JP2000009362A - Hybrid compression/absorption heat pump - Google Patents

Hybrid compression/absorption heat pump

Info

Publication number
JP2000009362A
JP2000009362A JP10173131A JP17313198A JP2000009362A JP 2000009362 A JP2000009362 A JP 2000009362A JP 10173131 A JP10173131 A JP 10173131A JP 17313198 A JP17313198 A JP 17313198A JP 2000009362 A JP2000009362 A JP 2000009362A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
generator
absorber
refrigerant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10173131A
Other languages
Japanese (ja)
Other versions
JP4091167B2 (en
Inventor
Jiro Fukutome
二朗 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP17313198A priority Critical patent/JP4091167B2/en
Publication of JP2000009362A publication Critical patent/JP2000009362A/en
Application granted granted Critical
Publication of JP4091167B2 publication Critical patent/JP4091167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PROBLEM TO BE SOLVED: To obtain a hybrid heat pump for feeding an air conditioning heat exchanger with both refrigerant gas compressed through a compressor and refrigerant gas generated from a generator in which circulation of solution can be reduced by extracting a part of refrigerant compressed through a compressor under intermediate pressure and causing an absorber to absorb it. SOLUTION: At the time of cooling, high temperature high pressure refrigerant gas compressed through a compressor 2 is fed through a refrigerant line 5 to an outdoor heat exchanger 3 and condensed refrigerant gas is fed to an indoor heat exchanger 4 where cooling is performed with vaporization latent heat before the refrigerant gas is sucked back to the compressor 2. A suction refrigerant supply line 11 is connected across one delivery part of the compressor 2 and the inlet of an absorber 6 and a part of refrigerant is extracted at an intermediate pressure stage in the way of compression through the compressor 2 and fed to the absorber 6. The refrigerant introduced to the absorber 6 is absorbed by an absorbent and mixture solution of the absorbent and refrigerant is fed by means of a pump 12 from a solution supply line 13 to a generator 7 through a regenerator 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、圧縮サイクルと
吸収サイクルを複合させたハイブリッド型のヒートポン
プ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid heat pump apparatus in which a compression cycle and an absorption cycle are combined.

【0002】[0002]

【従来の技術】この発明の発明者らは、先に、圧縮機を
備えたヒートポンプ装置に吸収サイクルを複合すること
で、圧縮機の仕事の一部を吸収サイクルに肩代わりさせ
るハイブリッド型のヒートポンプ装置を発明し、特願平
10−149693号として出願した。
2. Description of the Related Art The inventors of the present invention have previously disclosed a hybrid heat pump apparatus in which a heat pump apparatus equipped with a compressor is combined with an absorption cycle, so that part of the work of the compressor is replaced by the absorption cycle. And filed an application as Japanese Patent Application No. 10-149693.

【0003】即ち、図7で示すように圧縮機(31)に吸入
される冷媒の一部を、吸収サイクルの吸収器(32)によっ
て吸収剤へ吸収させ、吸収剤と冷媒との混合物をポンプ
(33)で送るとともに、圧縮機(31)を駆動するエンジン(3
4)の冷却水回路と排気ガス通路の双方または、どちらか
一方(35)の熱を熱源とする発生器(36)で高圧ガスとして
取り出した後、これを圧縮機(31)吐出側の冷媒ライン(3
7)へ合流させて空調用熱交換器(38)(39)へ送るものであ
る。
That is, as shown in FIG. 7, a part of the refrigerant sucked into the compressor (31) is absorbed into the absorbent by the absorber (32) in the absorption cycle, and the mixture of the absorbent and the refrigerant is pumped.
(33) and the engine (3
After extracting as high-pressure gas by the generator (36) using heat of the cooling water circuit and / or the exhaust gas passage (4) of (4) as a heat source, the refrigerant is discharged from the compressor (31) on the discharge side. Line (3
It is combined with 7) and sent to the air-conditioning heat exchangers (38) and (39).

【0004】このように圧縮機(31)の仕事の一部を吸収
サイクルに肩代わりさせることで圧縮機(31)の負荷が軽
減されて、エンジン(34)の燃料消費を節約でき、他方、
発生器(36)の熱源として圧縮機用エンジン(34)の廃熱を
利用することでバーナーなどの特別のエネルギー源が不
要となり、冷凍サイクル全体のエネルギー消費を低減す
ることが出来るものである。
[0004] In this way, by taking part of the work of the compressor (31) into the absorption cycle, the load on the compressor (31) is reduced, and the fuel consumption of the engine (34) can be reduced, while
By utilizing the waste heat of the compressor engine (34) as the heat source of the generator (36), a special energy source such as a burner is not required, and the energy consumption of the entire refrigeration cycle can be reduced.

【0005】[0005]

【発明が解決しようとする課題】一般に、圧縮サイクル
の冷媒としてはフロン正確には冷媒番号R22が広く用
いられ、最近ではオゾン層を破壊しない代替冷媒として
同R407C、R134aなどが用いられるようになっ
ている。これらの成分は、圧縮サイクルに用いられる冷
媒としては適したものであり、圧縮サイクルにのみ用い
る場合には問題は生じない。
Generally, refrigerant number R22, which is exactly Freon, is widely used as a refrigerant in a compression cycle, and recently R407C, R134a, etc. have been used as alternative refrigerants which do not destroy the ozone layer. ing. These components are suitable as refrigerants used in the compression cycle, and pose no problem when used only in the compression cycle.

【0006】しかしながら、これら圧縮サイクルに用い
られる冷媒は、分子量がR22で83と大きいため、吸
収剤への吸収性が低く、吸収剤へ吸収させた状態での高
濃度側溶液の冷媒濃度には限界がある。他方、ハイブリ
ッド型では、発生器の熱源としてエンジン冷却水や排気
ガスなどの廃熱を利用するが、発生器の温度を高温にし
すぎると冷媒そのものが熱分解をおこしてしまうので、
発生器を際限なく高い温度で作動させることが出来ず、
冷媒ガスを発生させた後の低濃度側溶液の冷媒濃度にも
下限があり、これら高濃度側と低濃度側の濃度差が小さ
く、溶液と冷媒の流量比率である溶液循環比が大きいと
いう問題がある。
However, since the refrigerant used in these compression cycles has a large molecular weight of R22 of 83, the refrigerant has low absorbency to the absorbent, and the refrigerant concentration of the high-concentration solution in the state of being absorbed in the absorbent is low. There is a limit. On the other hand, in the hybrid type, waste heat such as engine cooling water or exhaust gas is used as a heat source of the generator, but if the temperature of the generator is too high, the refrigerant itself will undergo thermal decomposition,
The generator cannot be operated at an endlessly high temperature,
There is also a lower limit to the refrigerant concentration of the low concentration side solution after the generation of the refrigerant gas, the difference in concentration between the high concentration side and the low concentration side is small, and the solution circulation ratio, which is the flow ratio between the solution and the refrigerant, is large. There is.

【0007】図8は、上記図7の冷凍サイクルにおける
冷媒圧力と温度との関係を示したデューリング線図であ
って、図の左側の矢印の付いた破線が圧縮機サイクル
を、右側の矢印の付いた実線が吸収サイクルを示してい
るが、吸収サイクルにおける左端コーナーのa点におい
て吸収器から吸出された吸収剤と冷媒との混合物は、発
生器へ送られる際に次第に圧力と温度が上昇し、途中の
b点で再生器との熱交換により更に圧力と温度が上昇し
た状態で発生器に導入されるが、そのときの高濃度側の
冷媒濃度はξ1=0.30であり、他方発生器で冷媒を
放出した後の冷媒濃度はξ2=0.15であって、その
差は0.15しかなく、溶液循環比は1/(0.30−
0.15)=6〜7と大きくなる。ここで溶液循環比と
いうのは、1/(高濃度溶液の冷媒濃度−冷濃度溶液の
冷媒濃度)で決まるファクタ−である。
FIG. 8 is a During diagram showing the relationship between the refrigerant pressure and the temperature in the refrigeration cycle shown in FIG. 7, wherein the broken line with the arrow on the left side indicates the compressor cycle and the arrow on the right side. Indicates the absorption cycle, and the mixture of the absorbent and the refrigerant sucked out of the absorber at point a at the left end corner of the absorption cycle gradually increases in pressure and temperature when being sent to the generator. Then, at point b in the middle, the pressure and the temperature are further increased by heat exchange with the regenerator and introduced into the generator. At that time, the refrigerant concentration on the high concentration side is ξ1 = 0.30, The refrigerant concentration after releasing the refrigerant in the generator is ξ2 = 0.15, the difference is only 0.15, and the solution circulation ratio is 1 / (0.30−
0.15) = 6-7. Here, the solution circulation ratio is a factor determined by 1 / (refrigerant concentration of high concentration solution−refrigerant concentration of cold concentration solution).

【0008】このため、圧縮機の負荷を効果的に軽減出
来るだけの冷媒を吸収させようとすると、多量の吸収剤
を循環させなければならず、吸収サイクルを構成する装
置全体が大型化し、また、吸収剤を循環させるポンプの
エネルギー消費量も大きくなるという問題がある。
For this reason, in order to absorb as much refrigerant as can effectively reduce the load on the compressor, a large amount of absorbent must be circulated, and the entire apparatus constituting the absorption cycle becomes large, In addition, there is a problem that the energy consumption of the pump for circulating the absorbent increases.

【0009】更に、圧縮サイクル用のフロン冷媒は吸収
サイクルに用いられる水やアンモニアなどに比較して質
量当たりの気化(液化)潜熱量が低いという問題があ
る。これは、体積当たりの潜熱量が重要となる圧縮サイ
クルでは問題ないが、吸収サイクルでは効果が半減する
ことになり、このことによっても多量の冷媒を吸収させ
るため溶液循環量を増大させることとなって、装置全体
が大型化するなどの欠点がある。
Further, the CFC refrigerant for the compression cycle has a problem that the amount of latent heat of vaporization (liquefaction) per mass is lower than that of water or ammonia used in the absorption cycle. This is not a problem in the compression cycle where the amount of latent heat per volume is important, but the effect is reduced by half in the absorption cycle, which also increases the amount of solution circulation to absorb a large amount of refrigerant. Therefore, there are drawbacks such as an increase in the size of the entire apparatus.

【0010】この発明は、このように圧縮サイクルと吸
収サイクルを複合化したハイブリッド型ヒートポンプに
おいて、吸収サイクルを循環する溶液の循環量を低減す
ることを可能とし、これによって装置全体を大型化する
ことのないヒートポンプ装置を提供することを目的とす
るものである。
The present invention makes it possible to reduce the amount of the solution circulating in the absorption cycle in the hybrid heat pump in which the compression cycle and the absorption cycle are combined as described above, thereby increasing the size of the entire apparatus. It is an object of the present invention to provide a heat pump device free from heat.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、この出願の請求項1の発明は、圧縮サイクルの圧縮
機で圧縮された冷媒ガスと吸収サイクルの発生器で発生
した冷媒ガスとを共に空調用熱交換器へ送り出すハイブ
リッド型のヒートポンプ装置であって、圧縮機によって
圧縮される冷媒の一部を中間圧の状態で抽気すること
で、その抽気された冷媒を吸収サイクルの吸収器に吸収
させることとされているものが提供される。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the invention of claim 1 of the present application relates to a refrigerant gas compressed by a compressor of a compression cycle and a refrigerant gas generated by a generator of an absorption cycle. Is a hybrid heat pump device that sends both to the air-conditioning heat exchanger, in which a part of the refrigerant compressed by the compressor is extracted at an intermediate pressure state, and the extracted refrigerant is absorbed by the absorber of the absorption cycle. What is to be absorbed is provided.

【0012】同じく請求項2の発明は、圧縮サイクルの
圧縮機で圧縮された冷媒ガスと吸収サイクルの発生器で
発生した冷媒ガスとを共に空調用熱交換器へ送り出すハ
イブリッド型のヒートポンプ装置であって、発生器から
吸収器へ戻る吸収剤と未ガス化冷媒との混合物から冷媒
ガスを分離して、その分離された冷媒ガスを圧縮機へ吸
入させることとされているものが提供される。
A second aspect of the present invention is a hybrid heat pump apparatus for sending both a refrigerant gas compressed by a compressor of a compression cycle and a refrigerant gas generated by a generator of an absorption cycle to a heat exchanger for air conditioning. Thus, there is provided an apparatus wherein a refrigerant gas is separated from a mixture of an absorbent and an ungasified refrigerant returning from a generator to an absorber, and the separated refrigerant gas is sucked into a compressor.

【0013】更に、同じ目的を達成するため、この出願
の請求項3の発明は、圧縮サイクルの圧縮機で圧縮され
た冷媒ガスと吸収サイクルの発生器で発生した冷媒ガス
とを共に空調用熱交換器へ送り出すハイブリッド型のヒ
ートポンプ装置であって、空調用熱交換器へ送り出され
る冷媒は冷媒Aと冷媒Bとの混合物からなり、これら冷
媒Aと冷媒Bとを分離して、何れか一方を圧縮機へ吸入
させ、他方を吸収器へ吸収させることとされているもの
である。
Further, in order to achieve the same object, the invention according to claim 3 of the present application is directed to a method in which refrigerant gas compressed by a compressor of a compression cycle and refrigerant gas generated by a generator of an absorption cycle are both heated for air conditioning. A hybrid type heat pump device to send out to the exchanger, the refrigerant sent out to the air conditioning heat exchanger consists of a mixture of refrigerant A and refrigerant B, separate these refrigerants A and B, and either one It is to be sucked into a compressor and the other is absorbed into an absorber.

【0014】[0014]

【発明の実施の形態】図1は、この出願の請求項1の発
明に従って実施される一つの実施形態を示すヒートポン
プ装置の冷媒回路図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a refrigerant circuit diagram of a heat pump device showing one embodiment implemented according to the invention of claim 1 of the present application.

【0015】図において、(1)はエンジン、(2)は、こ
のエンジン(1)で駆動される圧縮機、(3)は室外熱交換
器、(4)は室内熱交換器を示している。圧縮機(2)で圧
縮された高温・高圧となった冷媒ガスは、冷房時には、
冷媒ライン(5)を通ってまず室外熱交換器(3)へ送ら
れ、この室外熱交換器(3)で凝縮された後室内熱交換器
(4)へ送られ、ここでの気化潜熱により冷房を行った
後、再び圧縮機(2)へ吸入される。これが圧縮サイクル
である。
In the figure, (1) indicates an engine, (2) indicates a compressor driven by the engine (1), (3) indicates an outdoor heat exchanger, and (4) indicates an indoor heat exchanger. . The high-temperature and high-pressure refrigerant gas compressed by the compressor (2)
The refrigerant is first sent to the outdoor heat exchanger (3) through the refrigerant line (5), and condensed in the outdoor heat exchanger (3), and then the indoor heat exchanger
The air is sent to (4), cooled by the latent heat of vaporization, and then sucked into the compressor (2) again. This is a compression cycle.

【0016】なお、この回路は、冷房時のみの状態を示
したもので、実際には、暖房時に室内熱交換器(4)から
室外熱交換器(3)へ向けて冷媒を循環させるよう切換え
る四方弁その他の装置などが設けられるが、ここでは冷
房時に必要な最低限の装置のみを示している。
This circuit shows a state only at the time of cooling. Actually, the circuit is switched to circulate the refrigerant from the indoor heat exchanger (4) to the outdoor heat exchanger (3) at the time of heating. Although a four-way valve and other devices are provided, only the minimum devices necessary for cooling are shown here.

【0017】(6)は、吸収サイクルを構成する吸収器、
(7)は同じく発生器、(8)は再生器である。(9)は、冷
却水ポンプ(10)で循環させられるエンジン冷却水回路で
あり、前記発生器(8)が、この冷却水回路(9)中に配置
されて、その冷却水回路(9)中の冷却水の熱をその発生
器(7)の熱源として利用するようにしている。
(6) an absorber constituting an absorption cycle;
(7) is a generator, and (8) is a regenerator. (9) is an engine cooling water circuit circulated by a cooling water pump (10), wherein the generator (8) is disposed in the cooling water circuit (9), and the cooling water circuit (9) The heat of the cooling water inside is used as a heat source of the generator (7).

【0018】(11)は、吸収器(6)へ冷媒を供給するため
の吸収用冷媒供給ラインであって、これは、圧縮機(2)
の一つの吐出部と吸収器(6)の入り口とに跨って接続さ
れ、この発明に従って、圧縮機(2)で圧縮される途中の
中間圧段階での冷媒の一部を抽気して、吸収器(6)へと
供給するようになっている。
(11) is an absorption refrigerant supply line for supplying refrigerant to the absorber (6), which is a compressor (2)
Is connected across the one discharge part and the inlet of the absorber (6). According to the present invention, a part of the refrigerant at the intermediate pressure stage in the middle of being compressed by the compressor (2) is extracted and absorbed. To the vessel (6).

【0019】吸収器(6)内に導入された冷媒は吸収剤に
よって吸収され、これら吸収剤と冷媒との混合溶液が、
ポンプ(12)によって、溶液供給ライン(13)から再生器
(8)を通って発生器(7)へ供給される。発生器(7)で
は、冷却水回路(9)の熱により加熱されることで、冷媒
のみが吸収剤から分離して高圧のガスとなり、送り出し
ライン(14)から、前記圧縮機(2)から吐出された冷媒ラ
イン(5)の冷媒と合流して、室外熱交換器(3)側へ流れ
る。他方、発生器(7)内の吸収剤は、一般の吸収サイク
ルと同じく、戻りライン(15)から再生器(8)を通って吸
収器(6)へ戻る。図中(16)(17)は、それぞれ図面で示す
ライン中に配置された膨張弁である。
The refrigerant introduced into the absorber (6) is absorbed by the absorbent, and a mixed solution of the absorbent and the refrigerant becomes
A regenerator from the solution supply line (13) by the pump (12)
It is supplied to the generator (7) through (8). In the generator (7), only the refrigerant is separated from the absorbent into a high-pressure gas by being heated by the heat of the cooling water circuit (9), and is sent from the compressor (2) from the delivery line (14). The refrigerant merges with the discharged refrigerant in the refrigerant line (5) and flows toward the outdoor heat exchanger (3). On the other hand, the absorbent in the generator (7) returns from the return line (15) through the regenerator (8) to the absorber (6), as in a general absorption cycle. In the drawings, (16) and (17) are expansion valves arranged in the lines shown in the drawings.

【0020】図2は、図1の実施形態の場合のデューリ
ング線図であって、このように圧縮行程の途中の段階で
抽気して吸収サイクルの吸収器(6)へ供給することで、
吸収器(6)にはある程度高い圧力で冷媒を供給すること
になり、吸収剤への吸収量がその分増大し、即ち高濃度
側溶液の濃度がξ1=0.40と従来よりも高くなり、他
方、発生器(7)の低濃度側溶液濃度は従来と同じ0.1
5であるとすれば、それだけ溶液循環比が低下し、吸収
サイクルの効率を向上させることが出来る。
FIG. 2 is a During diagram in the case of the embodiment of FIG. 1. In this way, by bleeding and supplying the gas to the absorber (6) in the absorption cycle in the middle of the compression stroke,
The refrigerant is supplied to the absorber (6) at a somewhat high pressure, and the amount of absorption into the absorbent increases accordingly, that is, the concentration of the high concentration side solution becomes ξ1 = 0.40, which is higher than before. On the other hand, the low concentration side solution concentration of the generator (7) is 0.1
If it is 5, the solution circulation ratio is reduced accordingly, and the efficiency of the absorption cycle can be improved.

【0021】図3は、この出願の請求項2の発明に従っ
て実施される一つの実施形態を示している。この実施形
態では、図7と同じく、冷房時に室内熱交換器(4)から
圧縮機(2)へ戻るライン(21)の途中で分岐させた分岐ラ
イン(22)によって、一部の冷媒を吸収器(6)へ吸入さ
せるようにしている。そして、吸収器(6)からポンプ(1
2)によって吸い出された冷媒と吸収剤との混合物は、2
つの再生器(8)(23)を通って第1の発生器(7)へ供給さ
れ、吸収剤から分離された高温高圧の冷媒ガスが、前記
と同様に送り出しライン(14)から冷媒ライン(5)へ合流
する。
FIG. 3 shows one embodiment implemented according to the invention of claim 2 of this application. In this embodiment, as in FIG. 7, a part of the refrigerant is absorbed by a branch line (22) that branches off in the middle of a line (21) returning from the indoor heat exchanger (4) to the compressor (2) during cooling. It is made to inhale into the vessel (6). Then, pump (1) from absorber (6)
The mixture of the refrigerant and the absorbent sucked out in 2) is
The high-temperature and high-pressure refrigerant gas supplied to the first generator (7) through the two regenerators (8) and (23) and separated from the absorbent is supplied from the discharge line (14) to the refrigerant line ( Merge into 5).

【0022】更に、第1の発生器(7)を出た吸収剤中に
は、分離されずに残った未ガス化冷媒が混合されている
が、これを第2の発生器(22)へ供給するものである。こ
の第2の発生器(22)では、第1の発生器(7)と同じくエ
ンジン冷却水回路(9)の熱によって加熱することで、や
や高圧のガス化冷媒を発生させる。このガス化冷媒は、
未だ冷媒ライン(5)へ合流させるほどには高温・高圧と
はなっていないので、この圧縮機(2)における圧縮過程
の途中の中間圧段階へ冷媒ガスをインジェクションする
ことで、ライン(21)からの冷媒ガスと一緒に更に高温・
高圧に圧縮した後冷媒ライン(5)へ送り出すものであ
る。第1の発生器(7)から第2の発生器(22)へ通ずるラ
イン(24)は、途中で第2の再生器(23)を通過するが、更
に、第2の発生器(22)の手前に膨張弁(25)が設けられて
一旦減圧するようにしている。
Further, in the absorbent leaving the first generator (7), the ungasified refrigerant remaining without being separated is mixed, and this is transferred to the second generator (22). Supply. In the second generator (22), as in the case of the first generator (7), it is heated by the heat of the engine cooling water circuit (9) to generate a slightly high-pressure gasified refrigerant. This gasified refrigerant is
Since the temperature and the pressure are not high enough to join the refrigerant line (5), the refrigerant gas is injected into the intermediate pressure stage in the middle of the compression process in the compressor (2). Higher temperature together with the refrigerant gas from
After being compressed to a high pressure, it is sent to the refrigerant line (5). A line (24) leading from the first generator (7) to the second generator (22) passes through a second regenerator (23) on the way, and furthermore a second generator (22). An expansion valve (25) is provided in front of this to temporarily reduce the pressure.

【0023】図4は、この第2の実施形態の場合のデュ
ーリング線図であって、第1の発生器(7)から第2の発
生器(22)へ移動する段階では圧力が低下しているが、第
2の発生器で(22)で分離した後のc点での低濃度側溶液
の濃度は、ξ=0.10まで低下する。このため、図1
の場合と異なり、高濃度側溶液濃度は通常の場合と異な
らないが、低濃度側溶液濃度が低下するため、結果とし
て溶液循環比が増大し、同様に吸収サイクルの効率を向
上できるものである。
FIG. 4 is a During diagram in the case of the second embodiment, in which the pressure drops when moving from the first generator (7) to the second generator (22). However, the concentration of the low-concentration side solution at the point c after the separation in the second generator at (22) decreases to ξ = 0.10. Therefore, FIG.
Unlike the above case, the concentration of the high-concentration solution is not different from the normal case, but the concentration of the low-concentration solution decreases, so that the solution circulation ratio increases and the efficiency of the absorption cycle can be similarly improved. .

【0024】図5は、この出願の請求項3の発明に従っ
て実施される実施形態の一例である。二種以上の冷媒を
混合させた混合冷媒は、室外熱交換器(3)及び室内熱交
換器(4)からその全量がライン(21)によって吸収器(6)
へ導かれる。混合冷媒は、圧縮サイクル用として一般に
用いられるHCFC類、HFC類等の一又は複数の物質
からなる冷媒Aと、吸収剤に対して相溶性の良い即ち吸
収剤による吸収性が良く、なお且つ、気化潜熱量の大き
い一又は複数の物質からなる冷媒Bとの混合物であり、
吸収器(6)では、吸収性の良い冷媒Bが吸収剤に吸収さ
れることによって、冷媒Aと分離される。即ち、吸収器
(6)では、通常の吸収作用と冷媒分離作用の双方が行わ
れることになる。
FIG. 5 is an example of an embodiment implemented according to the invention of claim 3 of the present application. The total amount of the mixed refrigerant obtained by mixing two or more refrigerants is supplied from the outdoor heat exchanger (3) and the indoor heat exchanger (4) to the absorber (6) through the line (21).
Led to. The mixed refrigerant has good compatibility with the refrigerant A composed of one or a plurality of substances such as HCFCs, HFCs, and the like generally used for the compression cycle, that is, has good absorbency with the absorbent, and A mixture with a refrigerant B composed of one or more substances having a large latent heat of vaporization,
In the absorber (6), the refrigerant B having good absorbency is separated from the refrigerant A by being absorbed by the absorbent. That is, the absorber
In (6), both the normal absorption operation and the refrigerant separation operation are performed.

【0025】吸収剤と冷媒Bとの混合液は、再生器(8)
から発生器(7)へ送られて、前記と同じく高温・高圧と
なった冷媒ガスが冷媒ライン(5)へ合流して室外熱交換
器(3)へ供給される。他方、吸収剤で吸収されなかった
冷媒Aは、別の吸入ライン(26)から圧縮機(2)へ吸入さ
れて高温・高圧に圧縮された後、冷媒ライン(5)へ吐出
されることになる。
The mixed liquid of the absorbent and the refrigerant B is supplied to the regenerator (8)
Is sent to the generator (7), and the high-temperature and high-pressure refrigerant gas is combined with the refrigerant line (5) and supplied to the outdoor heat exchanger (3). On the other hand, the refrigerant A not absorbed by the absorbent is sucked into the compressor (2) from another suction line (26), is compressed to a high temperature and a high pressure, and is then discharged to the refrigerant line (5). Become.

【0026】吸収剤による吸収性が良く、又、気化潜熱
量の大きい物質としては、その吸収剤にもよるが、例え
ば、TFE(テトラフルオロエタノール)の他に、吸収
サイクルに広く用いられるアンモニア、5フッ化プロパ
ノール(5FP)等があげられ、10〜30パーセント
程度混合させる。他方、吸収剤としては、DMA、E1
81、PAG等があげられる。
The substance having a good absorbency by the absorbent and having a large latent heat of vaporization depends on the absorbent. For example, in addition to TFE (tetrafluoroethanol), ammonia, which is widely used in an absorption cycle, For example, propanol pentafluoride (5FP) may be used. On the other hand, as the absorbent, DMA, E1
81, PAG and the like.

【0027】図6は、この実施形態の場合におけるデュ
ーリング線図であって、吸収サイクル用の冷媒として被
吸収性に優れた物質を用いることにより、高濃度側溶液
濃度を増大させることが出来、吸収サイクルの効率を向
上できることになる。
FIG. 6 is a During diagram in the case of this embodiment, and it is possible to increase the high-concentration-side solution concentration by using a substance having excellent absorbability as a refrigerant for the absorption cycle. Thus, the efficiency of the absorption cycle can be improved.

【0028】[0028]

【発明の効果】この出願の請求項1の発明によれば、圧
縮機から抽気された中間圧の冷媒を吸収サイクルの吸収
器へ供給するので、低圧冷媒を供給する場合に比較して
吸収率が増大し、高濃度側の溶液濃度の増大に伴う溶液
循環比が低下することとなって、ハイブリッド型のもの
において、吸収サイクルを構成する装置を大型化して溶
液循環量を増加させる必要がないという効果がある。し
かも、圧縮サイクルの圧縮機を加圧器として兼用するた
め特別の加圧装置を必要としない。
According to the first aspect of the present invention, since the intermediate-pressure refrigerant extracted from the compressor is supplied to the absorber of the absorption cycle, the absorption rate is lower than when the low-pressure refrigerant is supplied. Increases, the solution circulation ratio decreases with an increase in the solution concentration on the high concentration side, and it is not necessary to increase the size of the device constituting the absorption cycle and increase the solution circulation amount in the hybrid type. This has the effect. Moreover, no special pressurizing device is required because the compressor of the compression cycle is also used as a pressurizer.

【0029】また、この出願の請求項2の発明によれ
ば、発生器から戻る吸収剤中の未ガス化冷媒を再度分離
させて圧縮機へ吸入させるようにしているので、低濃度
側の溶液濃度の低下に伴う溶液循環比が低下し、同様
に、ハイブリッド型のものにおいて、吸収サイクルの装
置を大型化して溶液循環量を増加させる必要がないとい
う効果がある。
According to the invention of claim 2 of the present application, the ungasified refrigerant in the absorbent returning from the generator is separated again and sucked into the compressor, so that the low concentration side solution As the concentration decreases, the solution circulation ratio decreases. Similarly, in the hybrid type, there is the effect that it is not necessary to increase the size of the absorption cycle device and increase the solution circulation amount.

【0030】更に、この出願の請求項3の発明によれ
ば、分離された混合冷媒の何れか一方を圧縮機へ吸入さ
せ、他方を吸収器へ吸収させることとしているので、吸
収器側へ吸収される冷媒として吸収剤による吸収性に優
れた冷媒を用いることで、吸収サイクルにおける高濃度
側溶液濃度を増大させ、結果として溶液循環比を低下さ
せることが出来るので、同様に吸収サイクルの装置を大
型化して溶液循環量を増加させる必要がないという効果
がある。
Further, according to the invention of claim 3 of the present application, one of the separated mixed refrigerant is sucked into the compressor and the other is absorbed by the absorber, so that the refrigerant is absorbed by the absorber. By using a refrigerant having excellent absorption by the absorbent as the refrigerant to be used, the concentration of the high concentration side solution in the absorption cycle can be increased, and as a result, the solution circulation ratio can be reduced. There is an effect that it is not necessary to increase the size and increase the solution circulation amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態を示すヒートポンプ装置の
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a heat pump device showing an embodiment of the present invention.

【図2】図1の実施形態における冷媒圧力と温度との関
係を示すデューリング線図である。
FIG. 2 is a During diagram showing a relationship between refrigerant pressure and temperature in the embodiment of FIG.

【図3】この発明の別の実施形態を示すヒートポンプ装
置の冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram of a heat pump device showing another embodiment of the present invention.

【図4】図3の実施形態における冷媒圧力と温度との関
係を示すデューリング線図である。
FIG. 4 is a During diagram showing a relationship between a refrigerant pressure and a temperature in the embodiment of FIG. 3;

【図5】この発明の更に別の実施形態を示すヒートポン
プ装置の冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram of a heat pump device showing still another embodiment of the present invention.

【図6】図5の実施形態における冷媒圧力と温度との関
係を示すデューリング線図である。
FIG. 6 is a During diagram showing a relationship between refrigerant pressure and temperature in the embodiment of FIG.

【図7】ハイブリッド型ヒートポンプ装置の一例を示す
冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram showing an example of a hybrid heat pump device.

【図8】同じくデューリング線図である。FIG. 8 is a During diagram.

【符号の説明】[Explanation of symbols]

(2) 圧縮機 (3) 室外熱交換器 (4) 室内熱交換器 (6) 吸収器 (7) 発生器 (23) 発生器 (2) Compressor (3) Outdoor heat exchanger (4) Indoor heat exchanger (6) Absorber (7) Generator (23) Generator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮サイクルの圧縮機で圧縮された冷媒ガ
スと吸収サイクルの発生器で発生した冷媒ガスとを共に
空調用熱交換器へ送り出すハイブリッド型のヒートポン
プ装置であって、圧縮機によって圧縮される冷媒の一部
を中間圧の状態で抽気することで、その抽気された冷媒
を吸収サイクルの吸収器に吸収させることとされている
圧縮・吸収ハイブリッド型ヒートポンプ装置。
1. A hybrid heat pump device for sending a refrigerant gas compressed by a compressor of a compression cycle and a refrigerant gas generated by a generator of an absorption cycle to a heat exchanger for air conditioning. A compression / absorption hybrid heat pump device in which a part of the refrigerant to be extracted is bled at an intermediate pressure state so that the bled refrigerant is absorbed by an absorber of an absorption cycle.
【請求項2】圧縮サイクルの圧縮機で圧縮された冷媒ガ
スと吸収サイクルの発生器で発生した冷媒ガスとを共に
空調用熱交換器へ送り出すハイブリッド型のヒートポン
プ装置であって、発生器から吸収器へ戻る吸収剤と未ガ
ス化冷媒との混合物から冷媒ガスを分離して、その分離
された冷媒ガスを圧縮機へ吸入させることとされている
圧縮・吸収ハイブリッド型ヒートポンプ装置。
2. A hybrid heat pump device for sending both a refrigerant gas compressed by a compressor of a compression cycle and a refrigerant gas generated by a generator of an absorption cycle to a heat exchanger for air conditioning. A compression / absorption hybrid heat pump device wherein a refrigerant gas is separated from a mixture of an absorbent and an ungasified refrigerant returning to a compressor, and the separated refrigerant gas is sucked into a compressor.
【請求項3】圧縮サイクルの圧縮機で圧縮された冷媒ガ
スと吸収サイクルの発生器で発生した冷媒ガスとを共に
空調用熱交換器へ送り出すハイブリッド型のヒートポン
プ装置であって、空調用熱交換器へ送り出される冷媒は
冷媒Aと冷媒Bとの混合物からなり、これら冷媒Aと冷
媒Bとを分離して、何れか一方を圧縮機へ吸入させ、他
方を吸収器へ吸収させることとされている圧縮・吸収ハ
イブリッド型ヒートポンプ装置。
3. A hybrid heat pump device for sending both a refrigerant gas compressed by a compressor of a compression cycle and a refrigerant gas generated by a generator of an absorption cycle to a heat exchanger for air conditioning, comprising: The refrigerant sent to the device is composed of a mixture of the refrigerant A and the refrigerant B. The refrigerant A and the refrigerant B are separated, and one of them is sucked into the compressor and the other is absorbed in the absorber. Compression and absorption hybrid heat pump device.
JP17313198A 1998-06-19 1998-06-19 Compression / absorption hybrid heat pump system Expired - Fee Related JP4091167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17313198A JP4091167B2 (en) 1998-06-19 1998-06-19 Compression / absorption hybrid heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17313198A JP4091167B2 (en) 1998-06-19 1998-06-19 Compression / absorption hybrid heat pump system

Publications (2)

Publication Number Publication Date
JP2000009362A true JP2000009362A (en) 2000-01-14
JP4091167B2 JP4091167B2 (en) 2008-05-28

Family

ID=15954705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17313198A Expired - Fee Related JP4091167B2 (en) 1998-06-19 1998-06-19 Compression / absorption hybrid heat pump system

Country Status (1)

Country Link
JP (1) JP4091167B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265042A2 (en) * 2001-06-05 2002-12-11 Martin Dipl.-Ing. Hadlauer Refrigeration system, using a two or more component mixture, with at least one compressor unit
JP2009198057A (en) * 2008-02-20 2009-09-03 Osaka Gas Co Ltd Combined system
JP2013002660A (en) * 2011-06-13 2013-01-07 Osaka Gas Co Ltd Thermal system
CN108106050A (en) * 2018-01-15 2018-06-01 江苏乐科节能科技股份有限公司 The refrigeration system and method for chilled water are produced using low-grade exhaust heat
CN110274410A (en) * 2019-07-19 2019-09-24 珠海格力电器股份有限公司 Recycle the air-conditioning system and control method of heat
JP2019174086A (en) * 2018-03-29 2019-10-10 井上 修行 Heat pump unit
JP2020020533A (en) * 2018-08-01 2020-02-06 井上 修行 Hybrid heat pump device
CN112254372A (en) * 2020-09-28 2021-01-22 东南大学 Selective absorption-compression composite heat pump circulating device and method based on chemical reaction
CN115076749A (en) * 2022-06-15 2022-09-20 西安热工研究院有限公司 Combined heat and power generation system coupled with compressed air energy storage system and operation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265042A2 (en) * 2001-06-05 2002-12-11 Martin Dipl.-Ing. Hadlauer Refrigeration system, using a two or more component mixture, with at least one compressor unit
EP1265042A3 (en) * 2001-06-05 2003-06-25 Martin Dipl.-Ing. Hadlauer Refrigeration system, using a two or more component mixture, with at least one compressor unit
JP2009198057A (en) * 2008-02-20 2009-09-03 Osaka Gas Co Ltd Combined system
JP2013002660A (en) * 2011-06-13 2013-01-07 Osaka Gas Co Ltd Thermal system
CN108106050A (en) * 2018-01-15 2018-06-01 江苏乐科节能科技股份有限公司 The refrigeration system and method for chilled water are produced using low-grade exhaust heat
JP2019174086A (en) * 2018-03-29 2019-10-10 井上 修行 Heat pump unit
JP7262175B2 (en) 2018-03-29 2023-04-21 大阪瓦斯株式会社 heat pump device
JP2020020533A (en) * 2018-08-01 2020-02-06 井上 修行 Hybrid heat pump device
JP7145679B2 (en) 2018-08-01 2022-10-03 大阪瓦斯株式会社 Hybrid heat pump device
CN110274410A (en) * 2019-07-19 2019-09-24 珠海格力电器股份有限公司 Recycle the air-conditioning system and control method of heat
CN110274410B (en) * 2019-07-19 2023-09-19 珠海格力电器股份有限公司 Air conditioning system for recovering heat and control method
CN112254372A (en) * 2020-09-28 2021-01-22 东南大学 Selective absorption-compression composite heat pump circulating device and method based on chemical reaction
CN115076749A (en) * 2022-06-15 2022-09-20 西安热工研究院有限公司 Combined heat and power generation system coupled with compressed air energy storage system and operation method

Also Published As

Publication number Publication date
JP4091167B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
US6904766B2 (en) Heater with two different heat sources and air conditioner using the same
CN100467980C (en) Cogeneration system
EP1628092A2 (en) Air conditioning system combined with an electricity generating system
US20060037347A1 (en) Electricity generating and air conditioning system
CN204373252U (en) Change type CO2 trans critical cycle refrigeration system
EP0508608A2 (en) High efficiency absorption cycle of the generator-absorber heat-exchange type
JP2000009362A (en) Hybrid compression/absorption heat pump
CN108834386A (en) A kind of heat recovery module data center
US11221161B1 (en) Heat-pump system with combined vapor expansion-compression stages and single-effect vapor absorption unit
JP2004212025A (en) Refrigerator using ejector pump
JP2003336927A (en) Combined refrigerating system
CN208012146U (en) Air energy thermal pump assembly
CN108730763A (en) Open type heat pump hot water apparatus based on air circulation
CN113356952B (en) Combined cooling and power system capable of pre-cooling air at inlet of gas turbine and operation method thereof
JPH11337216A (en) Heat pump apparatus
CN110173912B (en) Mixed working medium compression circulation system with mechanical heat recovery function and working method
CN103411342B (en) Solar high-efficient spraying and cooling system
JP2004020153A (en) Engine heat pump
CN108759092A (en) Enclosed heat-pump water heater based on air circulation
JPS6187908A (en) Combined device of power generation, refrigeration, and heat pump cycle
JPH11223412A (en) Refrigerating device
CN112902281A (en) Cold and hot combined equipment based on carbon dioxide heat pump
JPS59120720A (en) Gas turbine
JP2003262414A (en) Compression type heat pump and hot water feeder
JP2004101035A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees