JP2000009388A - Melting furnace for incineration residue - Google Patents

Melting furnace for incineration residue

Info

Publication number
JP2000009388A
JP2000009388A JP10189752A JP18975298A JP2000009388A JP 2000009388 A JP2000009388 A JP 2000009388A JP 10189752 A JP10189752 A JP 10189752A JP 18975298 A JP18975298 A JP 18975298A JP 2000009388 A JP2000009388 A JP 2000009388A
Authority
JP
Japan
Prior art keywords
furnace
sic
content
molten
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10189752A
Other languages
Japanese (ja)
Other versions
JP3778698B2 (en
Inventor
Kenichi Matsubara
健一 松原
Masaaki Nishimura
正明 西村
Koichiro Kanefuji
▲紘▼一郎 金藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Daido Steel Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, Daido Steel Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP18975298A priority Critical patent/JP3778698B2/en
Publication of JP2000009388A publication Critical patent/JP2000009388A/en
Application granted granted Critical
Publication of JP3778698B2 publication Critical patent/JP3778698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the lifetime of melting furnace while stabilizing the structure of the furnace by employing a high SiC based reduction firing refractory brick having SiC content of specified level or above at the furnace side wall part coming into face contact with a molten produced in the furnace. SOLUTION: A melting furnace for incineration residue, i.e., an arc furnace, comprises a furnace body 11, a furnace cover 12 applied thereto, and an electrode 13 inserted into the furnace from the furnace cover 12. A molten 21 comprising a lower molten metal layer 22, an upper molten slag layer 23 and a thin uppermost molten salt layer 24 is produced in the furnace when incineration residue is melted. The furnace side wall part (lower part of the side wall of the furnace body 11) coming into face contact with the molten 21 in the furnace is constructed, sequentially from the inside toward the outside of the furnace, of a high SiC based reduction firing refractory brick 31 having SiC content of 92 wt.% or above and apparent porosity of 12% or less, a refractory heat insulating material 32, and a steel plate 33 (furnace shell). The furnace side wall part coming into face contact with gas 26 is constructed sequentially of an irregular refractories 41, a refractory heat insulating material 42, and the steel plate 33 furnace shell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焼却残渣用溶融炉に
関する。都市ごみ、下水処理汚泥、産業廃棄物等、各種
の廃棄物を焼却炉で焼却処理すると、焼却炉に残り、通
常はその底部から排出される焼却灰と、焼却時の排ガス
と共に飛散し、焼却炉に接続された排ガス処理系で捕捉
される飛灰とが発生する。かかる焼却灰と飛灰とに大別
される焼却残渣は、埋立処分地延命や環境汚染防止の目
的で、これを減容化及び安定化するため、溶融炉で溶融
処理される。本発明はこのような焼却残渣用溶融炉の改
良に関する。
The present invention relates to a melting furnace for incineration residues. When various types of waste, such as municipal solid waste, sewage sludge, and industrial waste, are incinerated in an incinerator, they remain in the incinerator and are scattered together with the incineration ash discharged from the bottom of the incinerator and the exhaust gas from the incineration. Fly ash is captured in the exhaust gas treatment system connected to the furnace. The incineration residue roughly classified into such incineration ash and fly ash is melted in a melting furnace in order to reduce the volume and stabilize it for the purpose of extending the life of the landfill site and preventing environmental pollution. The present invention relates to an improvement of such a melting furnace for incineration residues.

【0002】[0002]

【従来の技術】従来、焼却残渣用溶融炉として、アーク
炉、プラズマ炉、プラズマアーク炉、抵抗炉、バーナ炉
等が使用されている。そしてこれらの溶融炉において
は、炉内に生成する溶融物に接面する炉側壁部に、Al
23を主材とするAl23−SiC系耐火レンガを用い
たものが提案されている(特開平5−118522、特
開平9−318275)。ところが、かかる従来の焼却
残渣用溶融炉には、焼却残渣として焼却灰を溶融処理す
る場合は相応の耐用寿命があるものの、焼却残渣として
焼却灰と飛灰との混合物或は飛灰を溶融処理する場合に
耐用寿命が著しく短いという問題がある。焼却灰と飛灰
との混合物或は飛灰を溶融処理すると、炉内には、溶融
物として、下層に溶融メタル層、上層に溶融スラグ層、
最上層に薄い溶融塩層が生成し、溶融スラグ層及び溶融
塩層には飛灰中のK2O、Na2O、CaO等のアルカリ
成分が相当高濃度で含まれてくるが、これらのアルカリ
成分が、溶融スラグ層や溶融塩層と接面する炉側壁部に
用いたAl23を主材とするAl23−SiC系耐火レ
ンガと反応して、該耐火レンガを溶損させ、耐用寿命を
著しく短くするのである。
2. Description of the Related Art Conventionally, arc furnaces, plasma furnaces, plasma arc furnaces, resistance furnaces, burner furnaces and the like have been used as melting furnaces for incineration residues. In these melting furnaces, an Al side is provided on the side wall of the furnace in contact with the melt generated in the furnace.
The 2 O 3 those using Al 2 O 3 -SiC refractory bricks composed primarily has been proposed (JP-A 5-118522, JP-A-9-318275). However, such conventional incineration residue melting furnaces have a correspondingly long service life when incinerated ash is melted as incineration residue, but a mixture of incineration ash and fly ash or fly ash is melted as incineration residue. In this case, there is a problem that the service life is extremely short. When a mixture of incinerated ash and fly ash or fly ash is melted, the molten metal is formed in the furnace as a molten metal layer in the lower layer, a molten slag layer in the upper layer,
A thin molten salt layer is formed on the uppermost layer, and the molten slag layer and the molten salt layer contain alkali components such as K 2 O, Na 2 O, and CaO in fly ash at a considerably high concentration. The alkali component reacts with the Al 2 O 3 -SiC-based refractory brick mainly composed of Al 2 O 3 used for the furnace side wall portion in contact with the molten slag layer and the molten salt layer, and the refractory brick is damaged. And the service life is significantly shortened.

【0003】一般に、焼却炉を含む焼却設備には年1回
の定期補修期間が設定されているので、かかる焼却設備
から発生する焼却残渣を溶融処理する溶融炉も、これに
合わせて年1回の定期補修期間が設定し得るような耐用
寿命を持てば、好都合である。しかし、前述した従来の
焼却残渣用溶融炉は、それ程の耐用寿命を持たず、誠に
都合が悪いのである。
Generally, an incinerator including an incinerator is set to have a periodic repair period once a year. Therefore, a melting furnace for melting and processing incineration residues generated from such an incinerator is also once a year. It is advantageous to have a service life such that the periodic repair period can be set. However, the above-mentioned conventional incineration residue melting furnace does not have such a long service life, and is very inconvenient.

【0004】前述したような飛灰中のアルカリ成分に強
い耐火レンガとして、MgO−Cr23系やAl23
Cr23系耐火レンガが知られている。したがって、こ
れらの耐火レンガを炉側壁部に用い、焼却残渣用溶融炉
の耐用寿命を長くすることが考えられる。しかし、これ
らの耐火レンガには、熱膨張率が大きいため、温度変化
によって割れ易く、また積み上げた耐火レンガが炉側壁
部から炉内側へ迫出すという問題がある。これらの耐火
レンガには、これらを炉側壁部に用いると、築炉構造が
不安定になるという重大な欠陥があるのである。
As refractory bricks resistant to alkali components in fly ash as described above, MgO-Cr 2 O 3 -based and Al 2 O 3-
Cr 2 O 3 refractory bricks are known. Therefore, it is conceivable to use these refractory bricks for the furnace side wall to extend the service life of the incineration residue melting furnace. However, since these refractory bricks have a large coefficient of thermal expansion, they have a problem that they are easily cracked due to a temperature change, and that the piled refractory bricks protrude from the furnace side wall to the inside of the furnace. These refractory bricks have a serious defect in that when they are used for the furnace side wall, the furnace construction becomes unstable.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来の焼却残渣用溶融炉では、耐用寿命が
短く或はまた築炉構造が不安定という点にある。
The problem to be solved by the present invention is that the conventional incineration residue melting furnace has a short service life or an unstable furnace construction.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決する本
発明は、焼却残渣を溶融処理する溶融炉において、炉内
に生成する溶融物と接面する炉側壁部に、SiC含有量
92重量%以上の高SiC系還元焼成耐火レンガを用い
たことを特徴とする焼却残渣用溶融炉に係る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a melting furnace for melting and processing incineration residues, wherein a SiC content of 92 wt. % Of a high-SiC reduction fired refractory brick.

【0007】本発明において対象となる焼却残渣用溶融
炉は、都市ごみ、下水処理汚泥、産業廃棄物等、各種の
廃棄物を焼却処理した焼却残渣を溶融処理するアーク
炉、プラズマ炉、プラズマアーク炉、抵抗炉、バーナ炉
等である。上記のような焼却残渣を溶融処理すると、炉
内には、溶融物として、下層に溶融メタル層、上層に溶
融スラグ層、最上層に薄い溶融塩層が生成し、焼却残渣
中のアルカリ成分は、その一部は溶融メタル層にも含ま
れてくるが、溶融スラグ層及び溶融塩層に高濃度で含ま
れてきて、特に焼却残渣として焼却灰と飛灰との混合物
或は飛灰を溶融処理する場合には、焼却灰に比べて飛灰
中にアルカリ成分が高濃度で含まれているため、溶融ス
ラグ層及び溶融塩層に相当高濃度で含まれてくる。かか
る溶融スラグ層及び溶融塩層の生成及びそれらの液面は
実際の溶融処理条件によって変動するので、このような
変動を見込んで焼却残渣用溶融炉の耐用寿命を長くする
ためには、炉内に生成する溶融物と接面する炉側壁部
に、アルカリ成分と反応を起こし難い耐火レンガを用い
る必要があり、また同時に焼却残渣用溶融炉の築炉構造
を安定化させるためには、炉内に生成する溶融物と接面
する炉側壁部に、熱膨張率の小さい耐火レンガを用いる
必要があるのである。
[0007] The melting furnace for incineration residues which is the subject of the present invention is an arc furnace, a plasma furnace, and a plasma arc for melting and processing incineration residues obtained by incinerating various kinds of wastes such as municipal waste, sewage treatment sludge, and industrial waste. Furnace, resistance furnace, burner furnace and the like. When the incineration residue as described above is melt-processed, a molten metal layer is formed in the lower layer, a molten slag layer is formed in the upper layer, and a thin molten salt layer is formed in the uppermost layer. , A part of which is also contained in the molten metal layer, but is contained in the molten slag layer and the molten salt layer at a high concentration, and in particular, melts a mixture of incinerated ash and fly ash or fly ash as incineration residue. In the case of treatment, the fly ash contains an alkali component at a higher concentration than the incineration ash, so that the fly ash is contained at a considerably higher concentration in the molten slag layer and the molten salt layer. Since the formation of such a molten slag layer and a molten salt layer and the liquid level thereof vary depending on the actual melting conditions, in order to extend the useful life of the incineration residue melting furnace in view of such fluctuations, it is necessary to use a furnace. It is necessary to use refractory bricks, which are unlikely to react with alkali components, on the furnace side wall in contact with the melt generated at the same time. Therefore, it is necessary to use a refractory brick having a low coefficient of thermal expansion in the furnace side wall portion which comes into contact with the melt generated at the time.

【0008】そのため本発明では、炉内に生成する溶融
物と接面する炉側壁部に、SiC含有量92重量%以上
の高SiC系還元焼成耐火レンガを用いる。SiC含有
量92重量%以上の高SiC系還元焼成耐火レンガは、
Al23含有量50%以上のAl23を主材とするAl
23−SiC系耐火レンガよりも、アルカリ成分と反応
を起こし難く、またMgO−Cr23系やAl23−C
23系耐火レンガよりも、熱膨張率が小さい。炉内に
生成する溶融物と接面する炉側壁部に、SiC含有量9
2重量%以上の高SiC系還元焼成耐火レンガを用いる
と、焼却残渣用溶融炉の耐用寿命が長くなり、築炉構造
が安定化するのである。
[0008] Therefore, in the present invention, a high SiC reduction fired refractory brick having a SiC content of 92% by weight or more is used for the furnace side wall in contact with the melt generated in the furnace. High SiC reduction fired refractory bricks having an SiC content of 92% by weight or more are:
Al mainly composed of Al 2 O 3 having an Al 2 O 3 content of 50% or more
It is less susceptible to reaction with alkali components than 2 O 3 —SiC refractory bricks, and MgO—Cr 2 O 3 or Al 2 O 3 —C
It has a lower coefficient of thermal expansion than r 2 O 3 refractory bricks. A SiC content of 9 is provided on the side wall of the furnace in contact with the melt generated in the furnace.
When a high SiC-based refractory fired refractory brick of 2% by weight or more is used, the service life of the incineration residue melting furnace is prolonged, and the furnace construction is stabilized.

【0009】本発明では、炉内に生成する溶融物と接面
する炉側壁部に、SiC含有量92重量%以上の高Si
C系還元焼成耐火レンガを用いるが、好ましくはSiC
含有量95重量%以上のもの、より好ましくは加えて見
掛気孔率14.5%以下のもの、特に好ましくは見掛気
孔率12%以下のものを用いる。このようにSiC含有
量がより多く、また見掛気孔率がより低い緻密な高Si
C系還元焼成耐火レンガを用いると、アルカリ成分との
反応をより起こし難くできるだけでなく、溶融物がレン
ガ内部に浸透して構造変化させるのをも未然に防止でき
るため、焼却残渣用溶融炉の耐用寿命がより長くなり、
築炉構造がより安定化する。
According to the present invention, high Si having a SiC content of 92% by weight or more is provided on the side wall of the furnace in contact with the melt generated in the furnace.
C-based refractory fired refractory bricks are used, preferably SiC
Those having a content of 95% by weight or more, more preferably those having an apparent porosity of 14.5% or less, particularly preferably those having an apparent porosity of 12% or less are used. Thus, the dense high Si with higher SiC content and lower apparent porosity
The use of C-based reduced firing refractory bricks not only makes it less likely to react with alkali components, but also prevents the molten material from penetrating into the bricks and changing the structure. Longer service life,
The furnace construction becomes more stable.

【0010】以上説明したSiC含有量92重量%以上
の高SiC系還元焼成耐火レンガ相互の目地接着にはモ
ルタルを用いる。用いるモルタルの材質は特に制限され
ないが、Al23含有量90重量%以上且つCr23
有量3重量%以上のモルタルを用いるのが好ましく、A
23含有量92重量%以上且つCr23含有量5重量
%以上のモルタルを用いるのがより好ましい。高SiC
系還元焼成耐火レンガと同様に、高SiC含有量のモル
タルを用いると、モルタル材料用のSiCは微粒子で比
表面積が大きく、またモルタルそれ自体の見掛気孔率も
大きいため、目地部が炉内雰囲気に晒されたときに酸化
し、生成した酸化物が該目地部が溶融物に接面したとき
に該溶融物中のアルカリ成分と反応するため、その溶損
が大きくなるが、酸化物であるAl23に溶融物中のア
ルカリ成分に対して強いCr23を組み合わせたモルタ
ルを用いると、かかる溶損を抑えることができる。
[0010] Mortar is used for joint bonding between high SiC reduction fired refractory bricks having an SiC content of 92% by weight or more as described above. Although the material of the mortar to be used is not particularly limited, it is preferable to use a mortar having an Al 2 O 3 content of 90% by weight or more and a Cr 2 O 3 content of 3% by weight or more.
More preferably, a mortar having an l 2 O 3 content of 92% by weight or more and a Cr 2 O 3 content of 5% by weight or more is used. High SiC
When a mortar with a high SiC content is used, as in the case of the system-reduced fired refractory brick, SiC for the mortar material has fine particles and a large specific surface area, and the apparent porosity of the mortar itself is large. It oxidizes when exposed to the atmosphere, and the generated oxide reacts with the alkali component in the melt when the joints come into contact with the melt, so that the melting loss increases. The use of mortar in which certain Al 2 O 3 is combined with Cr 2 O 3 that is strong against alkali components in the melt can suppress such melting.

【0011】目地接着に用いたモルタルの溶損をより効
果的に抑えるためには、実際の溶融処理条件によって変
動する溶融物の液面が上下方向に積んだ高SiC系還元
焼成耐火レンガ相互間の目地部にこないようにするのが
望ましい。そのためには、大きめの個体高さを有する高
SiC系還元焼成耐火レンガ、例えば150〜230mm
の個体高さを有する高SiC系還元焼成耐火レンガを上
下方向に積み、炉内に生成する溶融物の液面の変動を該
高SiC系還元焼成耐火レンガの個体高さの範囲内でカ
バーするようにするのが有利である。
In order to more effectively suppress the erosion of the mortar used for joint bonding, it is necessary to increase the liquid level of the molten material, which fluctuates depending on the actual melting conditions, between the high SiC reduction fired refractory bricks stacked vertically. It is desirable not to come into the joint area of. For this purpose, a high SiC reduction fired refractory brick having a large solid height, for example, 150 to 230 mm
The high-SiC reduced-fired refractory bricks having a solid height of are vertically stacked, and the fluctuation of the liquid level of the melt generated in the furnace is covered within the solid height range of the high-SiC reduced-fired refractory bricks. It is advantageous to do so.

【0012】炉側壁部に積んだ高SiC系還元焼成耐火
レンガは炉内に生成する溶融物と接面するが、その一部
は炉内雰囲気とも接面する。炉内雰囲気と接面する高S
iC系還元焼成耐火レンガ部分は通常1000〜130
0℃の高温になり、その表面は酸化される。一方、焼却
残渣中のアルカリ成分は炉内に生成する溶融物中に存在
するだけでなく、その一部は炉内雰囲気中にもガス化し
て存在する。炉内雰囲気と接面する高SiC系還元焼成
耐火レンガの表面に生成した酸化物は該炉内雰囲気中の
アルカリ成分と反応し、結果としてその表面が溶損する
のである。かかる表面溶損は、目地部に高SiC含有量
のモルタルを用いた場合に結果として該目地部が溶損す
るのと同様である。このような表面溶損を抑えるために
は、高SiC系還元焼成耐火レンガの炉内雰囲気と接面
する表面を、酸化物を主材とする耐火物、例えばAl2
3−SiO2系やAl23−Cr23系耐火レンガ或は
不定形耐火物で覆うのが有利である。
[0012] The high SiC reduction fired refractory brick piled on the furnace side wall comes into contact with the melt generated in the furnace, but a part of the brick also comes into contact with the furnace atmosphere. High S in contact with furnace atmosphere
iC-based reduced firing refractory brick is usually 1000-130
When the temperature rises to 0 ° C., the surface is oxidized. On the other hand, the alkali component in the incineration residue is present not only in the melt generated in the furnace, but also partially as a gas in the furnace atmosphere. The oxide generated on the surface of the high SiC reduction fired refractory brick in contact with the furnace atmosphere reacts with the alkali component in the furnace atmosphere, and as a result, the surface is melted. Such surface erosion is the same as the erosion of the joint as a result when a mortar having a high SiC content is used for the joint. In order to suppress such surface erosion, the surface of the high-SiC-based reduced-fired refractory brick which is in contact with the furnace atmosphere is made of a refractory mainly composed of an oxide such as Al 2.
It is advantageous to cover with an O 3 —SiO 2 or Al 2 O 3 —Cr 2 O 3 refractory brick or irregular refractory.

【0013】[0013]

【発明の実施の形態】図1は本発明に係る焼却残渣用溶
融炉の実施形態を略示する縦断面図である。図示した溶
融炉はアーク炉であり、このアーク炉は炉本体11と、
炉本体11に被着された炉蓋12と、炉蓋12から炉内
に挿入された電極13とを備えている。炉内には、焼却
残渣の溶融処理により生成した溶融物21として、下層
の溶融メタル層22、上層の溶融スラグ層23及び最上
層の薄い溶融塩層24が生成しており、溶融塩層24の
上部に未溶融の焼却残渣25が存在していて、溶融塩層
24の上方における炉内空間部には焼却残渣の溶融処理
により生成したガス26が充満している。溶融スラグ層
23及び溶融塩層24には、焼却残渣25に起因するア
ルカリ成分が相当高濃度で含まれており、またガス26
にもガス化したアルカリ成分が相応濃度で含まれてい
る。図示を省略するが、炉体11の背面側には溶融スラ
グ23の排出口が開設されており、また炉蓋12には焼
却残渣投入口及び排気口が開設されていて、排出口の下
方には水砕装置が設置され、排気口の下流側には集塵装
置が接続されている。
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of a melting furnace for incineration residues according to the present invention. The illustrated melting furnace is an arc furnace, which has a furnace body 11 and
The furnace includes a furnace lid 12 attached to a furnace body 11, and an electrode 13 inserted into the furnace from the furnace lid 12. In the furnace, a lower molten metal layer 22, an upper molten slag layer 23, and an uppermost thin molten salt layer 24 are generated as a melt 21 generated by the melting treatment of the incineration residue. There is an unmelted incineration residue 25 in the upper part of the furnace, and a space in the furnace above the molten salt layer 24 is filled with a gas 26 generated by melting the incineration residue. The molten slag layer 23 and the molten salt layer 24 contain a considerably high concentration of an alkali component originating from the incineration residue 25, and a gas 26.
Also contains a gasified alkali component at a corresponding concentration. Although not shown, a discharge port for the molten slag 23 is provided on the back side of the furnace body 11, and an incineration residue charging port and an exhaust port are provided on the furnace lid 12. Is equipped with a water granulator, and a dust collector is connected downstream of the exhaust port.

【0014】溶融物21と接面する炉側壁部(炉本体1
1の側壁下部)は、炉内側から炉外側に向かって、Si
C含有量92重量%以上且つ見掛気孔率12%以下の高
SiC系還元焼成耐火レンガ31、高SiC系還元焼成
耐火レンガ31に接する耐火断熱材32、耐火断熱材3
2に接する鋼板33(炉殻)の順で構築されている。ま
たガス26と接面する炉側壁部(炉体11の側壁上部)
は、炉内側から炉外側に向かって、不定形耐火物41、
不定形耐火物41に接する耐火断熱材42、耐火断熱材
42に接する鋼板33(炉殻)の順で構築されており、
不定形耐火物41は鋼板33に溶接した金属棒にネジ込
み式で取付けられたセラミック製のアンカー43で支持
されている。
The furnace side wall portion (furnace main body 1) in contact with the melt 21
1 from the inside of the furnace toward the outside of the furnace.
High SiC-based reduced firing refractory brick 31 having a C content of 92% by weight or more and an apparent porosity of 12% or less, refractory heat insulating material 32 in contact with high SiC-based reduced firing refractory brick 31, and refractory heat insulating material 3
The steel plates 33 (furnace shell) in contact with 2 are constructed in this order. Further, the furnace side wall portion in contact with the gas 26 (upper side wall of the furnace body 11)
Is from the inside of the furnace toward the outside of the furnace,
It is constructed in the order of the refractory heat insulating material 42 in contact with the irregular refractory 41 and the steel plate 33 (furnace shell) in contact with the refractory heat insulating material 42.
The irregular-shaped refractory 41 is supported by a ceramic anchor 43 screwed to a metal rod welded to a steel plate 33.

【0015】炉床は逆アーチ構造の耐火レンガ51で構
築されており、耐火レンガ51の外周部に鋼板33(炉
殻)と接して膨張吸収ボード52が組込まれている。ま
た炉蓋12は前述したようなガス26と接触する炉側壁
部とほぼ同様に構築されている。そして炉本体11の炉
殻に相当する鋼板33の外側には、炉壁及び炉床を覆う
ように、空冷用の空気通路61が形成されており、この
ような空気通路は炉蓋12の外側にも設けられていて、
炉本体11及び炉蓋12を空冷するようになっている。
The hearth is constructed of a refractory brick 51 having an inverted arch structure, and an expansion absorption board 52 is incorporated around the outer periphery of the refractory brick 51 in contact with a steel plate 33 (furnace shell). Further, the furnace lid 12 is constructed in substantially the same manner as the furnace side wall portion which comes into contact with the gas 26 as described above. An air passage 61 for air cooling is formed outside the steel plate 33 corresponding to the furnace shell of the furnace body 11 so as to cover the furnace wall and the hearth. It is also provided in
The furnace main body 11 and the furnace lid 12 are air-cooled.

【0016】図1に略示した実施形態では、高SiC系
還元焼成耐火レンガ31は上下方向に3段で積まれてお
り、上下方向に積まれた高SiC系還元焼成耐火レンガ
31相互間の目地接着に、Al23含有量90重量%以
上且つCr23含有量3重量%以上のモルタル34が使
用されている。各高SiC系還元焼成耐火レンガ31は
大きめの個体高さを有しており、溶融物21の液面(溶
融塩層24の液面)は最上段に積まれた高SiC系還元
焼成耐火レンガのほぼ中央に位置している。
In the embodiment schematically shown in FIG. 1, the high SiC reduced fired refractory bricks 31 are vertically stacked in three stages, and the high SiC reduced fired refractory bricks 31 stacked vertically are disposed between the high fired refractory bricks 31. Mortar 34 having an Al 2 O 3 content of 90% by weight or more and a Cr 2 O 3 content of 3% by weight or more is used for joint bonding. Each high SiC-based reduced fired refractory brick 31 has a relatively large solid height, and the liquid level of the melt 21 (the liquid level of the molten salt layer 24) is the high SiC-based reduced fired refractory brick stacked on the top. It is located almost in the center.

【0017】図2は本発明に係る焼却残渣用溶融炉の他
の実施形態を略示する縦断面図である。図2中のaを付
した符号からaを除いたものは図1中の同じ符号と対応
し、これらの構成は図1と同様になっているので、説明
を省略する。図2に略示した実施形態では、上下方向に
3段で積まれた高SiC系還元焼成耐火レンガ31aの
表面(溶融物21a及びガス26aと接面する炉内側の
表面)が、酸化物を主材とするAl23−Cr23系の
不定形耐火物35で覆われている。
FIG. 2 is a longitudinal sectional view schematically showing another embodiment of the incineration residue melting furnace according to the present invention. 2 except for the letter a in FIG. 2 correspond to the same reference numerals in FIG. 1, and their configurations are the same as those in FIG. 1. In the embodiment schematically illustrated in FIG. 2, the surface of the high-SiC-based reduced-fired refractory brick 31 a stacked in three stages in the vertical direction (the surface inside the furnace in contact with the melt 21 a and the gas 26 a) is made of oxide. It is covered with an Al 2 O 3 —Cr 2 O 3 -based irregular refractory 35 as a main material.

【0018】図3は本発明で用いる高SiC系還元焼成
耐火レンガP(SiC含有量95重量%、SiO2含有
量3重量%、Al23含有量2重量%、見掛気孔率12
%以下)及び従来のAl23−SiC系耐火レンガR
(Al23含有量55重量%、SiC含有量38重量
%、SiO2含有量6重量%、C含有量1重量%)につ
いて試験用溶融スラグの塩基度(CaO/SiO2)に
対するそれらの被食率(%)を求めた結果を例示するグ
ラフである。また図4は同じ耐火レンガP,Rについて
試験用溶融スラグの塩基度(CaO/SiO2)に対す
るそれらの最大侵食深さ(mm)を求めた結果を例示する
グラフである。図3及び図4は、都市ごみ焼却灰の溶融
スラグにCaOを加えて塩基度を調整した試験用溶融ス
ラグ中に各耐火レンガを浸漬して1650℃で3時間放
置したときの結果を示し、図3の被食率(%)は(侵食
した部分の体積/元の体積)×100で求めた。
FIG. 3 shows the high-SiC reduction fired refractory brick P (SiC content 95% by weight, SiO 2 content 3% by weight, Al 2 O 3 content 2% by weight, apparent porosity 12) used in the present invention.
% Or less) and the conventional Al 2 O 3 —SiC refractory brick R
(Al 2 O 3 content 55% by weight, SiC content 38% by weight, SiO 2 content 6% by weight, C content 1% by weight) with respect to the basicity (CaO / SiO 2 ) of the test molten slag. It is a graph which illustrates the result of having calculated the erosion rate (%). FIG. 4 is a graph illustrating the results of determining the maximum pit depth (mm) of the test refractory bricks P and R with respect to the basicity (CaO / SiO 2 ) of the test molten slag. FIGS. 3 and 4 show the results when each refractory brick was immersed in a test molten slag in which the basicity was adjusted by adding CaO to the molten slag of municipal waste incineration ash and left at 1650 ° C. for 3 hours, The erosion rate (%) in FIG. 3 was determined by (volume of eroded portion / original volume) × 100.

【0019】図5〜図8は都市ごみ焼却残渣(焼却灰と
飛灰との混合物)を図1,2のようなアーク炉で1年間
溶融処理したときの溶融物と接面する炉側壁部に用いた
耐火レンガの溶損状態を例示する略視図である。これら
のうちで図5は高SiC系還元焼成耐火レンガP(Si
C含有量95重量%、SiO2含有量3重量%、Al2
3含有量2重量%)を4段積みし、それらの目地接着に
高SiC系モルタルS(SiC含有量93重量%)を用
いた場合(実施例相当)、図6は高SiC系還元焼成耐
火レンガPを4段積みし、それらの目地接着にAl23
−Cr23系のモルタルT(Al23含有量92重量
%、Cr23含有量5重量%)を用いた場合(実施例相
当)、図7は高SiC系還元焼成耐火レンガPを4段積
みし、それらの目地接着にAl23−Cr23系のモル
タルTを用い、更に4段積みした高SiC系還元焼成耐
火レンガPの表面をAl23−Cr23系の酸化物を主
材とする不定形耐火物(Al23含有量92重量%、C
23含有量5重量%)で覆った場合(実施例相当)、
図8はAl23を主材とするAl23−SiC系耐火レ
ンガR(Al23含有量55重量%、SiC含有量38
重量%、SiO2含有量6重量%、C含有量1重量%)
を4段積みし、それらの目地接着に高SiC系モルタル
Sを用いた場合である。図5〜図8では、溶損部を斜線
で示した。
FIGS. 5 to 8 show furnace side walls which are in contact with the melt when the municipal waste incineration residue (mixture of incineration ash and fly ash) is melted for one year in an arc furnace as shown in FIGS. It is a schematic diagram which illustrates the erosion state of the refractory brick used for (a). Among them, FIG. 5 shows a high SiC reduction fired refractory brick P (Si
C content 95% by weight, SiO 2 content 3% by weight, Al 2 O
FIG. 6 shows a high SiC-based refractory fired refractory in a case where high SiC-based mortar S (SiC content: 93% by weight) was used for jointing the joints ( 3 % content: 2% by weight). The bricks P are stacked in four layers, and the joints are bonded with Al 2 O 3
-Cr 2 O 3 based mortar T (Al 2 O 3 content of 92 wt%, Cr 2 O 3 content of 5 wt%) is used (Example equivalent), 7 high SiC-based reduction firing refractory bricks and Masonry P 4 stages, with Al 2 O 3 -Cr 2 O 3 mortar T of their joint adhesive, further 4-stage stacked, high-SiC-based reduction firing refractory bricks P Al 2 O 3 surface of -Cr Amorphous refractories mainly composed of 2 O 3 -based oxides (Al 2 O 3 content 92% by weight, C
r 2 O 3 content 5% by weight) (corresponding to Examples)
FIG. 8 shows an Al 2 O 3 —SiC refractory brick R mainly composed of Al 2 O 3 (Al 2 O 3 content 55% by weight, SiC content 38).
Weight%, SiO 2 content 6 weight%, C content 1 weight%)
Are stacked in four stages, and high SiC-based mortar S is used for bonding these joints. In FIG. 5 to FIG. 8, the eroded portion is indicated by oblique lines.

【0020】[0020]

【発明の効果】既に明らかなように、以上説明した本発
明には、焼却残渣用溶融炉の耐用寿命を長くでき、築炉
構造を安定化できるという効果がある。
As is clear from the above, the present invention described above has the effects that the service life of the melting furnace for incineration residues can be extended and the furnace construction can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る焼却残渣用溶融炉の実施形態を略
示する縦断面図。
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of a melting furnace for incineration residues according to the present invention.

【図2】本発明に係る焼却残渣用溶融炉の他の実施形態
を略示する縦断面図。
FIG. 2 is a longitudinal sectional view schematically showing another embodiment of the incineration residue melting furnace according to the present invention.

【図3】本発明で用いる高SiC系還元焼成耐火レンガ
等について溶融スラグの塩基度に対する被食率を例示す
るグラフ。
FIG. 3 is a graph illustrating the erosion rate with respect to the basicity of molten slag for a high SiC reduction fired refractory brick or the like used in the present invention.

【図4】本発明で用いる高SiC系還元焼成耐火レンガ
等について溶融スラグの塩基度に対する最大侵食深さを
例示するグラフ。
FIG. 4 is a graph illustrating the maximum erosion depth with respect to the basicity of molten slag for a high SiC reduction fired refractory brick or the like used in the present invention.

【図5】本発明の一実施形態において高SiC系還元焼
成耐火レンガの溶損状態を例示する略視図。
FIG. 5 is a schematic view illustrating the state of erosion of a high SiC reduction fired refractory brick in one embodiment of the present invention.

【図6】本発明の他の一実施形態において高SiC系還
元焼成耐火レンガの溶損状態を例示する略視図。
FIG. 6 is a schematic view illustrating the erosion state of a high SiC-based reduced-fired refractory brick in another embodiment of the present invention.

【図7】本発明の更に他の一実施形態において高SiC
系還元焼成耐火レンガの溶損状態を例示する略視図。
FIG. 7 shows a high SiC in still another embodiment of the present invention.
FIG. 2 is a schematic view illustrating a erosion state of a system reduction fired refractory brick.

【図8】従来例においてAl23−SiC系耐火レンガ
の溶損状態を例示する略視図。
FIG. 8 is a schematic view illustrating the erosion state of an Al 2 O 3 —SiC refractory brick in a conventional example.

【符号の説明】[Explanation of symbols]

11,11a・・・炉本体、12,12a・・・炉蓋、
13,13a・・・電極、21,21a・・・溶融物、
26,26a・・・ガス、31,31a・・・高SiC
系還元焼成耐火レンガ、33・・・鋼板、34,34a
・・・モルタル、35・・・不定形耐火物
11, 11a ... furnace body, 12, 12a ... furnace lid,
13, 13a ... electrodes, 21, 21a ... melts,
26, 26a: gas, 31, 31a: high SiC
System reduction firing refractory brick, 33 ... steel plate, 34, 34a
... Mortar, 35 ... Fixed refractories

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金藤 ▲紘▼一郎 三重県四日市市あかつき台3丁目1番地の 215 Fターム(参考) 4K051 AA00 AA05 AB03 BD05 BE03 DA13 DA18  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor ▲ Hiro ▼ Ichiro 215 F-term at 3-1-1 Akatsukidai, Yokkaichi-shi, Mie 4K051 AA00 AA05 AB03 BD05 BE03 DA13 DA18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 焼却残渣を溶融処理する溶融炉におい
て、炉内に生成する溶融物と接面する炉側壁部に、Si
C含有量92重量%以上の高SiC系還元焼成耐火レン
ガを用いたことを特徴とする焼却残渣用溶融炉。
In a melting furnace for melting and processing incineration residues, Si is provided on a side wall of a furnace in contact with a melt generated in the furnace.
A melting furnace for incineration residues, characterized by using a high SiC reduction fired refractory brick having a C content of 92% by weight or more.
【請求項2】 高SiC系還元焼成耐火レンガ相互の目
地接着に、Al23含有量90重量%以上且つCr23
含有量3重量%以上のモルタルを用いた請求項1記載の
焼却残渣用溶融炉。
2. An Al 2 O 3 content of not less than 90% by weight and Cr 2 O 3 for bonding joints between high SiC-based reduced firing fire-resistant bricks.
The melting furnace for incineration residue according to claim 1, wherein a mortar having a content of 3% by weight or more is used.
【請求項3】 炉内に生成する溶融物の液面が上下方向
に積んだ高SiC系還元焼成耐火レンガ相互間の目地部
に位置しないように相応の個体高さを有する高SiC系
還元焼成耐火レンガを積んだ請求項1又は2記載の焼却
残渣用溶融炉。
3. A high SiC reduction firing having a corresponding solid height so that the liquid level of the melt generated in the furnace is not located at the joint between the high SiC refractory bricks stacked vertically. The melting furnace for incineration residues according to claim 1, wherein a refractory brick is stacked.
【請求項4】 更に高SiC系還元焼成耐火レンガの炉
内雰囲気と接面する表面を、酸化物を主材とする耐火物
で覆った請求項1、2又は3記載の焼却残渣用溶融炉。
4. The melting furnace for incineration residue according to claim 1, wherein the surface of the high-SiC reduced-fired refractory brick which is in contact with the atmosphere in the furnace is covered with a refractory mainly composed of an oxide. .
JP18975298A 1998-06-19 1998-06-19 Incineration residue melting furnace Expired - Fee Related JP3778698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18975298A JP3778698B2 (en) 1998-06-19 1998-06-19 Incineration residue melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18975298A JP3778698B2 (en) 1998-06-19 1998-06-19 Incineration residue melting furnace

Publications (2)

Publication Number Publication Date
JP2000009388A true JP2000009388A (en) 2000-01-14
JP3778698B2 JP3778698B2 (en) 2006-05-24

Family

ID=16246596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18975298A Expired - Fee Related JP3778698B2 (en) 1998-06-19 1998-06-19 Incineration residue melting furnace

Country Status (1)

Country Link
JP (1) JP3778698B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039570A2 (en) * 2008-09-30 2010-04-08 Hemlock Semiconductor Corporation Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon
CN101762161A (en) * 2010-02-10 2010-06-30 长沙有色冶金设计研究院 Hearth of oxygen side blown converter
JP2017180983A (en) * 2016-03-31 2017-10-05 東京窯業株式会社 Wall structure for container or piping for storing or transporting high-temperature gas
JP2019184175A (en) * 2018-04-12 2019-10-24 株式会社オメガ Heat resistant material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039570A2 (en) * 2008-09-30 2010-04-08 Hemlock Semiconductor Corporation Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon
WO2010039570A3 (en) * 2008-09-30 2010-11-18 Hemlock Semiconductor Corporation Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon
KR20110079686A (en) * 2008-09-30 2011-07-07 헴로크세미컨덕터코포레이션 Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon
CN102209685A (en) * 2008-09-30 2011-10-05 赫姆洛克半导体公司 Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon
US8895324B2 (en) 2008-09-30 2014-11-25 Hemlock Semiconductor Corporation Method of determining an amount of impurities that a contaminating material contributes to high purity silicon
KR101658356B1 (en) * 2008-09-30 2016-09-22 헴로크세미컨덕터코포레이션 Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon
CN101762161A (en) * 2010-02-10 2010-06-30 长沙有色冶金设计研究院 Hearth of oxygen side blown converter
JP2017180983A (en) * 2016-03-31 2017-10-05 東京窯業株式会社 Wall structure for container or piping for storing or transporting high-temperature gas
JP2019184175A (en) * 2018-04-12 2019-10-24 株式会社オメガ Heat resistant material

Also Published As

Publication number Publication date
JP3778698B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
TWI393696B (en) Refractory
EP1443033A1 (en) Refractory for furnace and furnace and method for surface treating furnace wall
JP3778698B2 (en) Incineration residue melting furnace
JPH09318275A (en) Structure of furnace wall of melting furnace for incinerated residue
KR20030019046A (en) Ash Melting Device
JP3814449B2 (en) Discharge port member for melting furnace and manufacturing method thereof
JPH02302508A (en) Water tube protective material and water tube protective wall used for incinerator and the like
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JP3375758B2 (en) Furnace for melting waste
JP3496690B2 (en) Melting furnace and its zirconia refractories
JP2000111024A (en) Alkaline waste liquid incinerating furnace
JPH1137434A (en) Inner wall structure of melting furnace
JPH0835642A (en) Incineration ash melting furnace
JP2706333B2 (en) High temperature processing equipment for materials
JP3375722B2 (en) Apparatus and method for melting incinerated ash and incinerated fly ash
JP3139663B2 (en) Apparatus and method for melting incinerated ash and incinerated fly ash
JP3278760B2 (en) ZrO2-based molten cast refractories for melting furnaces such as incineration ash and method for producing the same
JP2003207122A (en) Plasma ash melting furnace
JPH11351534A (en) Waste melting furnace and its refractory material
JP2006300410A (en) Ash melting furnace
JP2700064B2 (en) Fire resistant material
JP3135149B2 (en) Municipal solid waste incineration ash melting furnace
JP3857089B2 (en) Ash melting treatment method and ash melting treatment apparatus
JPH11281048A (en) Melting furnace
JP2004315309A (en) Firebrick and furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees