安定しないため,保安装置の作動時間を上記他のエ
ッチングプロセスと同様に設定することができず,仮に
該装置の作動時間を10数秒程度に設定しても,すでに
処理が進行しているため,不安定なプラズマによりエッ
チングされた被処理体を再利用することができない。
[0005] In addition, the etching apparatus is usually provided with a security device that issues a warning when the generated plasma is unstable, stops the process, and protects the object being processed. The operation time of the apparatus is set to about 5 seconds in an etching process other than the above in order to reliably protect the object to be processed. However, in the above process, as described above, since the plasma is not stable for about 10 seconds after the generation of the plasma, the operation time of the security device cannot be set in the same manner as in the other etching processes. Even if is set to about several tens of seconds, the object already etched by the unstable plasma cannot be reused because the processing is already in progress.

【0006】本発明は,従来の技術が有する上記のよう
な問題点に鑑みて成されたものであり,プラズマ生成直
後から処理室内の圧力を処理圧力に維持し,迅速にプラ
ズマの安定化を図ることが可能な,新規かつ改良された
プラズマ処理方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and maintains the pressure in the processing chamber at the processing pressure immediately after plasma generation to quickly stabilize the plasma. It is an object of the present invention to provide a new and improved plasma processing method that can be achieved.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め,本発明によれば,請求項1に記載の発明のように,
処理室内に少なくともCl2を含む処理ガスを導入した
後,処理室内にプラズマを生成し,プラズマにより処理
室内に配置された被処理体に形成されたSi膜層にエッ
チング処理を施すプラズマ処理方法において,処理室内
の圧力を,プラズマ生成後の処理圧力よりも相対的に高
い初期圧力値に上昇させた後に,プラズマを生成するこ
とを特徴とするプラズマ処理方法が提供される。
According to the present invention, in order to solve the above-mentioned problems, as in the first aspect of the present invention,
In a plasma processing method, a plasma is generated in a processing chamber after introducing a processing gas containing at least Cl 2 into a processing chamber, and an etching process is performed on a Si film layer formed on an object to be processed placed in the processing chamber by the plasma. The plasma processing method is characterized in that plasma is generated after increasing the pressure in the processing chamber to an initial pressure value relatively higher than the processing pressure after plasma generation.

【0008】かかる構成によれば,プラズマ生成前に処
理室内の圧力を所定の処理圧力よりも相対的に高い初期
圧力値,すなわちプラズマ生成後に低下した処理室内圧
力が処理圧力と実質的に同一になる圧力値に上昇させた
後,プラズマを生成させるので,プラズマ生成直後から
処理室内が処理圧力に維持され,安定したプラズマを生
成することができる。すなわち,本発明を採用すれば,
プラズマ生成後に低下した圧力をそのまま処理圧力にす
ることができるので,プラズマ生成後に低下した圧力を
処理圧力にまで上昇させる工程を省くことができる。そ
の結果,少なくともCl2を含むガスでSi膜層をエッ
チングするプロセスの如く,プラズマ生成前後で処理室
内の圧力に大きな差が生じても,プラズマの安定化を迅
速かつ確実に行うことができ,均一な処理を行うことが
できる。また,本発明を採用すれば,プラズマを短時間
で安定化させることができるので,上述した保安装置が
処理装置に設けられていれば,その作動時間を短縮で
き,処理不良が生じた際の被処理体の保護を確実に行う
ことができる。
According to this configuration, the pressure in the processing chamber before the plasma generation is set to an initial pressure value relatively higher than a predetermined processing pressure, that is, the pressure in the processing chamber reduced after the plasma generation becomes substantially equal to the processing pressure. Since the plasma is generated after the pressure is increased to a certain value, the processing chamber is maintained at the processing pressure immediately after the generation of the plasma, and stable plasma can be generated. That is, if the present invention is adopted,
Since the pressure reduced after plasma generation can be used as the processing pressure as it is, the step of increasing the pressure reduced after plasma generation to the processing pressure can be omitted. As a result, even if there is a large difference in the pressure in the processing chamber before and after plasma generation, such as in a process of etching a Si film layer with a gas containing at least Cl 2 , plasma can be quickly and reliably stabilized. Uniform processing can be performed. Further, if the present invention is adopted, the plasma can be stabilized in a short time, so that if the above-mentioned security device is provided in the processing device, the operation time thereof can be reduced, and the processing time when a processing failure occurs can be reduced. The object to be processed can be reliably protected.

【0009】また,初期圧力値を,例えば請求項2に記
載の発明のように,Si膜層を被覆するSiO2膜層の
被覆率(SiO2膜層の面積/Si膜層の面積)に応じ
て設定しても良い。発明者らの知見によれば,プラズマ
生成後の処理室内圧力の低下は,プラズマ中のClイオ
ンやClラジカルと,被処理体を構成するSiとの反応
によって処理室内雰囲気の分子数が減少することに起因
して起こると考えられる。従って,プラズマ雰囲気に曝
されるSi膜層の割合,すなわち上記被覆率に基づいて
初期圧力値を設定すれば,該初期圧力値を確実に求める
ことができる。
Further, the initial pressure value is defined as, for example, the coverage of the SiO 2 film layer covering the Si film layer (the area of the SiO 2 film layer / the area of the Si film layer). You may set according to it. According to the findings of the inventors, the decrease in the pressure in the processing chamber after the plasma is generated decreases the number of molecules in the atmosphere in the processing chamber due to the reaction between Cl ions or Cl radicals in the plasma and Si forming the object to be processed. It is thought to occur due to: Therefore, if the initial pressure value is set based on the ratio of the Si film layer exposed to the plasma atmosphere, that is, based on the above-mentioned coverage, the initial pressure value can be reliably obtained.

【0010】さらに,処理室内の圧力を,例えば請求項
3に記載の発明のように,処理室内雰囲気の排気量によ
り制御すれば,該圧力を所定の初期圧力値や処理圧力に
確実に設定し,維持することができる。
Further, if the pressure in the processing chamber is controlled by the amount of exhaust of the atmosphere in the processing chamber, for example, as in the third aspect of the invention, the pressure can be set to a predetermined initial pressure value or processing pressure without fail. , Can be maintained.

【0011】[0011]

【発明の実施の形態】以下に,添付図面を参照しなが
ら,本発明にかかるプラズマ処理方法をエッチング方法
に適用した実施の一形態について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment in which a plasma processing method according to the present invention is applied to an etching method will be described in detail with reference to the accompanying drawings.

【0012】(1)エッチング装置の構成 まず,図1を参照しながら,本実施の形態のエッチング
方法を適用可能なエッチング装置100について説明す
る。同図に示すエッチング装置100の処理容器102
内には,処理室104が形成されており,この処理室1
04内には,上下動自在なサセプタを構成する下部電極
106が配置されている。下部電極106の上部には,
高圧直流電源108に接続された静電チャック110が
設けられており,この静電チャック110の上面に被処
理体,例えばSi基板から成る半導体ウェハ(以下,
「ウェハ」と称する。)Wが載置される。さらに,下部
電極106上に載置されたウェハWの周囲には,絶縁性
のフォーカスリング112が配置されている。また,下
部電極106には,整合器114を介してプラズマ生成
用高周波電力を出力する高周波電源116が接続されて
いる。
(1) Configuration of Etching Apparatus First, an etching apparatus 100 to which the etching method of the present embodiment can be applied will be described with reference to FIG. Processing vessel 102 of etching apparatus 100 shown in FIG.
Inside, a processing chamber 104 is formed.
A lower electrode 106 that constitutes a susceptor that can move up and down is arranged in 04. Above the lower electrode 106,
An electrostatic chuck 110 connected to a high-voltage DC power supply 108 is provided, and an object to be processed, for example, a semiconductor wafer (hereinafter, referred to as a Si wafer) made of a Si substrate is provided on an upper surface of the electrostatic chuck 110.
Called "wafer". ) W is placed. Further, an insulating focus ring 112 is arranged around the wafer W mounted on the lower electrode 106. Further, a high frequency power supply 116 for outputting high frequency power for plasma generation is connected to the lower electrode 106 via a matching unit 114.

【0013】また,下部電極106の載置面と対向する
処理室104の天井部には,多数のガス吐出孔118a
を備えた上部電極118が配置されており,図示の例で
は,上部電極118は,処理容器102の一部を成して
いる。また,ガス吐出孔118aには,ガス供給管12
0と,開閉バルブ122と,流量調整バルブ(マスフロ
ーコントローラ)124を介して,処理ガスとしてのC
2を供給するガス供給源126が接続されている。な
お,上記処理ガスには,エッチングプロセスに応じて,
例えばO2やN2などの各種ガスを添加しても良い。
A large number of gas discharge holes 118a are formed in the ceiling of the processing chamber 104 facing the mounting surface of the lower electrode 106.
Is disposed, and in the illustrated example, the upper electrode 118 forms a part of the processing container 102. Further, the gas supply pipe 12 is provided in the gas discharge hole 118a.
0, an opening / closing valve 122, and a flow rate adjusting valve (mass flow controller) 124,
A gas supply source 126 for supplying l 2 is connected. In addition, the above-mentioned processing gas includes
For example, various gases such as O 2 and N 2 may be added.

【0014】また,処理容器102の下方には,不図示
の真空引き機構と連通する排気管128が接続されてい
る。さらに,排気管128には,バタフライバルブなど
の排気量調整機構130が内装されている。また,排気
量調整機構130には,制御器132が接続されてお
り,さらにこの制御器132には,上述した流量調整バ
ルブ124と,処理室104内の圧力を測定する圧力セ
ンサ134が接続されている。また,処理室104の外
部には,処理容器102の外部側壁を囲うように磁石1
36が配置されており,この磁石136によって上部電
極122と下部電極106との間のプラズマ領域に回転
磁界が形成される。
An exhaust pipe 128 communicating with a not-shown evacuation mechanism is connected below the processing vessel 102. Further, the exhaust pipe 128 is provided with a displacement adjusting mechanism 130 such as a butterfly valve. Further, a controller 132 is connected to the exhaust amount adjusting mechanism 130, and further, the controller 132 is connected to the above-described flow rate adjusting valve 124 and a pressure sensor 134 for measuring the pressure in the processing chamber 104. ing. Further, the magnet 1 is provided outside the processing chamber 104 so as to surround the outer side wall of the processing chamber 102.
The magnet 136 forms a rotating magnetic field in the plasma region between the upper electrode 122 and the lower electrode 106.

【0015】(2)エッチング工程 次に,上述したエッチング装置100でウェハWにエッ
チング処理を施す際のエッチング工程について説明す
る。まず,下部電極106上にウェハWを載置した後,
処理室104内にガス供給源126から処理ガスとして
のCl2を導入する。この際,Cl2の流量は,流量調整
バルブ124で適宜調整し,本実施の形態では15(s
ccm)〜40(sccm)に設定する。同時に,処理
室104内の雰囲気を排気管128を介して排気すると
共に,該排気量を排気量調整機構130で調整し,処理
室104内圧力を本実施の形態にかかる初期圧力値にま
で上昇させる。この初期圧力値は,後述するように,プ
ラズマ生成後の処理室104内の処理圧力よりも相対的
に高い圧力値である。また,処理室104内の圧力は,
制御器132が圧力センサ134で検知された圧力情報
に基づいて排気量調整機構130の開度を適宜調整する
ことにより設定される。なお,流量調整バルブ124の
開度も,上記制御器132により適宜制御される。そし
て,処理室104内の圧力が初期圧力値に達した後,下
部電極106に13.56MHzで300Wの高周波電
力を印加して処理室104内にプラズマを生成し,該プ
ラズマによりウェハWのSi膜層にエッチング処理を施
している。また,処理室104内の圧力は,後述の如く
プラズマ生成後に低下するが,本実施の形態では,プラ
ズマ生成前の処理室104内の圧力が上記処理圧力に設
定されているので,該低下後の圧力が所定の処理圧力と
なり,均一かつ安定したプラズマで処理を行うことがで
きる。
(2) Etching Step Next, an etching step when an etching process is performed on the wafer W by the above-described etching apparatus 100 will be described. First, after placing the wafer W on the lower electrode 106,
Cl 2 as a processing gas is introduced into the processing chamber 104 from a gas supply source 126. At this time, the flow rate of Cl 2 is appropriately adjusted by the flow rate adjustment valve 124, and in this embodiment, it is 15 (s).
ccm) to 40 (sccm). At the same time, the atmosphere in the processing chamber 104 is exhausted through the exhaust pipe 128, and the exhaust amount is adjusted by the exhaust amount adjusting mechanism 130, and the pressure in the processing chamber 104 is increased to the initial pressure value according to the present embodiment. Let it. This initial pressure value is a pressure value relatively higher than the processing pressure in the processing chamber 104 after plasma generation, as described later. The pressure in the processing chamber 104 is
The controller 132 adjusts the opening degree of the displacement adjusting mechanism 130 based on the pressure information detected by the pressure sensor 134 as needed. The opening of the flow control valve 124 is also appropriately controlled by the controller 132. After the pressure in the processing chamber 104 reaches the initial pressure value, a high-frequency power of 300 W is applied to the lower electrode 106 at 13.56 MHz to generate plasma in the processing chamber 104, and the Si of the wafer W is generated by the plasma. The film layer is subjected to an etching process. Further, the pressure in the processing chamber 104 decreases after the plasma is generated as described later. In the present embodiment, the pressure in the processing chamber 104 before the plasma generation is set to the processing pressure. Pressure becomes a predetermined processing pressure, and processing can be performed with uniform and stable plasma.

【0016】(3)プラズマ生成後の処理室内圧力の低
下現象 次に,図2(a)および図3を参照しながら,Cl2
Si膜層にエッチング処理を施すプロセスで生じるプラ
ズマ生成後の処理室104内の圧力低下現象について説
明する。上記プロセスでは,プラズマ生成後に処理室1
04内の圧力がプラズマ生成前の該圧力よりも相対的に
低下することが経験的に見出されている。従って,従来
のエッチング方法では,図2(a)に示すように,プラ
ズマ生成後に排気量調整機構(図2中では,「APC」
とする。)130の開度を絞り,上記低下した処理室1
04内圧力を,プラズマ生成前の処理圧力値としての設
定圧力値に上昇させているが,該設定圧力値に回復する
までには,上述したように10数秒程度かかる。なお,
排気量調整機構130の開度を調整しない場合には,同
図に示すように,プラズマ生成後の処理室104内の圧
力は,低下したままの状態となる。
(3) Phenomenon of pressure drop in processing chamber after plasma generation Next, referring to FIGS. 2 (a) and 3, the plasma after the plasma generation generated in the process of etching the Si film layer with Cl 2 will be described. The pressure drop phenomenon in the processing chamber 104 will be described. In the above process, the processing chamber 1
It has been empirically found that the pressure in the chamber 04 is relatively lower than the pressure before plasma generation. Therefore, according to the conventional etching method, as shown in FIG. 2A, after the plasma is generated, the displacement adjusting mechanism (in FIG. 2, "APC"
And ) The opening of 130 is reduced, and the processing chamber
Although the internal pressure of the chamber 04 is raised to a set pressure value as a processing pressure value before plasma generation, it takes about ten and several seconds to recover to the set pressure value as described above. In addition,
When the opening degree of the displacement adjusting mechanism 130 is not adjusted, as shown in the figure, the pressure in the processing chamber 104 after the plasma is generated remains reduced.

【0017】そこで,発明者らは,上記プラズマ生成後
の処理室104内圧力の低下は,プラズマ生成前後での
処理室104内雰囲気の分子数の変化に起因すると考
え,そのプラズマ生成前後の該分子数を測定したとこ
ろ,図3に示す結果を得た。なお,当該分子数の測定
は,38.2リットルの処理室104を有するエッチン
グ装置100で行い,その処理室104内に流量が40
sccmのCl2を導入して,プラズマ生成前の処理室
104圧力を20mTorrに設定した。また,下部電
極106と,上部電極118と,処理室104の内壁面
の温度は,それぞれ60℃に設定した。さらに,下部電
極106には,13.56MHzで300Wの高周波電
力を印加し,下部電極106上に載置したSiから成る
ウェハWと,SiO2から成るウェハWのそれぞれにエ
ッチング処理を施した。
Therefore, the present inventors consider that the decrease in the pressure in the processing chamber 104 after the plasma generation is caused by a change in the number of molecules in the atmosphere in the processing chamber 104 before and after the plasma generation. When the number of molecules was measured, the results shown in FIG. 3 were obtained. Note that the measurement of the number of molecules is performed by an etching apparatus 100 having a processing chamber 104 of 38.2 liters.
The pressure of the processing chamber 104 before plasma generation was set to 20 mTorr by introducing sccm Cl 2 . Further, the temperatures of the lower electrode 106, the upper electrode 118, and the inner wall surface of the processing chamber 104 were set to 60 ° C., respectively. Further, 300 W high-frequency power at 13.56 MHz was applied to the lower electrode 106, and an etching process was performed on each of the Si wafer W and the SiO 2 wafer W mounted on the lower electrode 106.

【0018】そして,図3に示すように,上記各ウェハ
Wについて高周波電力の供給前後,すなわちプラズマ生
成前後の処理室104内雰囲気の分子数を示す分子強度
比を求めた。なお,同図中の点線は,下部電極106に
高周波電力を供給する前(同図中では,「電力OFF
時」という。)の処理室104内雰囲気の分子強度比を
示し,この際の処理室104内雰囲気は,Cl2のみで
ある。
Then, as shown in FIG. 3, a molecular intensity ratio indicating the number of molecules in the atmosphere in the processing chamber 104 before and after the supply of high-frequency power, that is, before and after plasma generation, was determined for each wafer W. It should be noted that the dotted line in FIG. 5 indicates that the high-frequency power is not supplied to the lower electrode 106 (in FIG.
Time. " 4) shows the molecular intensity ratio of the atmosphere in the processing chamber 104, and the atmosphere in the processing chamber 104 at this time is only Cl 2 .

【0019】その結果,図示の如く,Siから成るウェ
ハWを用いた場合には,プラズマ生成後にCl2と,C
lラジカル(Cl*)と,Cl+と,Cl-等(以下,
「Cl」と称する。)の分子強度比が減少した代わり
に,プラズマ生成前には存在しなかったSiClとSi
Cl2とSiCl3とSiCl4の各分子強度比が増加し
た。これに対して,被処理体としてSiO2から成るウ
ェハWを用いた場合には,プラズマ生成後に上記SiC
lとSiCl2とSiCl3とSiCl4は生じず,Cl
の分子強度比のみが増加した。
As a result, as shown in the figure, when a wafer W made of Si is used, Cl 2 and C
l radical (Cl * ), Cl + , Cl - etc.
Called "Cl". ) Was reduced before the plasma generation,
The respective molecular intensity ratios of Cl 2 , SiCl 3, and SiCl 4 increased. On the other hand, when a wafer W made of SiO 2 is used as the object to be processed, the above-described SiC
l, SiCl 2 , SiCl 3 and SiCl 4 are not generated,
Only the molecular intensity ratio increased.

【0020】上記結果より,次のことが考察される。す
なわち,エッチング対象がSi膜層の場合には,プラズ
マ生成後にClイオンやClラジカルと,Siとが反応
してSiClやSiCl2やSiCl3やSiCl4が生
成されるが,例えばSiCl4が生成されると, Si + 2Cl2 → SiCl4 の反応が起こり,分子数が相対的に減少する。従って,
プラズマ生成後にSiCl4などの反応生成物が生成さ
れると,処理室104内雰囲気の分子数がプラズマ生成
前よりも相対的に減少する。その結果,処理室104内
の圧力は,処理室104内雰囲気の分子数に依存してい
るため,プラズマ生成後の該圧力もプラズマ生成前より
も相対的に減少すると考えられる。
From the above results, the following is considered. That is, when the etching target is a Si film layer, Cl ions or Cl radicals react with Si after plasma generation to generate SiCl, SiCl 2 , SiCl 3, or SiCl 4. For example, SiCl 4 is generated. Then, a reaction of Si + 2Cl 2 → SiCl 4 occurs, and the number of molecules relatively decreases. Therefore,
When a reaction product such as SiCl 4 is generated after the plasma is generated, the number of molecules in the atmosphere in the processing chamber 104 is relatively reduced as compared to before the generation of the plasma. As a result, since the pressure in the processing chamber 104 depends on the number of molecules in the atmosphere in the processing chamber 104, it is considered that the pressure after plasma generation is also relatively reduced as compared to before the plasma generation.

【0021】一方,SiO2から成るウェハWを用いた
場合には,上述の如くClの分子強度比のみが増加した
ため,SiO2と,ClイオンやClラジカルとは反応
しないことがわかった。従って,プラズマ生成後の処理
室104内圧力の低下は,エッチング対象がSi膜層で
ある時のみに起こる特有の現象であると考察される。な
お,SiO2から成るウェハWを用いた場合に,Clの
分子強度比が上昇したが,これは, Cl2 → 2Cl* の解離が起こって,処理室104内雰囲気の分子数が相
対的に増加したためと考えられる。
On the other hand, when the wafer W made of SiO 2 was used, it was found that SiO 2 did not react with Cl ions or Cl radicals because only the molecular intensity ratio of Cl increased as described above. Therefore, it is considered that the decrease in the pressure in the processing chamber 104 after the plasma generation is a peculiar phenomenon that occurs only when the etching target is the Si film layer. When the wafer W made of SiO 2 was used, the molecular intensity ratio of Cl increased, but this was caused by the dissociation of Cl 2 → 2Cl * , and the number of molecules in the atmosphere in the processing chamber 104 was relatively increased. It is thought that it increased.

【0022】また,図2(a)に示すように,下部電極
106に高周波電力を供給(図2中では,「電力ON」
とする。)した直後に,処理室104内の圧力が一時的
に上昇するが,これはCl2が解離してClイオンやC
lラジカルになり,処理室104内雰囲気の分子数が増
加するためであると考えられる。なお,本実施の形態
は,上記処理室104内雰囲気の分子数の測定で説明し
た各プロセス条件に限定されるものではない。
Further, as shown in FIG. 2A, high-frequency power is supplied to the lower electrode 106 ("power ON" in FIG. 2).
And Immediately after), the pressure in the processing chamber 104 temporarily increases, but this is due to the dissociation of Cl 2 and Cl ions and C
This is considered to be due to the formation of 1 radical, which increases the number of molecules in the atmosphere in the processing chamber 104. Note that the present embodiment is not limited to the process conditions described in the measurement of the number of molecules in the atmosphere in the processing chamber 104.

【0023】(4)初期圧力値の設定 次に,図4を参照しながら,本実施の形態にかかる初期
圧力値の設定について説明する。プラズマ生成後の処理
室104内圧力の低下は,上述したように,ウェハWの
Si膜層を構成するSiと,解離したClイオンやCl
ラジカルとの反応により起こる。従って,本実施の形態
では,初期圧力値を,プラズマ雰囲気に曝されるSi膜
層の割合に応じてプラズマ生成前後の処理室104内圧
力の圧力差を予め求め,その圧力差と要求される処理圧
力とから算出する。その際,処理室104内に露出する
Si膜層の割合は,該Si膜層上に形成されたSiO2
膜層の被覆率(SiO2膜層の面積/Si膜層の面積)
とする。
(4) Setting of Initial Pressure Value Next, the setting of the initial pressure value according to the present embodiment will be described with reference to FIG. As described above, the decrease in the pressure in the processing chamber 104 after the generation of the plasma is caused by the difference between the Si constituting the Si film layer of the wafer W and the dissociated Cl ions or Cl ions.
It occurs by reaction with radicals. Therefore, in the present embodiment, the pressure difference between the internal pressure of the processing chamber 104 before and after plasma generation is determined in advance according to the ratio of the Si film layer exposed to the plasma atmosphere, and the initial pressure value is required. It is calculated from the processing pressure. At this time, the ratio of the Si film layer exposed in the processing chamber 104 is determined by the SiO 2 layer formed on the Si film layer.
Film layer coverage (SiO 2 film area / Si film layer area)
And

【0024】すなわち,図4に示すように,まず処理室
104内に供給するCl2の流量ごとに,上記被覆率が
異なるウェハWにエッチング処理を施し,プラズマ生成
前後の処理室104内の圧力を測定する。図示の例で
は,上記エッチング処理は,上述した処理室104雰囲
気の分子数を求めたプロセス条件で行い,またCl2
流量は,20sccmと,50sccmと,80scc
mに設定した。次いで,プラズマ生成前後の処理室10
4内圧力から圧力差(プラズマ生成前の処理室104内
圧力−プラズマ生成後の処理室104内圧力)を求め,
各圧力差と被覆率からCl2の流量別に下記の一次関数
を求める。
That is, as shown in FIG. 4, the etching process is first performed on the wafer W having the different covering ratio for each flow rate of Cl 2 supplied into the processing chamber 104, and the pressure in the processing chamber 104 before and after the plasma is generated. Is measured. In the example shown in the figure, the etching process is performed under the process conditions in which the number of molecules in the atmosphere of the processing chamber 104 is obtained, and the flow rates of Cl 2 are 20 sccm, 50 sccm, and 80 sccm.
m. Next, the processing chamber 10 before and after plasma generation is performed.
4) From the internal pressure, a pressure difference (pressure in the processing chamber 104 before plasma generation—pressure in the processing chamber 104 after plasma generation) is obtained,
The following linear function is obtained for each Cl 2 flow rate from each pressure difference and coverage.

【0025】例えば,Cl2の流量が80sccmの場
合には, Y = −0.3X + 29.7 …(1) となり,以下同様に,Cl2の流量が50sccmの場
合には, Y = −0.2X + 15.1 …(2) となり,またCl2の流量が20sccmの場合には, Y = −0.1X + 5.8 …(3) となる。なお,上記式は,上述した各ガス流量に限定さ
れず,実際に処理プロセスに適用される流量に基づい
て,適宜求めることができる。
For example, when the flow rate of Cl 2 is 80 sccm, Y = −0.3X + 29.7 (1). Similarly, when the flow rate of Cl 2 is 50 sccm, Y = −. when 0.2X + 15.1 ... (2), and the addition flow rate of Cl 2 is 20sccm becomes Y = -0.1X + 5.8 ... (3 ). It should be noted that the above equation is not limited to the above-mentioned respective gas flow rates, but can be obtained as appropriate based on the flow rate actually applied to the processing process.

【0026】また,初期圧力値は,上記のようにして求
められた一次関数に,処理を施すウェハWのSi膜層の
被覆率を代入して算出された圧力差を,所定の処理圧力
値に加算することにより求められる。例えば,処理室1
04内に流量が50sccmのCl2を導入し,かつ処
理圧力を30mTorrに設定するプロセスで,被覆率
が40%のウェハWに処理を施す場合には,上記式
(2)中のXに被覆率を代入すると圧力差Yが7.1m
Torrとなり,この圧力差Yと上記処理圧力を加算す
れば,初期圧力値は37.1mTorrとなる。
The initial pressure value is obtained by substituting the pressure difference calculated by substituting the coverage of the Si film layer of the wafer W to be processed into the linear function obtained as described above with a predetermined processing pressure value. Is calculated by adding For example, processing room 1
In the process of introducing Cl 2 at a flow rate of 50 sccm into the wafer W and setting the processing pressure to 30 mTorr, and performing processing on a wafer W having a coverage of 40%, X in the above formula (2) is coated. When the rate is substituted, the pressure difference Y is 7.1 m
Torr, and if this pressure difference Y is added to the processing pressure, the initial pressure value becomes 37.1 mTorr.

【0027】そして,図2(b)に示すように,例えば
上記例では,処理室104内の圧力を上記37.1mT
orrに上昇させた後にプラズマを生成させれば,プラ
ズマ生成後に低下した処理室104内の圧力が処理圧力
である30mTorrになり,所定の均一かつ安定した
プラズマを生成させることができる。また,本実施の形
態では,プラズマ生成後も排気量調整機構130の開度
を適宜調整し,処理室104内の圧力を処理圧力に維持
するので,さらに安定したプラズマを生成することがで
きる。
As shown in FIG. 2B, for example, in the above example, the pressure in the processing chamber 104 is raised to 37.1 mT
If the plasma is generated after the pressure is increased to orr, the pressure in the processing chamber 104 that has decreased after the plasma is generated becomes the processing pressure of 30 mTorr, and a predetermined uniform and stable plasma can be generated. Further, in the present embodiment, even after the plasma is generated, the opening degree of the exhaust amount adjustment mechanism 130 is appropriately adjusted, and the pressure in the processing chamber 104 is maintained at the processing pressure, so that more stable plasma can be generated.

【0028】本実施の形態は,以上のように構成されて
おり,プラズマ生成前の処理室104内圧力を所定の初
期圧力値に上昇させた後にプラズマを生成させるので,
プラズマ生成後に低下した処理室104内圧力と,処理
圧力値とを実質的に同一にすることができる。その結
果,短時間でプラズマを安定化することができるため,
プラズマ生成直後から均一な処理をウェハWに施すこと
ができる。また,Cl2の流量と,ウェハWの被覆率
と,プラズマ生成前後の処理室104内の圧力差との関
係式を一度求めておけば,処理圧力やCl2の流量を変
更する場合や,被覆率の異なるウェハWに処理を施す場
合でも,ウェハWの被覆率から初期圧力値を容易に求め
ることができる。
The present embodiment is configured as described above, and the plasma is generated after the pressure in the processing chamber 104 before the plasma generation is increased to a predetermined initial pressure value.
The internal pressure of the processing chamber 104, which has been reduced after the generation of plasma, can be made substantially equal to the processing pressure value. As a result, the plasma can be stabilized in a short time,
A uniform process can be performed on the wafer W immediately after the plasma generation. Further, once a relational expression between the flow rate of Cl 2 , the coverage of the wafer W, and the pressure difference in the processing chamber 104 before and after plasma generation is obtained once, the processing pressure and the flow rate of Cl 2 can be changed. Even when processing is performed on wafers W having different coverages, the initial pressure value can be easily obtained from the coverage of the wafers W.

【0029】以上,本発明の好適な実施の一形態につい
て,添付図面を参照しながら説明したが,本発明はかか
る構成に限定されるものではない。特許請求の範囲に記
載された技術的思想の範疇において,当業者であれば,
各種の変更例および修正例に想到し得るものであり,そ
れら変更例および修正例についても本発明の技術的範囲
に属するものと了解される。
While the preferred embodiment of the present invention has been described with reference to the accompanying drawings, the present invention is not limited to such a configuration. In the scope of the technical idea described in the claims, those skilled in the art
Various changes and modifications can be conceived, and it is understood that these changes and modifications also belong to the technical scope of the present invention.

【0030】例えば,上記実施の形態において,Cl2
の流量と,ウェハの被覆率(SiO2膜層の面積/Si
膜層の面積)と,圧力差(プラズマ生成前の処理室内圧
力−プラズマ生成後の処理室内圧力)から初期圧力値を
求める構成を例に挙げて説明したが,本発明はかかる構
成に限定されるものではない。例えば,ウェハWの被覆
率がわからない場合には,まずCl2の流量ごとに該ウ
ェハWに処理を施し,プラズマ生成前後の処理室104
内の圧力値を求める。次いで,それら各圧力値から図5
に示す曲線を求める。そして,Cl2の流量と,要求さ
れる処理圧力に応じて,該曲線から初期圧力値を求めて
も良い。すなわち,図示の例では,Cl2の流量を30
sccmに設定し,かつ処理圧力を33mTorrに設
定する場合には,初期圧力値は60mTorrになる。
For example, in the above embodiment, Cl 2
Flow rate and wafer coverage (SiO 2 film layer area / Si
Although the configuration in which the initial pressure value is obtained from the pressure difference (the pressure in the processing chamber before plasma generation—the pressure in the processing chamber after plasma generation) and the pressure difference (the area of the film layer) have been described as an example, the present invention is limited to such a configuration. Not something. For example, if the coverage of the wafer W is not known, the wafer W is first subjected to the processing at each flow rate of Cl 2 , and the processing chamber 104 before and after plasma generation is performed.
Obtain the pressure value inside. Next, FIG.
Is determined. Then, an initial pressure value may be obtained from the curve according to the flow rate of Cl 2 and the required processing pressure. That is, in the illustrated example, the flow rate of Cl 2 is set to 30.
When the pressure is set to sccm and the processing pressure is set to 33 mTorr, the initial pressure value becomes 60 mTorr.

【0031】また,上記実施の形態において,下部電極
のみに高周波電力を印加するエッチング装置を例に挙げ
て説明したが,本発明はかかる構成に限定されるもので
はなく,上部電極と下部電極の両電極や,上部電極のみ
に高周波電力を印加するエッチング装置にも本発明を適
用することができる。さらに,上記実施の形態におい
て,磁石を備えたエッチング装置を例に挙げて説明した
が,本発明はかかる構成に限定されるものではなく,磁
石を備えていない各種エッチング装置などの各種プラズ
マ処理装置に本発明を適用することができる。
Further, in the above-described embodiment, the etching apparatus for applying high-frequency power to only the lower electrode has been described as an example. However, the present invention is not limited to such a configuration, and the present invention is not limited to this configuration. The present invention can also be applied to an etching apparatus that applies high-frequency power only to both electrodes and only to the upper electrode. Furthermore, in the above-described embodiment, an explanation has been given by taking an example of an etching apparatus having a magnet, but the present invention is not limited to such a configuration, and various plasma processing apparatuses such as various etching apparatuses without a magnet are provided. The present invention can be applied to

【0032】[0032]

【発明の効果】本発明によれば,プラズマ生成後に低下
した処理室内圧力が実質的に処理圧力となるので,従来
のプラズマ処理方法のような処理室内圧力を処理圧力に
まで上昇させる工程が不要となる。その結果,プラズマ
の生成直後から該プラズマを安定させることができるた
め,被処理体に均一な処理を施すことができる。また,
一度,初期圧力値を算出する式を求めておけば,処理室
内圧力や処理ガスの流量やウェハの膜質が異なるプロセ
スでも,初期圧力値を容易に求めることができる。
According to the present invention, the pressure in the processing chamber which has been reduced after the plasma generation becomes substantially the processing pressure, so that there is no need to increase the processing chamber pressure to the processing pressure as in the conventional plasma processing method. Becomes As a result, the plasma can be stabilized immediately after the generation of the plasma, so that the object to be processed can be uniformly processed. Also,
Once the equation for calculating the initial pressure value is obtained, the initial pressure value can be easily obtained even in a process in which the pressure in the processing chamber, the flow rate of the processing gas, and the film quality of the wafer are different.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用可能なエッチング装置を示す概略
的な断面図である。
FIG. 1 is a schematic sectional view showing an etching apparatus to which the present invention can be applied.

【図2】処理室内の圧力とプラズマの生成との関係を説
明するための概略的な説明図である。
FIG. 2 is a schematic explanatory diagram for explaining a relationship between a pressure in a processing chamber and generation of plasma.

【図3】プラズマ生成前後の処理室内雰囲気の分子数と
ウェハの構成材料との関係を説明するための概略的な説
明図である。
FIG. 3 is a schematic explanatory diagram for explaining a relationship between the number of molecules in an atmosphere in a processing chamber before and after plasma generation and a constituent material of a wafer.

【図4】初期圧力値の算出工程を説明するための概略的
な説明図である。
FIG. 4 is a schematic explanatory diagram for explaining a calculation process of an initial pressure value.

【図5】初期圧力値の他の算出工程を説明するための概
略的な説明図である。
FIG. 5 is a schematic explanatory diagram for explaining another calculation process of an initial pressure value.

【符号の説明】[Explanation of symbols]

100 エッチング装置 104 処理室 106 下部電極 116 高周波電源 118 上部電極 118a ガス吐出孔 124 流量調整バルブ 126 ガス供給源 128 排気管 130 排気量調整機構 132 制御器 134 圧力センサ W ウェハ REFERENCE SIGNS LIST 100 Etching apparatus 104 Processing chamber 106 Lower electrode 116 High frequency power supply 118 Upper electrode 118 a Gas discharge hole 124 Flow control valve 126 Gas supply source 128 Exhaust pipe 130 Exhaust amount adjusting mechanism 132 Controller 134 Pressure sensor W Wafer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 文彦 東京都府中市住吉町2丁目30番地の7 東 京エレクトロン山梨株式会社内 Fターム(参考) 4K057 DA16 DB06 DB15 DB20 DE01 DG07 DG08 DM18 DN01 5F004 BA04 BA08 BB08 BB13 CA02 CA07 CA09 DA04 DA25 DA26 DB01 EA06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Fumihiko Higuchi 7-30, Sumiyoshi-cho, Fuchu-shi, Tokyo Tokyo Electron Yamanashi Co., Ltd. F-term (reference) 4K057 DA16 DB06 DB15 DB20 DE01 DG07 DG08 DM18 DN01 5F004 BA04 BA08 BB08 BB13 CA02 CA07 CA09 DA04 DA25 DA26 DB01 EA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 処理室内に少なくともCl2を含む処理
ガスを導入した後,前記処理室内にプラズマを生成し,
前記プラズマにより前記処理室内に配置された被処理体
に形成されたSi膜層にエッチング処理を施すプラズマ
処理方法において,前記処理室内の圧力を,プラズマ生
成後の処理圧力よりも相対的に高い初期圧力値に上昇さ
せた後に,プラズマを生成することを特徴とする,プラ
ズマ処理方法。
After introducing a processing gas containing at least Cl 2 into a processing chamber, a plasma is generated in the processing chamber.
In a plasma processing method in which an etching process is performed on a Si film layer formed on an object to be processed placed in the processing chamber by the plasma, an initial pressure in the processing chamber is relatively higher than a processing pressure after plasma generation. A plasma processing method comprising generating plasma after increasing the pressure value.
【請求項2】 前記初期圧力値は,前記Si膜層を被覆
するSiO2膜層の被覆率(SiO2膜層の面積/Si膜
層の面積)に応じて設定されることを特徴とする,請求
項1に記載のプラズマ処理方法。
2. The method according to claim 1, wherein the initial pressure value is set according to a coverage ratio of the SiO 2 film layer covering the Si film layer (the area of the SiO 2 film layer / the area of the Si film layer). The plasma processing method according to claim 1.
【請求項3】 前記処理室内の圧力は,処理室内雰囲気
の排気量により制御されることを特徴とする,請求項1
または2のいずれかに記載のプラズマ処理方法。
3. The processing chamber according to claim 1, wherein the pressure in the processing chamber is controlled by an exhaust amount of an atmosphere in the processing chamber.
Or the plasma processing method according to any one of 2.
JP18826398A 1998-06-18 1998-06-18 Plasma processing method Expired - Fee Related JP3508986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18826398A JP3508986B2 (en) 1998-06-18 1998-06-18 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18826398A JP3508986B2 (en) 1998-06-18 1998-06-18 Plasma processing method

Publications (2)

Publication Number Publication Date
JP2000012531A true JP2000012531A (en) 2000-01-14
JP3508986B2 JP3508986B2 (en) 2004-03-22

Family

ID=16220622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18826398A Expired - Fee Related JP3508986B2 (en) 1998-06-18 1998-06-18 Plasma processing method

Country Status (1)

Country Link
JP (1) JP3508986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027661A (en) * 2005-07-21 2007-02-01 Tokyo Electron Ltd Plasma processing apparatus and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027661A (en) * 2005-07-21 2007-02-01 Tokyo Electron Ltd Plasma processing apparatus and control method thereof
JP4620537B2 (en) * 2005-07-21 2011-01-26 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing apparatus control method

Also Published As

Publication number Publication date
JP3508986B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US8128831B2 (en) Plasma etching method and computer-readable storage medium
US10770268B2 (en) Plasma processing method and plasma processing apparatus
JP2004064018A (en) Film forming method
TWI436419B (en) A plasma etch method and a computer readable memory medium
US20090203218A1 (en) Plasma etching method and computer-readable storage medium
US9437450B2 (en) Plasma etching method
JP3905232B2 (en) Etching method
US20050269294A1 (en) Etching method
US20090203219A1 (en) Plasma etching method, plasma etching apparatus and computer-readable storage medium
WO2002103773A1 (en) Dry-etcching method
US7351665B2 (en) Plasma etching method, plasma etching apparatus, control program, computer recording medium and recording medium having processing recipe recorded thereon
TW307027B (en) Process for reducing circuit damage during pecvd in single wafer pecvd system
US7192532B2 (en) Dry etching method
WO1999011103A1 (en) Method for controlling plasma processor
US11610766B2 (en) Target object processing method and plasma processing apparatus
US20210384038A1 (en) Substrate processing method and substrate processing apparatus
WO1999062111A1 (en) Etching method
JP2000012531A (en) Plasma processing method
US7883631B2 (en) Plasma etching method, plasma etching apparatus, control program and computer-readable storage medium
JPH09275092A (en) Plasma processor
TWI235771B (en) Method of forming a fluorocarbon polymer film on a substrate using a passivation layer
JP2003086568A (en) Method for etching
JP3986808B2 (en) Dry etching method
US20070197040A1 (en) Plasma etching method, plasma etching apparatus, control program and computer-readable storage medium
JP4308018B2 (en) Etching method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160109

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees