JP2000011181A - 信号照合装置 - Google Patents

信号照合装置

Info

Publication number
JP2000011181A
JP2000011181A JP11148933A JP14893399A JP2000011181A JP 2000011181 A JP2000011181 A JP 2000011181A JP 11148933 A JP11148933 A JP 11148933A JP 14893399 A JP14893399 A JP 14893399A JP 2000011181 A JP2000011181 A JP 2000011181A
Authority
JP
Japan
Prior art keywords
signal
feature vector
user
hmm model
function block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148933A
Other languages
English (en)
Inventor
Jannes G A Dolfing
ゲイスベルトゥス アルノルドゥス ドルフィング ヤヌス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2000011181A publication Critical patent/JP2000011181A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/16Hidden Markov models [HMM]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/14Speech classification or search using statistical models, e.g. Hidden Markov Models [HMMs]
    • G10L15/142Hidden Markov Models [HMMs]
    • G10L15/144Training of HMMs

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Collating Specific Patterns (AREA)
  • Character Discrimination (AREA)
  • Image Analysis (AREA)

Abstract

(57)【要約】 【課題】 本発明はHMMモデルλを使用したユーザ特
定信号の照合において照合が当該のユーザ及び上記ユー
ザに割り当てられたユーザ特定信号に対してより良く適
合されるようにすることを目的とする。 【解決手段】 本発明は、入力信号の近似的な記述を与
える役割を果たし上記信号の選択可能なサンプリング間
隔に関連づけられる特徴ベクトル(ot ’)の組
(O’)を発生する手段と、上記信号のためのHMMモ
デル(λ)を準備する手段と、上記HMMモデル(λ)
が所与であるとき、特徴ベクトル(ot ’)の組
(O’)の発生の確率を記述する確率値を決める手段
と、上記確率値を閾値(τ)と比較し、上記信号の照合
について決定する閾値決定器とを含む、時間依存性のユ
ーザ特定信号の照合のための装置に関する。LDA変換
によって特徴ベクトルの中に集められた特徴の関連性の
自動的な個人特定評価のため、及び関連性があると評価
された特徴の自動選択のための手段(10)が設けられ
ていることが提案される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、入力信号の近似的
な記述を与える役割を果たし上記信号の選択可能なサン
プリング間隔に関連づけられる特徴ベクトルの組を発生
する手段と、上記信号のための隠れマルコフモデル(H
MM)を準備する手段と、上記HMMモデルが所与であ
るとき、特徴ベクトルの組の発生の確率を記述する確率
値を決める手段と、上記確率値を閾値と比較し、上記信
号の照合について決定する閾値決定器とを含む、時間依
存性のユーザ特定信号の照合のための装置に関する。
【0002】
【従来の技術】時間依存性のユーザ特定信号、特に署名
又は音声信号の照合のために、入力信号が実際に特定の
ユーザから生じたものであるか又は偽造されたものであ
るかが検査される。本願では、「時間依存性」とは信号
が所与の時間間隔でユーザによって発生され、特定の異
なる信号成分は時間間隔の中の異なる時点に関連づけら
れることを意味すると理解される。照合が行われる前
に、1つ以上の原信号によって信号モデルが形成されね
ばならない。このためいわゆる隠れマルコフモデル(H
MM)が使用される。モデルを形成するために使用され
る原信号は、HMMモデルのいわゆる学習のための学習
信号である。
【0003】学習の完了後、信号は装置によって照合さ
れうる。このため、一方でユーザ識別符号、例えばユー
ザ名又はユーザに割り当てられた番号が入力され、他方
でユーザ特定信号が入力される。入力信号は1組の特徴
ベクトルへ変換される。署名の場合にベクトル成分を形
成するために、例えば署名の書込み中に通過された座標
及び入力スタイラスによって加えられた圧力が評価され
る。続いて、ユーザ識別符号と共にユーザに割り当てら
れたHMMモデルに対する特徴ベクトルの組が生ずる確
率を記述する確率値が形成される。入力信号は、選択可
能な閾値までは原信号として認識され、その閾値を超過
すれば偽造されたものとして認識される。
【0004】
【発明が解決しようとする課題】本発明は、照合が当該
のユーザ及び上記ユーザに割り当てられたユーザ特定信
号に対してより良く適合されるよう上述の種類の装置を
構成することを目的とする。
【0005】
【課題を解決するための手段】上記の目的は、LDA変
換によって特徴ベクトルの中に集められた特徴の関連性
の自動的な個人特定評価のため、及び関連性があると評
価された特徴の自動選択のための手段が設けられている
ことによって達成される。いわゆるLDA(線形弁別分
析)変換は、例えば、K.Fukunaga: "Introduction to S
tatistical Pattern Recognition",第2版、Academic P
ress, New York,1990,第10.2章に記載される既知の変換
である。これに基づいて形成された変換された特徴ベク
トルは、夫々のユーザ特定信号の特徴付けに対する関連
性に従って配置される成分を有する。特徴ベクトルの成
分の選択可能な数は、関連する環境に対して適合するよ
う選択されえ、結果として減少された次元の特徴ベクト
ルが得られる。選択には、ユーザ特定信号の偽造も、他
のユーザのユーザ特定信号も考慮されない。LDA変換
による特徴ベクトルの減少は、使用されるHMMモデル
の減少を伴う。これはより高速な照合動作及び必要とさ
れる記憶容量の減少を導く。概して、本願における確率
値という用語は確率から導出された値、特に確率の元の
値又は確率の対数値を示すと理解される。
【0006】望ましくは、本発明はオンライン照合のた
めに使用されるが、オフライン照合にもまた適してい
る。ユーザ特定信号は、例えば署名又は音声信号であ
る。
【0007】
【発明の実施の形態】以下、本発明の実施例を図面を参
照して詳述する。図1に示される時間依存のユーザ特定
信号s(t)の照合のための装置1は、信号s(t)を
ディジタル化されたサンプリング値sD (t)のストリ
ームへ変換する機能ブロック2を含む。信号s(t)は
特に署名を表わすが、例えば音声信号であってもよい。
署名照合のために、機能ブロック2は例えば米国特許第
5,231,381号に詳述されるフィリップス社の製
品PAID(Philips Advanced Interactive Display)
によって実現されうる。その中で、署名は特殊入力スタ
イラスによって入力されえ、署名の書込み中に通過され
た入力面上の座標(x及びy座標)、書込み中に入力ス
タイラスを通じて入力面へ印加された圧力、及び空間中
の入力スタイラスの当該の傾斜が決められる。
【0008】入力スタイラスによって発生されたアナロ
グ入力値は前処理動作を受けるディジタルサンプリング
値sD (t)へ変換され、前処理動作は機能ブロック3
によって表わされ以下図2及び図3を参照して詳述され
る。前処理動作は特徴ベクトルot を発生し、特徴ベク
トルot は所与のサンプリング間隔又は所与のサンプリ
ング時点tに対してディジタルサンプリング値s
D (t)から導出されたディジタル値(特徴)を含む成
分を有する。特徴ベクトルot は次に、肯定又は否定の
決定、即ちY又はNの出力を有し、特にバイナリ値1又
は0の出力を有する機能ブロック4に従って更に処理さ
れる。以下、図4を参照してこれについて詳述する。こ
のため、ユーザ特定信号s(t)の入力に加えて、例え
ば当該ユーザ名又は当該ユーザに割り当てられた番号を
入力することによって夫々のユーザ識別符号Kが入力さ
れることが必要とされ、また確実にされる。肯定決定Y
は、入力信号s(t)が、入力ユーザ識別符号Kを伴っ
てユーザから生じたオリジナルであると識別され照合さ
れたことを意味する。否定決定Nは、入力信号s(t)
が偽造として分類されたことを意味する。
【0009】図2は、機能ブロック3によって表わされ
る前処理動作の可能な変形を示す図である。ディジタル
化されたサンプリング値sD (t)は、平滑化フィルタ
5へ印加される。続いてサンプリング値sD (t)は機
能ブロック6においてフレームの中へ集められ、フレー
ムは選択可能な長さの時間間隔又は選択可能な長さの空
間中の距離に対応する。続いて、各フレームに対して特
徴ベクトルot が形成される(機能ブロック7)。例え
ば、各フレームに対する様々なサンプリング値から、空
間中の所与の位置に対応し、平均化によって様々なサン
プリングされた座標値から形成される所与のx値及び所
与のy値を有する座標対が決められる。同様に、各フレ
ームに対して、入力面に与えられた圧力に関する値、及
び入力スタイラスの空間中の傾斜に対する座標対が決め
られる。特徴ベクトルの中に集められる特徴の数は、所
望であれば更に増加されうる。フレームは重なり合う
か、又は重なり合わずに互いに連続しうる。
【0010】図3に示される前処理動作の更なる変形に
よれば、サンプリング値sD (t)を有するサンプリン
グされた信号は固定長のフレームではなく、機能ブロッ
ク8に従って可変長のセグメントへ細分化される。セグ
メント境界は、x座標の方向に速度vx 、又はy座標の
方向に速度vy に対する符号の変化が生じる点によって
特に画成される。速度vx 及びvy は検出されたx及び
y値の関数の微分によって獲得される。このようにして
形成されたセグメントは重なり合うか、又は重なり合わ
ずに相互に連続しうる。フレームを使用する処理と同様
に、特徴ベクトルot は各セグメントに対して形成され
る(機能ブロック9)。セグメント化を含む前処理動作
が使用されることが望ましい。
【0011】前処理動作は、装置1へ印加されるユーザ
特定信号s(t)を記述するために使用される特徴ベク
トルot =ol =,...,oT の組Oを生成する。こ
こで、Tはフレーム又はセグメントの数を示し、夫々に
対して夫々の特徴ベクトルo t が関連づけられる。選択
可能なサンプリング間隔又はサンプリング時点は、各フ
レーム又はセグメントに割り当てられる。
【0012】以下図4を参照して、肯定/否定決定(Y
/N)を生成するための特徴ベクトルot のうちの1つ
の処理を説明する。まず、前処理動作によって生成され
た特徴ベクトルot はLDA(線形弁別分析)変換を受
ける。この変換は、例えば、K.Fukunaga: "Introductio
n to Statistical Pattern Recognition",第2版、Acad
emic Press, New York,1990,第10.1及び10.2章に記載さ
れている。次元Lの特徴ベクトルot は次に次元L×D
のユーザ特定変換マトリックスWによって乗算され(機
能ブロック10)、それにより次元D(D≦L)の変換
された特徴ベクトルot ’を生成する。
【0013】このようにして発生された特徴ベクトルo
t ’の組O’は更にユーザ特定HMMモデルλに従って
処理される(機能ブロック11)。HMMモデルの構造
は、L.R.Rabiner 及びB.H.Juang による出版物「Fundam
entals of speech recognition」、第1版、Prentice
Hall, 1993, 第6.4 乃至6.6 章に記載されている。機能
ブロック11は、ユーザ特定信号のためのHMMモデル
λが所与であるとき、lavg (O’,λ)を特徴ベクト
ルot ’の組O’について決められるべき確率値とし、
tを特徴ベクトルot ’が形成されるべきサンプリング
間隔を特徴付ける変数とし(tはフレーム又はセグメン
トを特徴付ける)、Tを特徴ベクトルo t ’の総数と
し、qt をHMMモデルλの観察された状態についての
変数とし、bql(Ot ’)を所与の特徴ベクトルot
についてのHMMモデルλの状態q t についての放出確
率密度又は放出確率とすると、以下の式、
【0014】
【数1】
【0015】に従って形成される確率値lavg を生成す
る。確率値lavg はこのようにして平均値を形成するこ
とにより、本例では相加平均値を形成することによって
生成される。確率値lavg は、機能ブロック12によっ
て表わされ値lavg を閾値τと比較する閾値決定器に印
加される。この閾値は、lvalidateを自動的に決定され
る個人依存確率値とすると、以下の式、τ=lvalidate
+ Cに従って形成される。この閾値を所与のユーザ
に対して決めるために、まずHMMモデルはユーザの所
与の数(例えば10)の原信号s(t)(学習信号)に
よって学習される。このようにして決定されたHMMモ
デルは、後の段階において機能ブロック11の中で照合
装置1の動作のために使用される。この学習に関連し
て、装置1の動作中に使用されるLDA変換マトリック
スWもまた以下詳述されるように記載される。
【0016】続いて、このように調整された照合装置1
は連続して1つ以上(例えば5)の追加的な原信号s
(t)(照合信号)を供給される。装置1は各照合信号
s(t)に対する確率値lavg を決定する。続いてこの
ようにして決定された確率値l avg は平均化される。本
例ではこれは相加平均値を形成することによって実現さ
れる。本実施例において閾値τを決定するために、照合
装置1に対して達成されうる誤り率が規則的に改善され
るよう、経験的に決定され実際のフレーム条件に依存す
る定数Cが付加される。定数Cはユーザ独立である。
【0017】しかしながら定数Cの追加は絶対に必要な
ものではない。更に定数Cは照合装置の特徴的な照合行
動をユーザ特定要件へ調整するために使用されうる。定
数Cはいわゆる「等しい誤り率」(EE)、従って誤り
の多い照合の数及び偽造としてのユーザ特定信号の誤っ
た分類の数が等しくなる閾値を見出し調整するために使
用されうる。Cはまた誤った照合の数及び偽造としての
誤った分類の数が等しくなるよう調整されうる。この調
整は、特に所与の領域への不正アクセスが全ての状況に
おいて排除されるべき軍事適用の場合に特に興味深い。
定数Cはまた、偽造としての誤った分類の数がゼロに等
しく、誤った照合の数が所与の値となるよう調整されう
る。これは、例えば銀行業務のある所与の分野において
例えば顧客がいらいらしないようにするときに有用であ
る。
【0018】信号s(t)に対して決められた確率値l
avg が装置1の動作中に閾値τの上又は下であるかに依
存して、機能ブロック12において実行される閾値τと
の比較は、夫々否定決定及び肯定決定に対応する偽造又
は原信号であるという結果を与える。機能ブロック12
によって供給される出力値は、追加的に確率値lavg
閾値τとの間の隔たりに関する情報を与えられ得る。か
かる情報は更なる処理の間に使用されうる。
【0019】LDA変換を通じて、信号s(t)に対し
て形成された特徴ベクトルot ’は使用されるHMMモ
デルλに適合され、結果としてユーザ依存の信号s
(t)の照合中の誤り率を改善させる。特徴ベクトルo
t ’の適合は以下のように構成される。即ち、特徴ベク
トルot ’は、特徴ベクトルot ’の成分の数に対応す
る次元を有する多次元座標系によって多次元空間の中に
プロットされる。LDA変換は、一方では座標系の適当
な回転を与え、他方では座標系の座標の適当な圧縮又は
拡張を与え、それにより座標系はLDA変換のクラス
(HMMモデルλの状態に対応)により良く適合され
る。LDA変換によって変更された特徴ベクトルot
は、ここで処理される個人依存信号s(t)の特徴付け
のためのそれらの値に従い最もコンパクトな配置で配置
される成分を有する。
【0020】この面は、特徴ベクトルot ’の信号s
(t)に対する特徴付け、従ってその照合に依存して、
特徴ベクトルot ’の所与の特徴を自動的に選択するた
めに使用されうる。これは特に、より減少された次元の
LDA変換マトリックスWが使用されるよう、LDA変
換中に最小の固有値を含むLDA変換マトリックスWの
行を無視することによって行われる。これは、減少され
た数のパラメータを有するHMMモデルλに対応する。
これは、最終的には装置1の動作中の計算作業の量を減
少し、必要とされる記憶空間を減少するために使用され
る。
【0021】以下、図5を参照して本例におけるHMM
モデルλの学習を説明する。このモデルは個人特定的で
あり、即ちかかるHMMモデルλはユーザ識別符号Kと
共に各ユーザに対して形成され、装置1の中に記憶され
る。HMMモデルλの学習は、当該ユーザの原信号であ
る学習信号の所与の数によって実行される。例えば、1
0の原信号が使用される。機能ブロック13はHMMモ
デルλに対する第1の学習ランを表わし、仮HMMモデ
ルλ’を生成する。この学習ランの間、学習信号に対応
する特徴ベクトルot ’はモデリングのために直接使用
される。即ち特徴ベクトルot ’はLDA変換を受けな
い。
【0022】HMMモデルの学習は、ヴィタビ近似によ
って近似的に実行されるいわゆる最尤規準に基づいて実
行される。この点については引用されたL.R.Rabiner 及
びB.H.Juang による出版物「Fundamentals of speech r
ecognition」が参照される。仮HMMモデルλ’の形成
の後、そこからLDA変換マトリックスWが計算される
(機能ブロック14)。マトリックスWを決定するため
に固定値問題は解決されねばならない。LDA変換のク
ラスは、仮HMMモデルλ’の状態として定義される。
マトリックスWの決定に関する詳細については引用され
たK.Fukunaga:"Introduction to Statistical Pattern
Recognition”が参照される。続いて、ユーザの学習信
号を使用して新たな学習ランが実行され(機能ブロック
15)、この学習ランは、特徴ベクトルot ’の代わり
に変換された特徴ベクトルot ’=Wot に基づく。
【0023】図6は、機能ブロック11へ変換されたH
MMモデルの基本構造を示す図である。いわゆる左から
右へのモデル(Bakisモデル)が使用される。状態
は円によって示され、状態遷移は矢印によって示され
る。この点に関する詳細については、L.Yang, B.Widjaj
a 及びR.Prasadによる”Application of hidden Markov
-models for signature verification”, Pattern reco
gnition 28, pp.161-170が参照される。
【0024】上述の機能ブロックは、例えばユーザ特定
信号の入力及びディジタル化のための適当な入力ユニッ
トが接続されるPC(例えば署名の場合は上述のフィリ
ップス社の機器PAID)上のソフトウエアによって実
施される。本発明は特にオンライン照合に適している。
署名手順の変換は署名が紙の上に出される入力スタイラ
スによってもまた実行されうる。
【図面の簡単な説明】
【図1】本発明による照合装置を示すブロック図であ
る。
【図2】前処理の第1の可能なフローチャートを示す図
である。
【図3】前処理の第2の可能なフローチャートを示す図
である。
【図4】前処理に続く処理を示すブロック図である。
【図5】使用されるHMMモデルの学習を示すブロック
図である。
【図6】使用されるHMMモデルの原理を示す図であ
る。
【符号の説明】
1 照合装置 2 ディジタルサンプリング 3 前処理 4 照合 5 平滑化フィルタ 6 フレーム化 7 フレームに対する特徴ベクトル形成 8 可変長セグメント化 9 セグメントに対する特徴ベクトル形成 10 マトリックスによる変換 11 HMMモデル 12 閾値決定器 13 第1の学習 14 LDA変換マトリックス形成 15 新たな学習
───────────────────────────────────────────────────── フロントページの続き (71)出願人 590000248 Groenewoudseweg 1, 5621 BA Eindhoven, Th e Netherlands

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 入力信号の近似的な記述を与える役割を
    果たし上記信号の選択可能なサンプリング間隔に関連づ
    けられる特徴ベクトル(ot ’)の組(O’)を発生す
    る手段と、 上記信号のためのHMMモデル(λ)を準備する手段
    と、 上記HMMモデル(λ)が所与であるとき、特徴ベクト
    ル(ot ’)の組(O’)の発生の確率を記述する確率
    値を決める手段と、 上記確率値を閾値(τ)と比較し、上記信号の照合につ
    いて決定する閾値決定器とを含む、時間依存性のユーザ
    特定信号の照合のための装置であって、 LDA変換によって特徴ベクトルの中に集められた特徴
    の関連性の自動的な個人特定評価のため、及び関連性が
    あると評価された特徴の自動選択のための手段(10)
    が設けられていることを特徴とする装置。
  2. 【請求項2】 オンライン照合が実行されることを特徴
    とする請求項1記載の装置。
  3. 【請求項3】 上記ユーザ特定信号は署名であることを
    特徴とする請求項1又は2記載の装置。
  4. 【請求項4】 上記ユーザ特定信号は音声信号であるこ
    とを特徴とする請求項1又は2項記載の装置。
  5. 【請求項5】 入力信号の近似的な記述を与える役割を
    果たし上記信号の選択可能なサンプリング間隔に関連づ
    けられる特徴ベクトル(ot ’)の組(O’)が発生さ
    れる、時間依存性のユーザ特定信号を照合する方法であ
    って、 HMMモデル(λ)は上記信号のために準備され、 上記HMMモデル(λ)が所与であるとき、特徴ベクト
    ル(ot ’)の組(O’)の発生の確率を記述する確率
    値が決められ、 閾値決定器は、確率値を閾値(τ)と比較し、上記信号
    の照合について決定し、 上記特徴ベクトルの中に集められる特徴の関連性の自動
    的な個人特定評価はLDA変換によって実行され、関連
    性があると評価された特徴は自動的に選択されることを
    特徴とする方法。
JP11148933A 1998-05-30 1999-05-27 信号照合装置 Pending JP2000011181A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19824354A DE19824354A1 (de) 1998-05-30 1998-05-30 Vorrichtung zur Verifizierung von Signalen
DE19824354:5 1998-05-30

Publications (1)

Publication Number Publication Date
JP2000011181A true JP2000011181A (ja) 2000-01-14

Family

ID=7869487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148933A Pending JP2000011181A (ja) 1998-05-30 1999-05-27 信号照合装置

Country Status (4)

Country Link
US (1) US6317507B1 (ja)
EP (1) EP0964390A3 (ja)
JP (1) JP2000011181A (ja)
DE (1) DE19824354A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7890158B2 (en) 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
US6560352B2 (en) 1999-10-08 2003-05-06 Lumidigm, Inc. Apparatus and method of biometric identification or verification of individuals using optical spectroscopy
US6628809B1 (en) * 1999-10-08 2003-09-30 Lumidigm, Inc. Apparatus and method for identification of individuals by near-infrared spectrum
US8666757B2 (en) * 1999-07-28 2014-03-04 Fair Isaac Corporation Detection of upcoding and code gaming fraud and abuse in prospective payment healthcare systems
US6816605B2 (en) 1999-10-08 2004-11-09 Lumidigm, Inc. Methods and systems for biometric identification of individuals using linear optical spectroscopy
US7110885B2 (en) * 2001-03-08 2006-09-19 Dnaprint Genomics, Inc. Efficient methods and apparatus for high-throughput processing of gene sequence data
ATE492001T1 (de) 2003-04-04 2011-01-15 Lumidigm Inc Multispektralbiometriesensor
US7668350B2 (en) 2003-04-04 2010-02-23 Lumidigm, Inc. Comparative texture analysis of tissue for biometric spoof detection
US7751594B2 (en) 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US8787630B2 (en) 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
US7801338B2 (en) 2005-04-27 2010-09-21 Lumidigm, Inc. Multispectral biometric sensors
US8355545B2 (en) 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
JP2009544108A (ja) 2006-07-19 2009-12-10 ルミダイム インコーポレイテッド 多重生体認証のマルチスペクトル画像
US8175346B2 (en) 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
US7995808B2 (en) 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
US7801339B2 (en) 2006-07-31 2010-09-21 Lumidigm, Inc. Biometrics with spatiospectral spoof detection
US7804984B2 (en) 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
EP2120713A2 (en) 2007-03-21 2009-11-25 Lumidigm, Inc. Biometrics based on locally consistent features
EP2471023A1 (en) 2009-08-26 2012-07-04 Lumidigm, Inc. Multiplexed biometric imaging and dual-imager biometric sensor
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
CN101930608A (zh) * 2010-08-26 2010-12-29 北京交通大学 篡改图像的盲检测方法和系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226091A (en) * 1985-11-05 1993-07-06 Howell David N L Method and apparatus for capturing information in drawing or writing
EP0421025B1 (en) * 1989-10-02 1999-05-06 Koninklijke Philips Electronics N.V. Data processing system with a touch screen and a digitizing tablet, both integrated in an input device
GB2237916A (en) * 1989-11-10 1991-05-15 Nat Res Dev Signature verification
ES2141824T3 (es) * 1993-03-25 2000-04-01 British Telecomm Reconocimiento de voz con deteccion de pausas.
DE19508711A1 (de) * 1995-03-10 1996-09-12 Siemens Ag Verfahren zur Erkennung einer Signalpause zwischen zwei Mustern, welche in einem zeitvarianten Meßsignal vorhanden sind
US5687287A (en) * 1995-05-22 1997-11-11 Lucent Technologies Inc. Speaker verification method and apparatus using mixture decomposition discrimination
US5839103A (en) * 1995-06-07 1998-11-17 Rutgers, The State University Of New Jersey Speaker verification system using decision fusion logic
EP0768617A3 (en) * 1995-10-16 1997-07-23 At & T Corp Intermediate and segmental method of handwriting recognition
US5995927A (en) * 1997-03-14 1999-11-30 Lucent Technologies Inc. Method for performing stochastic matching for use in speaker verification

Also Published As

Publication number Publication date
EP0964390A2 (de) 1999-12-15
EP0964390A3 (de) 1999-12-29
US6317507B1 (en) 2001-11-13
DE19824354A1 (de) 1999-12-02

Similar Documents

Publication Publication Date Title
JP2000011181A (ja) 信号照合装置
JP4728972B2 (ja) インデキシング装置、方法及びプログラム
Matthews et al. Extraction of visual features for lipreading
JP3584458B2 (ja) パターン認識装置およびパターン認識方法
JPH02238495A (ja) 時系列信号認識装置
Sahoo et al. Emotion recognition from audio-visual data using rule based decision level fusion
WO2002029784A1 (en) Audio visual speech processing
WO2006024117A1 (en) Method for automatic speaker recognition
KR20010039771A (ko) 시청각적 발성자 인식 및 발성 검증 방법 및 장치
Scanlon et al. Feature analysis for automatic speechreading
EP1005019B1 (en) Segment-based similarity measurement method for speech recognition
CA2304747C (en) Pattern recognition using multiple reference models
Battaglino et al. Acoustic context recognition using local binary pattern codebooks
JP4652232B2 (ja) 話者の圧縮表現用の音声信号の分析のための方法およびシステム
US6134525A (en) Identification-function calculator, identification-function calculating method, identification unit, identification method, and speech recognition system
JP2000030069A (ja) 信号照合装置
Luque et al. Audio, video and multimodal person identification in a smart room
JP2000011180A (ja) 信号照合装置
KR100795947B1 (ko) 치열영상을 이용한 생체인식 시스템과 그 인식 방법 및이를 기록한 기록매체
Han et al. An on-line signature verification system using multi-template matching approaches
Soltane Face, voice and signature multi-modal biometric verification fusion systems
Teoh et al. Nearest neighbourhood classifiers in biometric fusion
KR20040098661A (ko) 패턴 인식
Ding et al. Speaker Identity Recognition by Acoustic and Visual Data Fusion through Personal Privacy for Smart Care and Service Applications.
Carrasco et al. Bimodal biometric person identification system under perturbations