JP2000009935A - Production of phase different plate - Google Patents

Production of phase different plate

Info

Publication number
JP2000009935A
JP2000009935A JP10178924A JP17892498A JP2000009935A JP 2000009935 A JP2000009935 A JP 2000009935A JP 10178924 A JP10178924 A JP 10178924A JP 17892498 A JP17892498 A JP 17892498A JP 2000009935 A JP2000009935 A JP 2000009935A
Authority
JP
Japan
Prior art keywords
resin film
film
thermoplastic resin
stretching
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10178924A
Other languages
Japanese (ja)
Other versions
JP3527639B2 (en
Inventor
Hiroyuki Abe
裕幸 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP17892498A priority Critical patent/JP3527639B2/en
Publication of JP2000009935A publication Critical patent/JP2000009935A/en
Application granted granted Critical
Publication of JP3527639B2 publication Critical patent/JP3527639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of phase difference film by which a phase difference film having uniform retardation all over the film can be stably produced with high productivity in the production process of the phase difference film including a stretching process even when the thermoplastic resin film before stretching has large difference in thickness. SOLUTION: The producing device of a phase difference film used is equipped with a heating zone 2, cooling zone 3 and stretching zone 4 in this order. In the heating zone 1, the thermoplastic resin film is heated to a specified temp. between the glass transition temp. (Tg) of the film and (Tg+60 deg.C). Then the film is cooled to a temp. lower by 10 to 30 deg.C than the film temp. above described for 1 to 20 sec in the cooling zone 3. Further, in the stretching zone 4, the film is stretched in such a manner that stretching of the film is started while the film is cooled for 1 to 20 sec to a temp. lower by 10 to 30 deg.C than the temp. of the thermoplastic resin film in the cooling zone and that the temp. of the film is controlled to (Tg-30 deg.C) to (Tg+20 deg.C) when stretching is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、位相差フィルムの
製造方法に関し、特に液晶表示装置等の位相差を補償す
るための位相差フィルムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a retardation film, and more particularly to a method for manufacturing a retardation film for compensating a retardation of a liquid crystal display device or the like.

【0002】[0002]

【従来の技術】従来、ツイステッドネマチック(TN)
液晶表示装置やスーパーツイステッドネマチック(ST
N)液晶表示装置が各種OA機器の表示装置に用いられ
ている。しかし、上記液晶表示装置には、液晶セルで生
じる位相差により表示画面が青色や黄色等に着色すると
いう欠点があった。そのため、これらの着色を位相差フ
ィルムを用いて解消する方法が採られている。
2. Description of the Related Art Conventionally, twisted nematic (TN)
Liquid crystal display and super twisted nematic (ST
N) Liquid crystal display devices are used for display devices of various OA devices. However, the above-mentioned liquid crystal display device has a disadvantage that the display screen is colored in blue, yellow or the like due to a phase difference generated in the liquid crystal cell. Therefore, a method of eliminating these colorings by using a retardation film has been adopted.

【0003】通常、上記位相差フィルムは、例えば、特
開平2−191904号公報や特開平2−42406号
公報に示されるように、熱可塑性樹脂フィルムを縦一軸
延伸や横一軸延伸して得られる。上記着色を解消するた
めの着色補償は、一軸延伸熱可塑性樹脂フィルムの非常
に狭い範囲の位相差において最適値を有するものであ
る。上記着色補償に関し、レターデーション値で表され
る位相差特性は、熱可塑性樹脂フィルムの屈折率の異方
性、即ち、複屈折率をΔn、熱可塑性樹脂フィルムの厚
さをdとした場合、Δn×dで表されるものであるの
で、上記液晶表示装置の全面にわたる色ムラやコントラ
ストのムラをなくするためには、該一軸延伸熱可塑性樹
脂フィルムの全面にわたって均一なレターデーション値
を示すものであることが求められる。
[0003] Usually, the above retardation film is obtained by, for example, stretching a thermoplastic resin film longitudinally or uniaxially as shown in JP-A-2-191904 or JP-A-2-42406. . The coloring compensation for eliminating the coloring has an optimum value in a very narrow range of retardation of the uniaxially stretched thermoplastic resin film. Regarding the above color compensation, the retardation characteristic represented by the retardation value is anisotropy of the refractive index of the thermoplastic resin film, that is, when the birefringence is Δn and the thickness of the thermoplastic resin film is d, Since it is represented by Δnxd, in order to eliminate color unevenness and contrast unevenness over the entire surface of the liquid crystal display device, a film showing a uniform retardation value over the entire surface of the uniaxially stretched thermoplastic resin film. Is required.

【0004】従来、レターデーション値が均一な位相差
フィルムを得るために、溶液キャスト法によって作製さ
れる厚み精度、表面均一性に優れた熱可塑性樹脂フィル
ムが延伸原反として使用されている。更に、特開平8−
122526号公報には、溶剤含有量が固形分基準で
0.5〜7重量%の延伸原反を用いる方法が開示されて
いる。
Conventionally, in order to obtain a retardation film having a uniform retardation value, a thermoplastic resin film produced by a solution casting method and having excellent thickness accuracy and surface uniformity has been used as a raw stretched film. Further, Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 122526 discloses a method using a stretched raw material having a solvent content of 0.5 to 7% by weight on a solid basis.

【0005】しかしながら、特開平8−122526号
公報に開示された方法では、延伸原反として用いられる
熱可塑性樹脂フィルムの厚さのバラツキが大きいと、こ
の厚さのバラツキに比例した大きなレターデーション値
のバラツキを示す位相差フィルムとなってしまい、これ
らの位相差フィルムを用いた液晶表示装置は、目視で容
易に判別し得る程度の色ムラが存在するものであった。
又、上記熱可塑性樹脂フィルムは、溶液キャスト法によ
って作製されるものであるので、生産性も低い。
However, according to the method disclosed in Japanese Patent Application Laid-Open No. 8-122526, if the thickness of a thermoplastic resin film used as a stretched raw material has a large variation, a large retardation value proportional to the thickness variation is obtained. The liquid crystal display devices using these retardation films have color unevenness that can be easily discriminated visually.
Further, since the thermoplastic resin film is produced by a solution casting method, productivity is low.

【0006】[0006]

【発明が解決しようとする課題】本発明は叙上の事実に
鑑みなされたものであって、その目的とするところは、
延伸前の熱可塑性樹脂フィルムに厚さの大きいバラツキ
があっても、延伸工程を含む位相差フィルムの製造工程
において、全面にわたりレターデーション値が均一であ
る位相差フィルムを安定して、且つ、高い生産性で製造
し得る位相差フィルムの製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above facts, and its object is to
Even if there is a large variation in thickness of the thermoplastic resin film before stretching, in the production process of the retardation film including the stretching process, the retardation film having a uniform retardation value over the entire surface is stable and high. An object of the present invention is to provide a method for producing a retardation film that can be produced with high productivity.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明の位
相差フィルムの製造方法は、加熱ゾーン、冷却ゾーン及
び延伸ゾーンを上記順序で備えた位相差フィルムの製造
装置を用い、先ず、加熱ゾーンにおいて、熱可塑性樹脂
フィルムは、そのガラス転移点温度(Tg)〜(Tg+
60℃)の一定温度になるように加熱され、次いで、冷
却ゾーンにおいて、熱可塑性樹脂フィルムは、厚さの厚
薄に応じた微小な部分間に温度差が生じるような冷却手
段で冷却され、延伸ゾーンにおいて、熱可塑性樹脂フィ
ルムは、更に、冷却されながら延伸が開始され、延伸終
了時の熱可塑性樹脂フィルムの温度が(Tg−30℃)
〜(Tg+20℃)となるように延伸することを特徴と
する。
According to a first aspect of the present invention, there is provided a method for manufacturing a retardation film, comprising a heating apparatus, a cooling zone, and a stretching zone in the above-described order. In the zone, the thermoplastic resin film has a glass transition temperature (Tg) to (Tg +
60 ° C.), and then, in a cooling zone, the thermoplastic resin film is cooled by a cooling means that generates a temperature difference between minute portions corresponding to the thickness, and stretched. In the zone, the thermoplastic resin film is further stretched while being cooled, and the temperature of the thermoplastic resin film at the end of stretching is (Tg−30 ° C.)
To (Tg + 20 ° C.).

【0008】本発明で使用される位相差フィルムの製造
装置における加熱ゾーン、冷却ゾーン及び延伸ゾーン
は、その中を移送される熱可塑性樹脂フィルムは、連続
的に加熱され、冷却され、更に冷却されながら延伸され
る各々の工程が存することを意味するものであって、こ
れらのゾーンの境界には若干の中間的な温度領域が存す
ることはやむを得ない。これらの中間的な温度領域を可
及的少なくするための手段としては、特に限定されるも
のではないが、例えば、上記各ゾーン間を、熱可塑性樹
脂フィルムが移送される狭隘なスリット状通路を設ける
他は、断熱性隔壁で遮熱する方法、エアカーテンで遮熱
する方法、これらを組み合わせた方法等が挙げられる。
The heating zone, cooling zone and stretching zone in the retardation film manufacturing apparatus used in the present invention are such that the thermoplastic resin film transferred therein is continuously heated, cooled, and further cooled. This means that each step of stretching is performed, and it is inevitable that some intermediate temperature region exists at the boundary of these zones. Means for reducing these intermediate temperature regions as much as possible are not particularly limited.For example, a narrow slit-like passage through which the thermoplastic resin film is transferred between the respective zones may be used. Other than the method, a method of shielding heat with a heat insulating partition, a method of shielding heat with an air curtain, a method of combining these, and the like can be given.

【0009】本発明で使用される熱可塑性樹脂フィルム
は、延伸処理することによって複屈折性を示す熱可塑性
樹脂フィルムであれば特に限定されるものではないが、
例えば、セルロース系樹脂、塩化ビニル系樹脂、ポリカ
ーボネート系樹脂、ポリスチレン系樹脂、アクリロニト
リル系樹脂、オレフィン系樹脂、ポリメタクリル酸メチ
ル系樹脂、ポリサルホン系樹脂、ポリアリレート系樹
脂、ポリエーテルサルホン系樹脂、ポリノルボルネン系
樹脂等の熱可塑性樹脂からなるフィルムが挙げられる。
The thermoplastic resin film used in the present invention is not particularly limited as long as it is a thermoplastic resin film which exhibits birefringence by stretching.
For example, cellulose resin, vinyl chloride resin, polycarbonate resin, polystyrene resin, acrylonitrile resin, olefin resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, polyether sulfone resin, A film made of a thermoplastic resin such as a polynorbornene-based resin may be used.

【0010】本発明において、熱可塑性樹脂フィルム
は、先ず、加熱ゾーンにおいて、熱可塑性樹脂フィルム
がTg〜(Tg+60℃)の一定温度になるように加熱
される。尚、本発明における熱可塑性樹脂フィルムの温
度とは該熱可塑性樹脂フィルムの表面を指すものである
(以下、同じ)。加熱ゾーンの出口における熱可塑性樹
脂フィルムの温度を上記Tg〜(Tg+60℃)の一定
温度に保持することによって、熱可塑性樹脂フィルムの
粘性のバラツキが小さくなり、後述する冷却されながら
延伸された熱可塑性樹脂フィルムの厚さのバラツキが小
さくなる。
In the present invention, the thermoplastic resin film is first heated in a heating zone so that the thermoplastic resin film has a constant temperature of Tg to (Tg + 60 ° C.). In addition, the temperature of the thermoplastic resin film in the present invention indicates the surface of the thermoplastic resin film (the same applies hereinafter). By keeping the temperature of the thermoplastic resin film at the outlet of the heating zone at the above-mentioned constant temperature of Tg to (Tg + 60 ° C.), the dispersion of the viscosity of the thermoplastic resin film is reduced, and the thermoplastic resin stretched while being cooled, which will be described later. Variations in the thickness of the resin film are reduced.

【0011】上記加熱ゾーンの出口における熱可塑性樹
脂フィルムの温度がTgより低いと、後述する延伸ゾー
ンにおける延伸時に、熱可塑性樹脂フィルムに生じる剪
断応力が該熱可塑性樹脂フィルムの強度より大きくなる
ため、脆性破壊が生じ、延伸中の熱可塑性樹脂フィルム
が破断するおそれがあり、又、(Tg+60℃)より高
いと熱可塑性樹脂フィルムの粘度が低くなり、搬送され
る熱可塑性樹脂フィルムが垂れ下がってトラブルを起こ
したり、後述する延伸ゾーンにおいて延伸効果が得られ
なくなるおそれがある。
If the temperature of the thermoplastic resin film at the outlet of the heating zone is lower than Tg, the shear stress generated in the thermoplastic resin film at the time of stretching in the stretching zone described later becomes larger than the strength of the thermoplastic resin film. Brittle fracture may occur, and the thermoplastic resin film being stretched may be broken. If the temperature is higher than (Tg + 60 ° C.), the viscosity of the thermoplastic resin film becomes low, and the thermoplastic resin film to be conveyed hangs to cause trouble. Or the stretching effect may not be obtained in the stretching zone described later.

【0012】加熱ゾーンにおける加熱手段は、特に限定
されるものではないが、例えば、熱風、熱風及び冷風の
併用、マイクロ波や遠赤外線等の電磁波ヒーター類、温
度調節された加熱ロール、ヒートパイプロール、温度調
節された加熱金属ベルト等が挙げられる。
The heating means in the heating zone is not particularly limited, but includes, for example, hot air, a combination of hot air and cold air, electromagnetic heaters such as microwaves and far-infrared rays, temperature-controlled heating rolls, heat pipe rolls. And a heated metal belt whose temperature has been adjusted.

【0013】次いで、そのTg〜(Tg+60℃)の一
定温度に保持された熱可塑性樹脂フィルムは、厚さの厚
薄に応じた微小な部分間に温度差が生じるような冷却手
段で冷却される。上記熱可塑性樹脂フィルムは、その厚
さの厚薄に応じた微小な部分間の熱容量の違いにより、
厚さの厚い部分は、相対的に冷却され難く、厚さの薄い
部分は、相対的に冷却され易いので、上記冷却によって
熱可塑性樹脂フィルムの厚さの厚薄に応じた微小な部分
間に温度差が生じさせることができる。
Next, the thermoplastic resin film kept at a constant temperature of Tg to (Tg + 60 ° C.) is cooled by a cooling means that generates a temperature difference between minute portions corresponding to the thickness. The thermoplastic resin film, due to the difference in heat capacity between minute parts according to the thickness of the thickness,
The thick part is relatively hard to cool, and the thin part is relatively easy to cool, so that the cooling causes the temperature between the minute parts corresponding to the thickness of the thermoplastic resin film to be reduced. Differences can be made.

【0014】上記熱可塑性樹脂フィルムの冷却手段は、
余り急激に冷却されると、次の延伸工程に到るまでに延
伸適温以下の温度になるおそれがあり、余り緩やかに冷
却されると、厚さの厚薄に応じた微小な部分間に温度差
が生じないおそれがあるので、このような状態にならな
い冷却速度及び冷却温度が選ばれ、厚さの厚薄に応じた
微小な部分間に温度差が生じるような冷却手段で冷却さ
れる。
The means for cooling the thermoplastic resin film includes:
If cooled too rapidly, the temperature may become lower than the appropriate temperature for stretching before reaching the next stretching step, and if cooled too slowly, the temperature difference between minute portions corresponding to the thickness is small. Therefore, a cooling rate and a cooling temperature that do not cause such a state are selected, and cooling is performed by a cooling unit that generates a temperature difference between minute portions corresponding to the thickness.

【0015】冷却ゾーンにおける、冷却手段は、特に限
定されるものではないが、例えば、熱風、熱風及び冷風
の併用、マイクロ波や遠赤外線等の電磁波ヒーター類、
温度調節された加熱ロール、ヒートパイプロール、温度
調節された加熱金属ベルト等が挙げられる。
The cooling means in the cooling zone is not particularly limited. For example, hot air, a combination of hot air and cold air, electromagnetic heaters such as microwaves and far infrared rays,
A temperature-controlled heating roll, a heat pipe roll, a temperature-controlled heating metal belt, and the like are included.

【0016】第3工程の延伸ゾーンにおいて、熱可塑性
樹脂フィルムは、更に、冷却されながら延伸が開始さ
れ、延伸終了時の熱可塑性樹脂フィルムの温度が(Tg
−30℃)〜(Tg+20℃)となるように延伸され
る。
In the stretching zone of the third step, stretching of the thermoplastic resin film is further started while being cooled, and the temperature of the thermoplastic resin film at the end of stretching is (Tg).
The film is stretched so as to have a temperature of −30 ° C. to (Tg + 20 ° C.).

【0017】延伸ゾーンにおいて、熱可塑性樹脂フィル
ムは、更に、冷却されるが、その冷却の目的は、冷却ゾ
ーンにおいて熱可塑性樹脂フィルムが、その相対的に厚
さの厚い箇所と厚さの薄い箇所との間に生じた温度差を
維持し、この状態で延伸が開始されようにしようとする
ことにある。上記目的を果たし得る冷却であれば、その
手段は特に限定されるものではないが、好ましくは、1
〜20秒間で、冷却ゾーンにおける熱可塑性樹脂フィル
ムの温度より10〜30℃低い温度に冷却する方法が採
られる。
In the stretching zone, the thermoplastic resin film is further cooled. The purpose of the cooling is to make the thermoplastic resin film in the cooling zone have relatively thick and thin portions. Is to maintain the temperature difference generated between them and to try to start stretching in this state. The means for cooling is not particularly limited as long as it can achieve the above-mentioned purpose.
A method of cooling to a temperature lower by 10 to 30 ° C. than the temperature of the thermoplastic resin film in the cooling zone in 20 to 20 seconds is adopted.

【0018】延伸ゾーンにおける、冷却手段は、特に限
定されるものではないが、例えば、前工程で用いられた
熱風、熱風及び冷風の併用、マイクロ波や遠赤外線等の
電磁波ヒーター類、温度調節された加熱ロール、ヒート
パイプロール、温度調節された加熱金属ベルト等が同様
に挙げられる。
The cooling means in the stretching zone is not particularly limited, but includes, for example, hot air used in the previous step, a combination of hot air and cold air, electromagnetic heaters such as microwaves and far infrared rays, and temperature control. Similarly, a heating roll, a heat pipe roll, a temperature-controlled heating metal belt, and the like can also be used.

【0019】このように2段階に冷却されながら延伸さ
れた熱可塑性樹脂フィルムは、延伸終了時のフィルムの
温度が(Tg−30℃)〜(Tg+20℃)となるよう
に延伸ゾーンにおける冷却条件が設定される。
As described above, the thermoplastic resin film stretched while being cooled in two stages is subjected to cooling conditions in the stretching zone such that the temperature of the film at the time of completion of stretching is (Tg−30 ° C.) to (Tg + 20 ° C.). Is set.

【0020】延伸終了時のフィルムの温度が(Tg−3
0℃)未満であると、延伸過程にある熱可塑性樹脂フィ
ルムに部分的な応力集中があり、不均一な延伸がなされ
るおそれがあり、(Tg+20℃)を超えると、アニー
リングされることによって延伸効果が減殺され、所望レ
ターデーション値が得られないおそれがあるので、上記
範囲に限定される。
When the temperature of the film at the end of stretching is (Tg-3)
If the temperature is lower than (Tg + 20 ° C.), the thermoplastic resin film in the stretching process may have a partial stress concentration and may be unevenly stretched. The effect is diminished, and the desired retardation value may not be obtained.

【0021】延伸終了直後のフィルムの温度を、好まし
くは1秒以内、より好ましくは0.5秒以内、更に好ま
しくは0.25秒以内に熱可塑性樹脂フィルムの(Tg
−20℃)に急冷して熱可塑性樹脂フィルムの分子配向
が凍結される。このように延伸終了直後の熱可塑性樹脂
フィルムを急冷し、アニーリングによる延伸応力の過度
の緩和を抑制することによって、安定してバラツキの少
ない所望レターデーション値を得ることができる。
The temperature of the film immediately after the completion of stretching is preferably within 1 second, more preferably within 0.5 seconds, and even more preferably within 0.25 seconds.
(−20 ° C.) to freeze the molecular orientation of the thermoplastic resin film. As described above, the thermoplastic resin film immediately after the completion of the stretching is rapidly cooled to suppress the excessive relaxation of the stretching stress due to the annealing, so that a desired retardation value with less variation can be obtained stably.

【0022】延伸終了直後の熱可塑性樹脂フィルムの急
冷手段は、特に限定されるものではないが、例えば、前
記する延伸ゾーンにおける冷却手段から選ばれてもよい
が、これに加えて、冷凍機を備えた冷却ロールが追加使
用されてもよい。
The means for quenching the thermoplastic resin film immediately after the completion of stretching is not particularly limited. For example, it may be selected from the cooling means in the above-mentioned stretching zone. A provided cooling roll may be additionally used.

【0023】延伸ゾーンにおける、延伸手段は、特に限
定されるものではないが、例えば、ロールによる縦一軸
延伸方法、テンターによる横一軸延伸方法、これらを組
み合わせた二軸延伸方法等が挙げられる。又、延伸手段
における延伸倍率は、得られる位相差フィルムの用途に
よって決められるものであって特に限定されるものでは
ないが、例えば、液晶表示装置用位相差フィルムの場合
には、好ましくは1.1〜2倍程度である。
The stretching means in the stretching zone is not particularly limited, and examples thereof include a longitudinal uniaxial stretching method using a roll, a horizontal uniaxial stretching method using a tenter, and a biaxial stretching method combining these. The stretching ratio in the stretching means is determined depending on the use of the obtained retardation film and is not particularly limited. For example, in the case of a retardation film for a liquid crystal display device, preferably 1. It is about 1-2 times.

【0024】請求項2記載の発明の位相差フィルムの製
造方法は、請求項1記載の発明の位相差フィルムの製造
方法において、上記冷却ゾーンにおける冷却手段が、1
〜20秒間で、上記熱可塑性樹脂フィルム温度より10
〜30℃低い温度に冷却されるものであり、上記延伸ゾ
ーンにおける冷却手段が、更に、1〜20秒間で、冷却
ゾーンにおける熱可塑性樹脂フィルムの温度より10〜
30℃低い温度に冷却しながら延伸が開始されるもので
ある。
According to a second aspect of the present invention, in the method for manufacturing a retardation film according to the first aspect, the cooling means in the cooling zone comprises one of:
In about 20 seconds, the temperature of the thermoplastic resin film is 10
The cooling means in the stretching zone further cools the thermoplastic resin film in the cooling zone by 1 to 20 seconds for 1 to 20 seconds.
Stretching is started while cooling to a temperature lower by 30 ° C.

【0025】図1は、本発明の上記冷却手段の1〜20
秒間で、上記熱可塑性樹脂フィルム温度より10〜30
℃低い温度に冷却する冷却速度を示し、図2に示される
これよりも急激な35℃/秒及び緩やかな0.3℃/秒
の冷却速度で冷却する冷却方法とを対比し、熱可塑性樹
脂フィルムの相対的に厚さの厚い箇所と薄い箇所に生じ
る温度差を縦軸に、時間を横軸にして描いた温度曲線を
示した。
FIG. 1 shows the cooling means 1 to 20 of the present invention.
In seconds, the temperature of the thermoplastic resin film is 10 to 30
2C shows a cooling rate for cooling to a temperature lower than the cooling rate of 35 ° C./sec which is sharper than that shown in FIG. 2 and a cooling rate of 0.3 ° C./sec which is slower. The temperature curve drawn with the vertical axis representing the temperature difference between the relatively thick and thin portions of the film and the horizontal axis representing the time is shown.

【0026】上記加熱された熱可塑性樹脂フィルムは、
0.5℃/秒未満の緩やかな冷却速度で冷却すると、図
2より明らかなように、熱可塑性樹脂フィルムの相対的
に厚さの厚い箇所と薄い箇所に殆ど温度差を示さない。
又、30℃/秒を超える極めて急速な冷却速度で冷却す
ると、図2より明らかなように、熱可塑性樹脂フィルム
は短時間で各部の温度が均一に冷却されてしまって、結
果として熱可塑性樹脂フィルムの相対的に厚さの厚い箇
所と薄い箇所に温度差が生じない。厚さのバラツキが比
較的大きく、且つ、上記のように熱可塑性樹脂フィルム
の相対的に厚さの厚い箇所と薄い箇所に殆ど温度差がな
い延伸原反は、緩やかな冷却速度にしろ、急速な冷却速
にしろ、冷却されながら延伸される次工程で、上記の厚
さのバラツキに比例した比較的大きなバラツキを持った
レターデーション値を示す位相差フィルムとなってしま
う。
The above heated thermoplastic resin film is
When the cooling is performed at a slow cooling rate of less than 0.5 ° C./sec, as shown in FIG. 2, there is almost no difference in temperature between relatively thick and thin portions of the thermoplastic resin film.
Further, when the cooling is performed at an extremely rapid cooling rate exceeding 30 ° C./sec, the temperature of each part of the thermoplastic resin film is uniformly cooled in a short time as apparent from FIG. There is no temperature difference between relatively thick and thin portions of the film. The stretched raw material, which has a relatively large variation in thickness and has almost no temperature difference between the relatively thick and thin portions of the thermoplastic resin film as described above, can be cooled at a slow cooling rate, At any cooling speed, the retardation film having a relatively large variation in retardation value in the next step of stretching while being cooled will have a relatively large variation proportional to the thickness variation.

【0027】上記延伸ゾーンにおける冷却速度は、前記
する冷却ゾーンにおけると同様の理由によって1〜20
秒間で、冷却ゾーンにおける熱可塑性樹脂フィルムの温
度より10〜30℃低い温度に冷却されながら延伸が開
始される。このように2段階に冷却されながら延伸され
た熱可塑性樹脂フィルムは、延伸終了時のフィルムの温
度が(Tg−30℃)〜(Tg+20℃)となるように
延伸ゾーンにおける冷却条件が設定される。
The cooling rate in the above-mentioned stretching zone is 1 to 20 for the same reason as in the above-mentioned cooling zone.
In a second, the stretching is started while being cooled to a temperature lower by 10 to 30 ° C. than the temperature of the thermoplastic resin film in the cooling zone. In the thermoplastic resin film stretched while being cooled in two stages in this way, the cooling conditions in the stretching zone are set such that the temperature of the film at the time of completion of stretching is (Tg−30 ° C.) to (Tg + 20 ° C.). .

【0028】請求項3記載の発明の位相差フィルムの製
造方法は、請求項1又は2記載の位相差フィルムの製造
方法における延伸された熱可塑性樹脂フィルムを(Tg
−20℃)以下の温度に急冷することを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing a retardation film, comprising the steps of:
(−20 ° C.) or less.

【0029】延伸ゾーンにおける熱可塑性樹脂フィルム
は、図3に、横軸に延伸工程からアニーリン工程にわた
る時間、縦軸に熱可塑性樹脂フィルムに加わる応力と
し、その厚さの厚薄に応じた微小部分を「厚い」と「薄
い」の2つに分けて熱可塑性樹脂フィルム応力プロファ
イルを模式的グラフに示したが、一般に、延伸直後で
は、「厚い」に比して「薄い」部分は、応力が大きくな
るが、アニーリン工程において、応力緩和速度が大きく
なり、延伸直後に較べて応力の差は小さくなる傾向を有
する。
In FIG. 3, the horizontal axis represents the time from the stretching step to the annealing step, the vertical axis represents the stress applied to the thermoplastic resin film, and the fine portion corresponding to the thickness of the thermoplastic resin film is shown in FIG. The schematic profile of the thermoplastic resin film stress profile is shown in two graphs, “thick” and “thin”. In general, immediately after stretching, the “thin” portion has a larger stress than the “thick” portion. However, in the annealing step, the stress relaxation rate increases, and the difference in stress tends to be smaller than immediately after stretching.

【0030】本発明の位相差フィルムの製造方法は、延
伸された熱可塑性樹脂フィルムを(Tg−20℃)以下
の温度に急冷することによって、熱可塑性樹脂フィルム
の厚さの厚薄に応じた微小な部分間の上記延伸直後の応
力差を凍結し、アニーリンによる上記応力差の低減を抑
制し、上記応力に比例して生じる複屈折率Δn差を保持
させる。又、上記応力に比例して生じる複屈折率Δn
は、延伸温度に反比例するものであるので、微小な部分
間に厚さの厚薄が存し、上記微小な部分間に厚さの厚薄
に応じた温度差を有する熱可塑性樹脂フィルムは、Δn
×dで表されるレターデーション値をより均一にするこ
とができる。
According to the method for producing a retardation film of the present invention, the stretched thermoplastic resin film is rapidly cooled to a temperature of (Tg-20 ° C.) or less, so that the thickness of the thermoplastic resin film can be reduced. The stress difference immediately after the stretching between the various parts is frozen, the reduction in the stress difference due to annealing is suppressed, and the birefringence index Δn difference generated in proportion to the stress is maintained. Further, the birefringence index Δn generated in proportion to the stress
Is inversely proportional to the stretching temperature, there is a thickness difference between the minute portions, and the thermoplastic resin film having a temperature difference between the minute portions according to the thickness difference is Δn
The retardation value represented by xd can be made more uniform.

【0031】請求項4記載の発明の位相差フィルムの製
造方法は、請求項1、2又は3記載の位相差フィルムの
製造方法において、上記熱可塑性樹脂フィルムがポリサ
ルフォン系樹脂フィルムである。
According to a fourth aspect of the present invention, in the method for producing a retardation film according to the first, second or third aspect, the thermoplastic resin film is a polysulfone resin film.

【0032】請求項1記載の発明の位相差フィルムの製
造方法は、叙上の如く、加熱ゾーンにおいて、熱可塑性
樹脂フィルムのTg〜(Tg+60℃)の一定温度に加
熱された熱可塑性樹脂フィルムを、冷却ゾーン及び延伸
ゾーンで2段に冷却し、上記のように冷却しながら延伸
が開始され、延伸終了時の熱可塑性樹脂フィルムの温度
が(Tg−30℃)〜(Tg+20℃)となるように延
伸されるものであるので、延伸時に熱可塑性樹脂フィル
ムの相対的に厚さの厚い箇所と薄い箇所に温度差が存
し、厚さの厚い部分では、Δnは相対的に小さく、厚さ
の薄い箇所では、Δnは相対的に大きくなって、全体的
にΔn×dで表されるレターデーション値が平準化さ
れ、バラツキの少ない均質な位相差特性を示す位相差フ
ィルムが得られるものと推定される。
In the method for producing a retardation film according to the first aspect of the present invention, as described above, in the heating zone, the thermoplastic resin film heated to a constant temperature of Tg to (Tg + 60 ° C.) is used. Then, cooling is performed in two stages in a cooling zone and a stretching zone, and stretching is started while cooling as described above, so that the temperature of the thermoplastic resin film at the end of stretching becomes (Tg−30 ° C.) to (Tg + 20 ° C.). Therefore, there is a temperature difference between a relatively thick portion and a thin portion of the thermoplastic resin film at the time of stretching. In the thick portion, Δn is relatively small, and the thickness is small. In a thin portion, Δn becomes relatively large, the retardation value represented by Δn × d is leveled as a whole, and a retardation film showing uniform retardation characteristics with little variation can be obtained. It is constant.

【0033】従って、本発明で用いられる熱可塑性樹脂
フィルムは、溶液キャスティング法で調製された比較的
厚さのバラツキの少ない熱可塑性樹脂フィルムに限定さ
れることなく、Tダイ法等による溶融キャスティング法
で調製された熱可塑性樹脂フィルムであっても叙上のよ
うにバラツキの少ない均質な位相差特性を示す位相差フ
ィルムを得ることができ、延伸時に過大な剪断応力によ
って脆性破壊が生じ、延伸中に熱可塑性樹脂フィルムが
破断したり、逆に、熱可塑性樹脂フィルムの粘度が下が
って搬送中に垂れ下がってトラブルを起こすことなく、
生産性高く、且つ、安定して位相差フィルムを生産する
ことができる。
Therefore, the thermoplastic resin film used in the present invention is not limited to a thermoplastic resin film prepared by a solution casting method and having a relatively small variation in thickness, but may be formed by a melt casting method such as a T-die method. Even with the thermoplastic resin film prepared in the above, it is possible to obtain a retardation film showing uniform retardation characteristics with little variation as described above, and brittle fracture occurs due to excessive shear stress during stretching, and during stretching. The thermoplastic resin film breaks or, conversely, the viscosity of the thermoplastic resin film drops and does not hang down during transport, causing trouble,
A retardation film can be stably produced with high productivity.

【0034】請求項2記載の発明の位相差フィルムの製
造方法は、叙上の如く、請求項1記載の発明の位相差フ
ィルムの製造方法において、上記冷却ゾーンにおける冷
却方法が、1〜20秒間で、上記フィルム温度より10
〜30℃低い温度に冷却されるものであり、上記延伸ゾ
ーンにおける冷却方法が、更に、1〜20秒間で、冷却
ゾーンにおける熱可塑性樹脂フィルムの温度より10〜
30℃低い温度に冷却しながら延伸が開始されるもので
あるので、冷却ゾーン及び延伸ゾーンにおいて、熱可塑
性樹脂フィルムは、相対的に厚さの厚い箇所は高温に保
たれ、薄い箇所は早く冷却されて低温となり、これらの
厚さの厚い箇所と厚さの薄い箇所との間に温度差を生じ
るように冷却されており、このように冷却しながら延伸
が開始されるものであるので、請求項1記載の発明の位
相差フィルムの製造方法と同様に、生産性高く、且つ、
安定して位相差フィルムを生産することができるもので
ある。
As described above, the method for producing a retardation film according to the second aspect of the present invention is the method for producing a retardation film according to the first aspect, wherein the cooling method in the cooling zone is performed for 1 to 20 seconds. And the above film temperature is 10
It is cooled to a temperature lower by 3030 ° C., and the cooling method in the stretching zone is further performed for 1 to 20 seconds, and the cooling method in the cooling zone is more than 10 ° C.
Since stretching is started while cooling to a temperature lower by 30 ° C., in the cooling zone and the stretching zone, relatively thick portions of the thermoplastic resin film are kept at a high temperature, and thin portions are cooled quickly. It is cooled to a low temperature, and is cooled so as to generate a temperature difference between the thick portion and the thin portion, and the stretching is started while cooling as described above. As in the method for producing a retardation film of the invention according to Item 1, the productivity is high, and
A retardation film can be stably produced.

【0035】請求項3記載の発明の位相差フィルムの製
造方法は、叙上の如く、請求項1又は2記載の位相差フ
ィルムの製造方法における延伸された熱可塑性樹脂フィ
ルムを(Tg−20℃)以下の温度に急冷することによ
って、熱可塑性樹脂フィルムの厚さの厚薄に応じた微小
な部分間の上記延伸直後の応力差を凍結し、応力緩和に
よる上記応力差の低減を抑制し、上記応力に比例して生
じる複屈折率Δn差を保持させるものであるので、熱可
塑性樹脂フィルムの、Δn×dで表されるレターデーシ
ョン値をより均一にすることができる。
According to the method for producing a retardation film of the invention according to claim 3, as described above, the stretched thermoplastic resin film in the method for producing a retardation film according to claim 1 or 2 is subjected to the method (Tg-20 ° C.). ) By quenching to the following temperature, the stress difference immediately after the stretching between the minute portions according to the thickness of the thermoplastic resin film is frozen, and the reduction of the stress difference due to stress relaxation is suppressed. Since the birefringence Δn difference generated in proportion to the stress is maintained, the retardation value represented by Δnxd of the thermoplastic resin film can be made more uniform.

【0036】即ち、上記レターデーション値は、延伸応
力に比例して生じる複屈折率Δnが、延伸温度に反比例
するものであるので、熱可塑性樹脂フィルムの微小な部
分間に厚さの厚薄が存在し、上記微小な部分間に厚さの
厚薄に応じた温度差を有するものであれば、相対的に厚
さの厚い部分のΔnは小さく現れ、相対的に厚さの薄い
部分のΔnは大きく現れ、熱可塑性樹脂延伸フィルムの
微小な部分間に厚さの厚薄が存しても、結果としてΔn
×dで表されるレターデーション値は更に均一化するも
のと推定される。
That is, the retardation value is such that the birefringence Δn generated in proportion to the stretching stress is inversely proportional to the stretching temperature. If the minute portion has a temperature difference corresponding to the thickness, the Δn of the relatively thick portion appears small, and the Δn of the relatively thin portion increases. Appear, and even if there is a thickness difference between the minute portions of the stretched thermoplastic resin film, as a result, Δn
It is presumed that the retardation value represented by xd is further uniformed.

【0037】請求項4記載の発明の位相差フィルムの製
造方法は、叙上の如く、請求項1、2又は3記載の発明
の位相差フィルムの製造方法において、上記熱可塑性樹
脂フィルムがポリサルフォン系樹脂フィルムからなるも
のであるので、請求項1又は請求項2記載の発明の位相
差フィルムの製造方法と同様に、生産性高く、且つ、安
定して位相差フィルムを生産することができる。
As described above, the method for producing a retardation film according to the fourth aspect of the present invention is the method for producing a retardation film according to the first, second, or third aspect, wherein the thermoplastic resin film is a polysulfone-based resin. Since it is made of a resin film, it is possible to stably produce a retardation film with high productivity, similarly to the method for producing a retardation film according to the first or second aspect of the present invention.

【0038】[0038]

【発明の実施の形態】本発明の実施するための位相差フ
ィルムの製造装置の一例を、図4に概念図として示す。
矢印1で示される製膜ゾーンにおいて、11は押出機先
端に連結されたTダイ、ゴムロール12及び金属ロール
13からなる冷却装置で冷却され、熱可塑性樹脂フィル
ム(延伸前)14が成形される。矢印2で示される加熱
ゾーンにおいて、熱可塑性樹脂フィルム14は、複数の
ガイドロール21、21、・・・間を移送される間に熱
風供給装置22によって加熱される。熱可塑性樹脂フィ
ルム14の表面温度は、温度測定装置(図示せず)によ
って測定され制御機器を介して熱風供給装置22にフィ
ードバックされる。加熱ゾーン出口における熱可塑性樹
脂フィルム14の表面温度は、該熱可塑性樹脂フィルム
14のTg〜(Tg+60℃)の設定温度に均一に加熱
されている。
FIG. 4 is a conceptual diagram showing an example of an apparatus for manufacturing a retardation film for carrying out the present invention.
In the film-forming zone indicated by the arrow 1, 11 is cooled by a cooling device composed of a T-die, a rubber roll 12 and a metal roll 13 connected to the tip of the extruder, and a thermoplastic resin film (before stretching) 14 is formed. In the heating zone indicated by the arrow 2, the thermoplastic resin film 14 is heated by the hot air supply device 22 while being transferred between the plurality of guide rolls 21, 21,. The surface temperature of the thermoplastic resin film 14 is measured by a temperature measuring device (not shown) and is fed back to the hot air supply device 22 via a control device. The surface temperature of the thermoplastic resin film 14 at the exit of the heating zone is uniformly heated to a set temperature of Tg to (Tg + 60 ° C.) of the thermoplastic resin film 14.

【0039】図4では、加熱ゾーン2に供給される熱可
塑性樹脂フィルム14は、製膜ゾーン1で成形された熱
可塑性樹脂フィルム14を直結して供給されている実施
例を示したが、これに限定されるものではなく、例え
ば、溶液キャスト法で予め成形された熱可塑性樹脂フィ
ルムの巻重長尺体であってもよい。
FIG. 4 shows an embodiment in which the thermoplastic resin film 14 supplied to the heating zone 2 is supplied by directly connecting the thermoplastic resin film 14 formed in the film forming zone 1. The present invention is not limited to this, and may be, for example, a wound and long body of a thermoplastic resin film formed in advance by a solution casting method.

【0040】矢印3で示される冷却ゾーンにおいて、加
熱ゾーン2において、Tg〜(Tg+60℃)の設定温
度に均一に加熱された熱可塑性樹脂フィルム14は、冷
風装置31によって冷却される。図4では、冷却される
熱可塑性樹脂フィルム14は、冷却ゾーンにおいて、支
持されることなく、上下の冷風装置31によって冷却さ
れる実施例を示したが、これに限定されるものではな
く、例えば、加熱ゾーン2におけると同様に、複数のロ
ール間を移送させる間に冷却されるようになされてもよ
い。
In the cooling zone indicated by the arrow 3, in the heating zone 2, the thermoplastic resin film 14 uniformly heated to the set temperature of Tg to (Tg + 60 ° C.) is cooled by the cool air device 31. FIG. 4 shows an example in which the thermoplastic resin film 14 to be cooled is cooled by the upper and lower cold air devices 31 without being supported in the cooling zone. However, the present invention is not limited to this. As in the heating zone 2, the cooling may be performed during the transfer between the plurality of rolls.

【0041】冷却ゾーン3出口における熱可塑性樹脂フ
ィルム14の表面温度は、該熱可塑性樹脂フィルム14
のTg〜(Tg+60℃)の設定温度より、1〜20秒
間で10〜30℃低下させる。上記冷却速度は、余り速
くても、遅くても、図2によって先に詳述したように、
熱可塑性樹脂フィルム14の相対的に厚さの厚い箇所と
相対的に厚さの薄い箇所との温度差が存在しない程に完
全に冷却固定されてしまうか、殆ど温度差が存在しない
ゆっくりした温度低下をするので、上記冷却速度で冷却
される。
The surface temperature of the thermoplastic resin film 14 at the outlet of the cooling zone 3 depends on the temperature of the thermoplastic resin film 14.
The temperature is lowered by 10 to 30 ° C. in 1 to 20 seconds from the set temperature of Tg to (Tg + 60 ° C.). Whether the cooling rate is too fast or too slow, as detailed above with reference to FIG.
The thermoplastic resin film 14 is completely cooled and fixed so that there is no temperature difference between a relatively thick portion and a relatively thin portion, or a slow temperature where there is almost no temperature difference. Since the cooling rate is lowered, cooling is performed at the above cooling rate.

【0042】矢印4で示される延伸ゾーンにおいて、冷
却ゾーン3で冷却された熱可塑性樹脂フィルム14は、
冷風装置31によって冷却されながら、一対の掴みロー
ル42、43及び一対の引張ロール44、45間で延伸
される。延伸ゾーン4における冷却速度は、冷却ゾーン
3におけると同様、1〜20秒間で10〜30℃冷却ゾ
ーン3出口における熱可塑性樹脂フィルム14の温度よ
り低下させ、このような温度で延伸されたとき、引張ロ
ール44、45間を離れた直後の熱可塑性樹脂フィルム
(延伸後)46の表面温度が(Tg−30℃)〜(Tg
+20℃)となっている。
In the stretching zone indicated by the arrow 4, the thermoplastic resin film 14 cooled in the cooling zone 3 is
While being cooled by the cool air device 31, the stretching is performed between the pair of gripping rolls 42 and 43 and the pair of pulling rolls 44 and 45. As in the cooling zone 3, the cooling rate in the stretching zone 4 is lower than the temperature of the thermoplastic resin film 14 at the outlet of the cooling zone 3 by 10 to 30 ° C. for 1 to 20 seconds, and when the film is stretched at such a temperature, The surface temperature of the thermoplastic resin film (after stretching) 46 immediately after leaving the tension rolls 44 and 45 is (Tg−30 ° C.) to (Tg
+ 20 ° C).

【0043】図5は、本発明の実施するための位相差フ
ィルムの製造装置の他の例を示すものであって、矢印5
で示される冷却ゾーンは、延伸ゾーン4の引張ロール4
4、45間を離れた直後の熱可塑性樹脂延伸フィルム4
6の表面温度を、Tg未満の温度に冷却するためのゾー
ンであり、冷却後、熱可塑性樹脂延伸フィルム46が収
縮することを防止するためのものである。尚、矢印1〜
4で示される各ゾーンは図4と同一であるので、各部の
符号は、各々同一のものを用いた。図5において、51
は、冷風装置である。急冷して固定される場合には、延
伸ゾーン4の引張ロール44、45間を離れた直後の熱
可塑性樹脂延伸フィルム46は、延伸応力が保持される
ように図示されていない引取ロールによって等表面速度
で引き取られ、その間で、熱可塑性樹脂延伸フィルム4
6はTg未満の温度に冷却される。
FIG. 5 shows another example of an apparatus for producing a retardation film for carrying out the present invention.
The cooling zone indicated by
Stretched thermoplastic resin film 4 immediately after leaving between 45 and 45
6 is a zone for cooling the surface temperature to a temperature lower than Tg, and is for preventing the stretched thermoplastic resin film 46 from shrinking after cooling. Note that arrows 1 to
4 are the same as those in FIG. 4, the same reference numerals are used for the respective parts. In FIG. 5, 51
Is a cool air device. When fixed by quenching, the stretched thermoplastic resin film 46 immediately after leaving between the tension rolls 44 and 45 in the stretching zone 4 has an equal surface by a take-off roll (not shown) so that the stretching stress is maintained. Speed, between which the stretched thermoplastic resin film 4
6 is cooled to a temperature below Tg.

【0044】[0044]

【実施例】以下、本発明の実施例について説明するが、
本発明は、これらの実施例に限定されるものではない。 (実施例1)ポリサルフォン樹脂(アコモ社製、商品名
「UDEL P3500」、ガラス転移点190℃)
を、図4に示した、Tダイを装着したシングルスクリュ
ー型押出機にて、金型温度340℃で、溶融押出し、表
面温度165℃に制御された一対の冷却ロールでニップ
しながら冷却し、厚さ75μm±2.0μmのポリサル
フォン樹脂フィルムを作製した。
Hereinafter, embodiments of the present invention will be described.
The present invention is not limited to these examples. (Example 1) Polysulfone resin (trade name "UDEL P3500", manufactured by Acomo, glass transition point 190 ° C)
Was melt-extruded at a mold temperature of 340 ° C. by a single screw type extruder equipped with a T-die shown in FIG. 4, and cooled while being nipped by a pair of cooling rolls controlled at a surface temperature of 165 ° C. A polysulfone resin film having a thickness of 75 μm ± 2.0 μm was prepared.

【0045】得られたポリサルフォン樹脂フィルムを2
35℃に制御されたオーブンからなる加熱ゾーンをガイ
ドロール21、21、・・・間を移送させて、235℃
に加熱し、次いで、215℃に制御されたオーブンから
なる冷却ゾーンに誘導し、該215℃に制御されたオー
ブン中を3秒間で通過させ、冷却ゾーン出口におけるポ
リサルフォン樹脂フィルムの温度を220℃に冷却し
た。
The obtained polysulfone resin film was
A heating zone consisting of an oven controlled at 35 ° C. is transferred between the guide rolls 21, 21,.
To a cooling zone consisting of an oven controlled at 215 ° C., passing through the oven controlled at 215 ° C. for 3 seconds, and raising the temperature of the polysulfone resin film at the outlet of the cooling zone to 220 ° C. Cool.

【0046】冷却ゾーンを出たポリサルフォン樹脂フィ
ルムは、次いで、190℃に制御されたオーブンからな
る延伸ゾーンに誘導され、掴みロール42、43と引張
ロール44、45を含む縦一軸延伸機にて、長さ方向に
1.3倍延伸を行った。延伸ゾーン内の縦一軸延伸機の
掴みロールから引張ロールまでの間を、ポリサルフォン
樹脂フィルムは、3秒間で通過し、引張ロールを離れた
直後のポリサルフォン樹脂延伸フィルムの温度は、20
8℃であった。ポリサルフォン樹脂延伸フィルムは、更
に等速移送の間に20℃の環境下に放冷して、Tg以下
の温度に冷却され、位相差フィルムとして芯体に巻き取
られた。
The polysulfone resin film that has exited the cooling zone is then guided to a stretching zone consisting of an oven controlled at 190 ° C., and a vertical uniaxial stretching machine including gripping rolls 42 and 43 and pulling rolls 44 and 45. The film was stretched 1.3 times in the length direction. The polysulfone resin film passed for 3 seconds from the gripping roll of the longitudinal uniaxial stretching machine in the stretching zone to the pulling roll, and the temperature of the polysulfone resin stretched film immediately after leaving the pulling roll was 20.
8 ° C. The stretched polysulfone resin film was further allowed to cool in an environment of 20 ° C. during constant-velocity transfer, cooled to a temperature of Tg or less, and wound around a core as a retardation film.

【0047】(実施例2)図5に示された装置を用い
て、ポリカーボネート樹脂(帝人化成社製、商品名「パ
ンライト」、ガラス転移点150℃)を、金型温度25
0℃で、溶融押出し、表面温度130℃に制御された一
対の冷却ロールでニップしながら冷却し、厚さ75μm
±2.0μmのポリサルフォン樹脂フィルムを作製し
た。
Example 2 Using a device shown in FIG. 5, a polycarbonate resin (trade name “Panlite”, manufactured by Teijin Chemicals Ltd., glass transition point 150 ° C.) was molded at a mold temperature of 25 ° C.
At 0 ° C., melt extruded, cooled while nipping with a pair of cooling rolls controlled to a surface temperature of 130 ° C., and having a thickness of 75 μm
A polysulfone resin film of ± 2.0 μm was produced.

【0048】得られたポリカーボネート樹脂フィルムを
200℃に制御されたオーブンからなる加熱ゾーンをガ
イドロール間を移送させて、200℃に加熱し、次い
で、175℃に制御されたオーブンからなる冷却ゾーン
に誘導し、該オーブン中を3秒間で通過させ、冷却ゾー
ン出口におけるポリカーボネート樹脂フィルムの温度を
187℃に冷却した。
The obtained polycarbonate resin film was transferred to a heating zone consisting of an oven controlled at 200 ° C. between guide rolls, heated to 200 ° C., and then moved to a cooling zone consisting of an oven controlled at 175 ° C. Induction and passing through the oven for 3 seconds cooled the polycarbonate resin film at the outlet of the cooling zone to 187 ° C.

【0049】冷却ゾーンを出たポリカーボネート樹脂フ
ィルムは、次いで、155℃に制御されたオーブンから
なる延伸ゾーンに誘導され、縦一軸延伸機にて、長さ方
向に1.3倍延伸を行った。延伸ゾーン内の縦一軸延伸
機の掴みロールから引張ロールまでの間を、ポリカーボ
ネート樹脂フィルムは、3秒間で通過し、引張ロールを
離れた直後のポリカーボネート樹脂延伸フィルムの温度
は、176℃であった。ポリカーボネート樹脂延伸フィ
ルムは、更に等速移送の間に冷風でTg以下の温度に急
冷され、位相差フィルムとして芯体に巻き取られた。得
られたポリカーボネート樹脂延伸フィルムは、厚さ67
μm±2.5μmであった。
The polycarbonate resin film exiting the cooling zone was then guided to a stretching zone consisting of an oven controlled at 155 ° C., and stretched 1.3 times in the longitudinal direction by a vertical uniaxial stretching machine. Between the gripping roll and the tension roll of the longitudinal uniaxial stretching machine in the stretching zone, the polycarbonate resin film passed for 3 seconds, and the temperature of the polycarbonate resin stretched film immediately after leaving the tension roll was 176 ° C. . The stretched polycarbonate resin film was further quenched to a temperature of Tg or less with cold air during constant-velocity transport, and wound around a core as a retardation film. The obtained stretched polycarbonate resin film has a thickness of 67
μm ± 2.5 μm.

【0050】(実施例3)実施例2と同様にして厚さ8
3μm±2.0μmのポリサルフォン樹脂フィルムを成
形し、実施例2と同様にして延伸し、更に等速移送の間
に冷風でTg以下の温度に急冷され、厚さ73μm±
2.5μmのポリサルフォン樹脂延伸フィルムを作製し
た。
(Embodiment 3) In the same manner as in Embodiment 2,
A polysulfone resin film having a thickness of 3 μm ± 2.0 μm was formed, stretched in the same manner as in Example 2, and further quenched to a temperature of Tg or less with cold air during constant-velocity transfer to obtain a thickness of 73 μm ±
A 2.5 μm stretched polysulfone resin film was prepared.

【0051】(実施例4)実施例2と同様にして厚さ8
3μm±2.0μmのポリサルフォン樹脂フィルムを成
形した。得られたポリサルフォン樹脂フィルムを240
℃に制御されたオーブンからなる加熱ゾーンをガイドロ
ール間を移送させて、240℃に加熱し、次いで、22
0℃に制御されたオーブンからなる冷却ゾーンに誘導
し、該オーブン中を3秒間で通過させ、冷却ゾーン出口
におけるポリサルフォン樹脂フィルムの温度を228℃
に冷却した。
(Embodiment 4) In the same manner as in Embodiment 2,
A polysulfone resin film of 3 μm ± 2.0 μm was formed. 240 g of the obtained polysulfone resin film
A heating zone consisting of an oven controlled at 0 ° C. was transferred between guide rolls and heated to 240 ° C.
It was guided to a cooling zone consisting of an oven controlled at 0 ° C., passed through the oven for 3 seconds, and the temperature of the polysulfone resin film at the outlet of the cooling zone was increased to 228 ° C.
And cooled.

【0052】冷却ゾーンを出たポリサルフォン樹脂フィ
ルムは、次いで、190℃に制御されたオーブンからな
る延伸ゾーンに誘導され、縦一軸延伸機にて、長さ方向
に1.3倍延伸を行った。延伸ゾーン内の縦一軸延伸機
の掴みロールから引張ロールまでの間を、ポリサルフォ
ン樹脂フィルムは、3秒間で通過し、引張ロールを離れ
た直後のポリサルフォン樹脂延伸フィルムの温度は、2
18℃であった。ポリカーボネート樹脂延伸フィルム
は、更に表面温度165℃に制御された一対の冷却ロー
ルでニップしながらTg以下の温度に急冷し、位相差フ
ィルムとして芯体に巻き取られた。得られたポリカーボ
ネート樹脂延伸フィルムは、厚さ73μm±2.5μm
であった。
The polysulfone resin film exiting the cooling zone was then guided to a stretching zone comprising an oven controlled at 190 ° C., and stretched 1.3 times in the longitudinal direction by a longitudinal uniaxial stretching machine. The polysulfone resin film passed for 3 seconds from the gripping roll of the longitudinal uniaxial stretching machine in the stretching zone to the pulling roll, and the temperature of the polysulfone resin stretched film immediately after leaving the pulling roll was 2
18 ° C. The stretched polycarbonate resin film was further rapidly cooled to a temperature of Tg or less while being nipped by a pair of cooling rolls controlled at a surface temperature of 165 ° C., and wound around a core as a retardation film. The obtained stretched polycarbonate resin film has a thickness of 73 μm ± 2.5 μm.
Met.

【0053】(比較例1)実施例1と同様にして厚さ7
5μm±2.0μmのポリサルフォン樹脂フィルムを成
形した。得られたポリサルフォン樹脂フィルムを245
℃に制御されたオーブンからなる加熱ゾーンをガイドロ
ール間を移送させて、245℃に加熱し、次いで、直ち
に180℃に制御されたオーブンからなる延伸ゾーンに
誘導され、縦一軸延伸機にて、長さ方向に1.3倍延伸
を行った。延伸ゾーン内の縦一軸延伸機の掴みロールか
ら引張ロールまでの間を、ポリサルフォン樹脂フィルム
は、1秒間で通過し、引張ロールを離れた直後のポリサ
ルフォン樹脂延伸フィルムの温度は、234℃であっ
た。ポリサルフォン樹脂延伸フィルムは、更に等速移送
の間に20℃の環境下に放冷して、Tg以下の温度に冷
却され、位相差フィルムとして芯体に巻き取られた。得
られたポリサルフォン樹脂延伸フィルムは、厚さ67μ
m±2.5μmであった。
(Comparative Example 1) Thickness 7 in the same manner as in Example 1.
A polysulfone resin film of 5 μm ± 2.0 μm was formed. The obtained polysulfone resin film was 245
The heating zone consisting of an oven controlled at 0 ° C. was transferred between guide rolls and heated to 245 ° C., and then immediately guided to a stretching zone consisting of an oven controlled at 180 ° C., with a vertical uniaxial stretching machine. The film was stretched 1.3 times in the length direction. Between the gripping roll and the pulling roll of the longitudinal uniaxial stretching machine in the drawing zone, the polysulfone resin film passed for 1 second, and the temperature of the polysulfone resin stretched film immediately after leaving the pulling roll was 234 ° C. . The stretched polysulfone resin film was further allowed to cool in an environment of 20 ° C. during constant-velocity transfer, cooled to a temperature of Tg or less, and wound around a core as a retardation film. The obtained stretched polysulfone resin film has a thickness of 67 μm.
m ± 2.5 μm.

【0054】(比較例2)実施例1と同様にして厚さ7
5μm±2.0μmのポリサルフォン樹脂フィルムを成
形した。得られたポリサルフォン樹脂フィルムを230
℃に制御されたオーブンからなる加熱ゾーンをガイドロ
ール間を移送させて、230℃に加熱し、次いで、22
0℃に制御されたオーブンからなる冷却ゾーンに誘導
し、該オーブン中を30秒間で通過させ、冷却ゾーン出
口におけるポリサルフォン樹脂フィルムの温度を225
℃に冷却した。
(Comparative Example 2)
A polysulfone resin film of 5 μm ± 2.0 μm was formed. The obtained polysulfone resin film was 230
A heating zone consisting of an oven controlled at 0 ° C. was transferred between guide rolls and heated to 230 ° C.
It was guided to a cooling zone consisting of an oven controlled at 0 ° C., passed through the oven for 30 seconds, and the temperature of the polysulfone resin film at the outlet of the cooling zone was increased to 225.
Cooled to ° C.

【0055】冷却ゾーンを出たポリサルフォン樹脂フィ
ルムは、次いで、205℃に制御されたオーブンからな
る延伸ゾーンに誘導され、縦一軸延伸機にて、長さ方向
に1.3倍延伸を行った。延伸ゾーン内の縦一軸延伸機
の掴みロールから引張ロールまでの間を、ポリサルフォ
ン樹脂フィルムは、30秒間で通過し、引張ロールを離
れた直後のポリサルフォン樹脂延伸フィルムの温度は、
218℃であった。ポリサルフォン樹脂延伸フィルム
は、更に等速移送の間に20℃の環境下に放冷して、T
g以下の温度に冷却され、位相差フィルムとして芯体に
巻き取られた。
The polysulfone resin film exiting the cooling zone was then guided to a stretching zone comprising an oven controlled at 205 ° C., and stretched 1.3 times in the longitudinal direction by a longitudinal uniaxial stretching machine. Between the gripping roll and the tension roll of the longitudinal uniaxial stretching machine in the stretching zone, the polysulfone resin film passes for 30 seconds, and the temperature of the polysulfone resin stretched film immediately after leaving the tension roll is:
218 ° C. The stretched polysulfone resin film is further allowed to cool in an environment of 20 ° C. during uniform speed transfer,
g or less, and wound on a core as a retardation film.

【0056】(比較例3)実施例1と同様にして厚さ8
3μm±2.0μmのポリサルフォン樹脂フィルムを成
形した。得られたポリサルフォン樹脂フィルムを210
℃に制御されたオーブンからなる加熱ゾーンをガイドロ
ール間を移送させて、210℃に加熱し、次いで、直ち
に210℃に制御されたオーブンからなる延伸ゾーンに
誘導され、実施例1と同様にして縦一軸延伸機にて、長
さ方向に1.3倍延伸を行った。引張ロールを離れたポ
リサルフォン樹脂延伸フィルムは、更に等速移送の間に
20℃の環境下に放冷して、Tg以下の温度に冷却さ
れ、位相差フィルムとして芯体に巻き取られた。得られ
たポリサルフォン樹脂延伸フィルムは、厚さ73μm±
2.5μmであった。
(Comparative Example 3) Thickness 8 in the same manner as in Example 1.
A polysulfone resin film of 3 μm ± 2.0 μm was formed. The obtained polysulfone resin film was treated with 210
A heating zone consisting of an oven controlled at 0 ° C. was transferred between guide rolls, heated to 210 ° C., and then immediately led to a stretching zone consisting of an oven controlled at 210 ° C., as in Example 1. The film was stretched 1.3 times in the length direction by a longitudinal uniaxial stretching machine. The stretched polysulfone resin film left from the pulling roll was further allowed to cool in an environment of 20 ° C. during constant-velocity transport, cooled to a temperature of Tg or less, and wound around a core as a retardation film. The obtained stretched polysulfone resin film has a thickness of 73 μm ±
It was 2.5 μm.

【0057】(比較例4)実施例1と同様にして厚さ8
3μm±2.0μmのポリサルフォン樹脂フィルムを成
形した。得られたポリサルフォン樹脂フィルムを240
℃に制御されたオーブンからなる加熱ゾーンをガイドロ
ール間を移送させて、240℃に加熱し、次いで、22
0℃に制御されたオーブンからなる冷却ゾーンに誘導
し、該オーブン中を30秒間で通過させ、ポリサルフォ
ン樹脂フィルムを225℃に冷却した。
(Comparative Example 4)
A polysulfone resin film of 3 μm ± 2.0 μm was formed. 240 g of the obtained polysulfone resin film
A heating zone consisting of an oven controlled at 0 ° C. was transferred between guide rolls and heated to 240 ° C.
The polysulfone resin film was guided to a cooling zone consisting of an oven controlled at 0 ° C. and passed through the oven for 30 seconds to cool the polysulfone resin film to 225 ° C.

【0058】冷却ゾーンを出たポリサルフォン樹脂フィ
ルムは、次いで、190℃に制御されたオーブンからな
る延伸ゾーンに誘導され、縦一軸延伸機にて、長さ方向
に1.3倍延伸を行った。縦一軸延伸機の引張ロールを
離れたポリサルフォン樹脂延伸フィルムは、更に170
℃に制御されたオーブンからなる徐冷ゾーンに誘導さ
れ、等速移送の1分間に170℃にまで冷却され、位相
差フィルムとして芯体に巻き取られた。得られたポリサ
ルフォン樹脂延伸フィルムは、厚さ73μm±2.5μ
mであった。
The polysulfone resin film exiting the cooling zone was then guided to a stretching zone comprising an oven controlled at 190 ° C., and stretched 1.3 times in the longitudinal direction by a longitudinal uniaxial stretching machine. The stretched polysulfone resin film released from the tension roll of the longitudinal uniaxial stretching machine is further 170
It was guided to a slow cooling zone consisting of an oven controlled at a temperature of ° C., cooled to 170 ° C. in one minute at a constant speed, and wound on a core as a retardation film. The obtained stretched polysulfone resin film has a thickness of 73 μm ± 2.5 μm.
m.

【0059】実施例1〜4及び比較例1〜4で得られた
位相差フィルムのレターデーション値を測定し、平均
値、バラツキを以下の要領で求めた。測定結果は表1に
示す。
The retardation values of the retardation films obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were measured, and average values and variations were determined as follows. Table 1 shows the measurement results.

【0060】〔試料〕幅1000mmの位相差フィルム
の両側を除き、中央部の幅500mm部分を長さ100
0mmで切り出し、試料とした。
[Sample] Except for the both sides of the retardation film having a width of 1000 mm, the central portion having a width of 500 mm was set to a length of 100 mm.
The sample was cut out at 0 mm to obtain a sample.

【0061】〔レターデーション値の測定〕試料の幅方
向及び長さ方向に1cm間隔で、630nmのレターデ
ーション値を測定した。測定値は、平均値、バラツキの
最大値として、測定値の最大値と最小値の差及びバラ
ツキの最大値として、隣り合う2点の測定値の差の最
大値を算出した。
[Measurement of Retardation Value] A 630 nm retardation value was measured at 1 cm intervals in the width and length directions of the sample. The measured values were calculated as the average value and the maximum value of the variation, and the difference between the maximum value and the minimum value of the measured values and the maximum value of the variation were calculated as the maximum value of the difference between the measured values of two adjacent points.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】本発明の位相差フィルムの製造方法は、
叙上の如く構成されているので、溶液キャスティング法
で調製された比較的厚さのバラツキの少ない熱可塑性樹
脂フィルムに限定されることなく、Tダイ法等による溶
融キャスティング法で調製された熱可塑性樹脂フィルム
であってもバラツキの少ない均質な位相差特性を示す位
相差フィルムを得ることができ、延伸時に過大な剪断応
力によって脆性破壊が生じ、延伸中に熱可塑性樹脂フィ
ルムが破断したり、逆に、熱可塑性樹脂フィルムの粘度
が下がって搬送中に垂れ下がってトラブルを起こすこと
なく、生産性高く、且つ、安定して位相差フィルムを得
ることができる。
The method for producing a retardation film of the present invention comprises:
Since it is constituted as described above, it is not limited to a thermoplastic resin film having a relatively small thickness variation prepared by a solution casting method, and a thermoplastic resin film prepared by a melt casting method such as a T-die method. Even if it is a resin film, it is possible to obtain a retardation film showing uniform retardation characteristics with little variation, brittle fracture occurs due to excessive shear stress during stretching, and the thermoplastic resin film breaks during stretching, In addition, the retardation film can be obtained with high productivity and stably without causing the viscosity of the thermoplastic resin film to drop during transportation and causing troubles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位相差フィルムの製造方法の冷却ゾー
ン及び延伸ゾーンにおいて厚さの厚薄部分に生じる温度
差のイメージ図である。
FIG. 1 is an image diagram of a temperature difference generated in a thin portion in a cooling zone and a stretching zone in a method for producing a retardation film of the present invention.

【図2】本発明の位相差フィルムの製造方法と対比され
る冷却法の冷却ゾーン及び延伸ゾーンにおいて厚さの厚
薄部分に生じる温度差のイメージ図である。
FIG. 2 is an image diagram of a temperature difference generated in a thin portion in a cooling zone and a stretching zone in a cooling method, which is compared with a method for manufacturing a retardation film of the present invention.

【図3】延伸工程における熱可塑性樹脂フィルムの厚さ
の違いで生じる応力差のイメージ図である。
FIG. 3 is an image diagram of a stress difference caused by a difference in thickness of a thermoplastic resin film in a stretching step.

【図4】本発明で用いられる位相差フィルムの製造装置
の一例を示す概念図である。
FIG. 4 is a conceptual diagram showing an example of a retardation film manufacturing apparatus used in the present invention.

【図5】本発明で用いられる位相差フィルムの製造装置
の他の例を示す概念図である。
FIG. 5 is a conceptual diagram showing another example of the apparatus for manufacturing a retardation film used in the present invention.

【符号の説明】[Explanation of symbols]

1 製膜ゾーン 11 Tダイ 12、13 冷却ロール(ゴムロール及び金属ロール) 14 熱可塑性樹脂フィルム 2 加熱ゾーン 21 ガイドロール 22 加熱装置 3、5 冷却ゾーン 31、41、51 冷却装置 4 延伸ゾーン 42、43 掴みロール(延伸機) 44、45 引張ロール(延伸機) 46 熱可塑性樹脂延伸フィルム DESCRIPTION OF SYMBOLS 1 Film-forming zone 11 T die 12, 13 Cooling roll (rubber roll and metal roll) 14 Thermoplastic resin film 2 Heating zone 21 Guide roll 22 Heating device 3, 5 Cooling zone 31, 41, 51 Cooling device 4 Stretching zone 42, 43 Gripping roll (stretching machine) 44, 45 Pulling roll (stretching machine) 46 Stretched thermoplastic resin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 81:00 B29L 11:00 Fターム(参考) 2H049 BA06 BB42 BC03 BC09 BC22 4F071 AA50 AA64 AG28 AG29 AH12 BA01 BB06 BB07 BC01 4F205 AA28 AA34 AG01 AH33 AP11 AR06 GA07 GB02 GW41 4F207 AA28 AA34 AG01 AH33 AP11 AR06 KA01 KA17 KK64 KW41 4F210 AA28 AA34 AG01 AH33 AP11 AR06 QA03 QC01 QG01 QG18 QP11 QP14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B29K 81:00 B29L 11:00 F term (Reference) 2H049 BA06 BB42 BC03 BC09 BC22 4F071 AA50 AA64 AG28 AG29 AH12 BA01 BB06 BB07 BC01 4F205 AA28 AA34 AG01 AH33 AP11 AR06 GA07 GB02 GW41 4F207 AA28 AA34 AG01 AH33 AP11 AR06 KA01 KA17 KK64 KW41 4F210 AA28 AA34 AG01 AH33 AP11 AR06 QA03 QC01 QG11 QG18 Q

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱ゾーン、冷却ゾーン及び延伸ゾーン
を上記順序で備えた位相差フィルムの製造装置を用い、
先ず、加熱ゾーンにおいて、熱可塑性樹脂フィルムは、
そのガラス転移点温度(Tg)〜(Tg+60℃)の一
定温度になるように加熱され、次いで、冷却ゾーンにお
いて、熱可塑性樹脂フィルムは、厚さの厚薄に応じた微
小な部分間に温度差が生じるような冷却手段で冷却さ
れ、延伸ゾーンにおいて、熱可塑性樹脂フィルムは、更
に、冷却されながら延伸が開始され、延伸終了時の熱可
塑性樹脂フィルムの温度が(Tg−30℃)〜(Tg+
20℃)となるように延伸することを特徴とする位相差
フィルムの製造方法。
An apparatus for producing a retardation film comprising a heating zone, a cooling zone and a stretching zone in the above order,
First, in the heating zone, the thermoplastic resin film,
The thermoplastic resin film is heated so as to have a constant temperature of the glass transition temperature (Tg) to (Tg + 60 ° C.). Then, in the cooling zone, the temperature difference between the minute portions corresponding to the thickness of the thermoplastic resin film is reduced. In the stretching zone, the thermoplastic resin film is further stretched while being cooled, and the temperature of the thermoplastic resin film at the end of stretching is (Tg−30 ° C.) to (Tg +
20 ° C.).
【請求項2】 上記冷却ゾーンにおける冷却手段が、1
〜20秒間で、上記熱可塑性樹脂フィルム温度より10
〜30℃低い温度に冷却されるものであり、上記延伸ゾ
ーンにおける冷却手段が、更に、1〜20秒間で、冷却
ゾーンにおける熱可塑性樹脂フィルムの温度より10〜
30℃低い温度に冷却しながら延伸が開始されるもので
ある請求項1記載の位相差フィルムの製造方法。
2. The cooling means in the cooling zone comprises:
In about 20 seconds, the temperature of the thermoplastic resin film is 10
The cooling means in the stretching zone further cools the thermoplastic resin film in the cooling zone by 1 to 20 seconds for 1 to 20 seconds.
The method for producing a retardation film according to claim 1, wherein stretching is started while cooling to a temperature lower by 30 ° C.
【請求項3】 上記延伸された熱可塑性樹脂フィルムを
(Tg−20℃)以下の温度に急冷する請求項1又は2
記載の位相差フィルムの製造方法。
3. The rapid stretching of the stretched thermoplastic resin film to a temperature of (Tg-20 ° C.) or less.
A method for producing the retardation film according to the above.
【請求項4】 上記熱可塑性樹脂フィルムがポリサルフ
ォン系樹脂フィルムである請求項1、2又は3記載の位
相差フィルムの製造方法。
4. The method according to claim 1, wherein the thermoplastic resin film is a polysulfone-based resin film.
JP17892498A 1998-06-25 1998-06-25 Method for producing retardation film Expired - Fee Related JP3527639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17892498A JP3527639B2 (en) 1998-06-25 1998-06-25 Method for producing retardation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17892498A JP3527639B2 (en) 1998-06-25 1998-06-25 Method for producing retardation film

Publications (2)

Publication Number Publication Date
JP2000009935A true JP2000009935A (en) 2000-01-14
JP3527639B2 JP3527639B2 (en) 2004-05-17

Family

ID=16057034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17892498A Expired - Fee Related JP3527639B2 (en) 1998-06-25 1998-06-25 Method for producing retardation film

Country Status (1)

Country Link
JP (1) JP3527639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096635A1 (en) * 2007-02-08 2008-08-14 Konica Minolta Opto, Inc. Cellulose ester film, method for production of the cellulose ester film, and polarizing plate and display device both using the cellulose ester film
WO2014021151A1 (en) * 2012-07-31 2014-02-06 日東電工株式会社 Method for manufacturing phase difference film
JPWO2013145574A1 (en) * 2012-03-30 2015-12-10 コニカミノルタ株式会社 Manufacturing method and manufacturing apparatus for long stretched film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096635A1 (en) * 2007-02-08 2008-08-14 Konica Minolta Opto, Inc. Cellulose ester film, method for production of the cellulose ester film, and polarizing plate and display device both using the cellulose ester film
JP2008213469A (en) * 2007-02-08 2008-09-18 Konica Minolta Opto Inc Cellulose ester film, its manufacturing method, polarizing plate using cellulose ester film, and display unit
JPWO2013145574A1 (en) * 2012-03-30 2015-12-10 コニカミノルタ株式会社 Manufacturing method and manufacturing apparatus for long stretched film
WO2014021151A1 (en) * 2012-07-31 2014-02-06 日東電工株式会社 Method for manufacturing phase difference film
JP2014029388A (en) * 2012-07-31 2014-02-13 Nitto Denko Corp Manufacturing method of retardation film
KR20140105792A (en) * 2012-07-31 2014-09-02 닛토덴코 가부시키가이샤 Method for manufacturing phase difference film
CN104094142A (en) * 2012-07-31 2014-10-08 日东电工株式会社 Method for manufacturing phase difference film
KR101633203B1 (en) * 2012-07-31 2016-06-23 닛토덴코 가부시키가이샤 Method for manufacturing phase difference film

Also Published As

Publication number Publication date
JP3527639B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP3754546B2 (en) Retardation film and method for producing the same
US3786127A (en) Stretching polyethylene terephthalate film in a shortened span
JP2000009935A (en) Production of phase different plate
JPH09155951A (en) Manufacture of polysulphone resin film
JP3654769B2 (en) Production method of retardation plate
JP4242514B2 (en) Production equipment and production method of stretched film
JP2005099848A (en) Method for manufacturing retardation plate
JPH1119954A (en) Preparation of phase contrast film and apparatus therefor
JP2841755B2 (en) Polyamide film and method for producing the same
JPH11167025A (en) Production of phase difference plate
JP4018779B2 (en) Method for producing retardation film
JPH09141736A (en) Biaxially stretched polyester film and production thereof
KR101029620B1 (en) Method for preparing optical films having uniform retardation value
JP2000028828A (en) Production of phase difference film
JP3313033B2 (en) Manufacturing method of optical film
JPH0260729A (en) Method for rolling processing of polycarbonate sheet
JP2000009934A (en) Production of phase difference plate
JP2009092760A (en) Method for manufacturing retardation film
TWI621518B (en) A method for manufacturing retardation film by using dual-axial stretching process and a retardation film
JPH10142420A (en) Production of phase difference film
JPH11183717A (en) Production of phase difference plate
JP2000056129A (en) Production of phase difference film
JPH11258420A (en) Manufacture of phase difference film
JP2841817B2 (en) Method for producing thermoplastic resin film
KR970002308B1 (en) Forming method for polyester film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees