JP2000007470A - Radiation generating ceramic and its production - Google Patents

Radiation generating ceramic and its production

Info

Publication number
JP2000007470A
JP2000007470A JP17302798A JP17302798A JP2000007470A JP 2000007470 A JP2000007470 A JP 2000007470A JP 17302798 A JP17302798 A JP 17302798A JP 17302798 A JP17302798 A JP 17302798A JP 2000007470 A JP2000007470 A JP 2000007470A
Authority
JP
Japan
Prior art keywords
radiation
ceramic
generating
ore
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17302798A
Other languages
Japanese (ja)
Inventor
Heijiro Miura
平治郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSHIN SANGYO KK
Original Assignee
SANSHIN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSHIN SANGYO KK filed Critical SANSHIN SANGYO KK
Priority to JP17302798A priority Critical patent/JP2000007470A/en
Publication of JP2000007470A publication Critical patent/JP2000007470A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5024Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/807Luminescent or fluorescent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable to easily apply to a desired purpose in the various application of a specific ore, to enable to keep the utilization efficiency of the specific ore high and to enable to exhibit the effect of the specific ore to each purpose 54 application at most. SOLUTION: This radiation generating ceramic is composed of a ceramic base formed from an unglazed pottery fired in a prescribed shape and a radiation generating ceramic layer applied on the ceramic base. The ceramic layer consists essentially of the fine powder of the specific ore generating radiation such as a so-called medicinal stone existed in natural or tourmaline ore.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の背景】本発明は、放射線を発生するセラミック
スに関する。
BACKGROUND OF THE INVENTION The present invention relates to radiation generating ceramics.

【0002】[0002]

【関連技術の説明】古くから、薬石あるいは電気石と言
われる特殊な鉱石のさまざまな効能が知られている。そ
の用い方によって、たとえば、殺菌、抗菌力がある、水
などのミネラル化あるいは弱アルカリ化を促進する、水
あるいは空気などの脱臭、浄化作用がある、気体浄化作
用がある、また人体に対しては、血行促進、あるいは腰
痛、肩凝り、睡眠不足、筋肉疲労などの解消といった効
果がある。この特殊鉱石の効能はこれらの特殊鉱石が発
する放射線による、と見られている。この放射線の効能
は発生する表面積に依存し、表面積が大きくなるほど効
果が増大すると考えられる。
[Description of Related Art] Various effects of special ore called medicinal stone or tourmaline have been known for a long time. Depending on how it is used, for example, it has sterilizing and antibacterial properties, promotes mineralization or weak alkalinization of water, etc., has a deodorizing and purifying effect on water or air, has a gas purifying effect, and Is effective in promoting blood circulation or eliminating low back pain, stiff shoulders, lack of sleep, and muscle fatigue. The effectiveness of these special ores is believed to be due to the radiation they emit. The effectiveness of this radiation depends on the surface area generated, and it is considered that the effect increases as the surface area increases.

【0003】[0003]

【発明が解決しようとする課題】ところで、この特殊鉱
石の上記のさまざまな効能を享受するためには、それぞ
れの目的用途においてその効能が最大効率で発揮される
ように鉱石の形態を適合させることが必要となる。しか
し、これらの鉱石は、天然に存在するものであるから必
ずしも、所望の目的に対して、好適に適合させることは
容易でなかった。このため、鉱石が無駄になったり、そ
うでなくとも利用効率が低下するという問題があった。
本発明は、このような事情に鑑みてなされたものであっ
て、多種多様な上記特殊鉱石の用途に鑑みて所望の目的
用途に対して容易に適合させることができ、したがっ
て、特殊鉱石の利用効率を高く維持することができ、し
かも、当該特殊鉱石がが有する効能をそのそれぞれの目
的用途に対して最大限発揮させることができるようにす
ることを目的としている。
By the way, in order to enjoy the above-mentioned various effects of this special ore, it is necessary to adjust the form of the ore so that the effect is exhibited at the maximum efficiency in each purpose application. Is required. However, since these ores are naturally occurring, it has not always been easy to suitably adapt them to a desired purpose. For this reason, there was a problem that the ore was wasted or the utilization efficiency was reduced otherwise.
The present invention has been made in view of such circumstances, and can be easily adapted to a desired purpose in view of various kinds of uses of the special ore. It is an object of the present invention to keep the efficiency high and to maximize the effects of the special ore for its intended use.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明は以下の特徴を有する。本発明の1つの特徴に
よれば、所定形状で焼成された素焼きで構成されたセラ
ミックベースと、該セラミックベース上に塗布された放
射線発生セラミックス層とからなることを特徴とする放
射線発生セラミックスが提供される。この好ましい態様
では、上記セラミックス層は、天然に存在する通称薬石
(多元素共存特殊鉱石)あるいは電気石(トルマリン鉱
石)等の放射線を発生する特殊鉱石の微粉を主成分とす
る。上記セラミックス層は、ほぼ1mm以下程度であり、
好ましくは、約0.5mmないし1mmの範囲で素焼きベー
ス上に塗布する。
The present invention for solving the above problems has the following features. According to one feature of the present invention, there is provided a radiation-generating ceramic comprising a ceramic base constituted by unglazing fired in a predetermined shape, and a radiation-generating ceramic layer applied on the ceramic base. Is done. In this preferred embodiment, the ceramic layer contains, as a main component, fine powder of a special ore that generates radiation such as a so-called naturally occurring medicinal stone (multi-element coexisting special ore) or tourmaline (tourmaline ore). The ceramic layer is about 1 mm or less,
Preferably, it is applied on the unglazed base in the range of about 0.5 mm to 1 mm.

【0005】なお、上記の素焼きのセラミックベース
は、用途に応じてさまざまな形状とすることができる。
本発明の別の特徴によれば、上記放射線発生セラミック
スの製造方法が提供される。すなわち、放射線発生特性
を有する材料を微粉化し、約90重量パーセント以上の
前記微粉化材料、陶芸用化学のり、釉薬からなる混合物
を水に溶かし、水に溶かした状態の前記混合物を所定形
状に焼成された素焼きセラミックス上に塗布し、約30
℃〜100℃/時間の昇温速度で最高約900℃から1
300℃となるまで加熱して焼成することを特徴とす
る。
The unglazed ceramic base can be formed into various shapes depending on the application.
According to another aspect of the present invention, there is provided a method of manufacturing the radiation-generating ceramic. That is, a material having radiation generating properties is pulverized, and a mixture of about 90% by weight or more of the pulverized material, ceramic paste, and glaze is dissolved in water, and the mixture dissolved in water is fired into a predetermined shape. About 30%
From about 900 ° C up to 1
It is characterized by heating to 300 ° C. and firing.

【0006】上記において、放射線発生材料を含む混合
物を水に溶かしてペースト状にした後セラミックベース
に塗布するようにしたのは、該セラミックベースの表面
への定着性を確保するためである。また、該ペースト状
の混合物をセラミックベースに塗布した後、その塗布物
を乾燥した後焼成するのが好ましい。陶芸用化学のり
(CMC)は、好ましくは、前記混合物の中に、約0.
3重量パーセント乃至0.5重量パーセント含まれる。
また、前記釉薬としては、透明釉薬が好ましく、混合物
中のほぼ10重量パーセント程度含まれる。放射線特性
を有する材料が約90重量パーセントより少ない場合に
は、望ましい効能が得られない。
[0006] In the above, the reason that the mixture containing the radiation generating material is dissolved in water to form a paste and then applied to the ceramic base is to ensure the fixability to the surface of the ceramic base. Further, it is preferable to apply the paste-like mixture to a ceramic base, dry the applied material, and then fire it. The pottery chemical paste (CMC) is preferably present in the mixture at about 0.
3% to 0.5% by weight.
The glaze is preferably a transparent glaze, which is contained in the mixture at about 10% by weight. Less than about 90 weight percent of the material having the radiation properties will not provide the desired efficacy.

【0007】水に溶かして上記スラリー状になった放射
線発生材料含有混合物を塗布して、素焼きのセラミック
ベース上に混合物の層を形成してこれを焼成する。この
場合、窯の温度は昇温を始めて約8〜9時間で約750
℃から800℃に徐々に昇温する。さらに昇温して、8
〜9時間かけて約1000℃から約1300℃の最高温
度とする。窯に入れてから該最高温度に達するまで、約
20ないし24時間程度要する。上記の昇温速度で、温
度制御を行って最高温度に到達した場合には、焼成は実
質的に完了している。そして、窯内温度を約100℃以
下まで自然冷却して、窯内の焼成物を取り出す。なお、
窯としては温度制御が比較的容易であることから電気窯
が好ましい。
[0007] The mixture containing the radiation-generating material dissolved in water to form a slurry is applied, and a layer of the mixture is formed on an unfired ceramic base, which is then fired. In this case, the temperature of the kiln is about 750 in about 8 to 9 hours after the start of temperature rise.
The temperature is gradually increased from 800C to 800C. Then raise the temperature to 8
The maximum temperature is from about 1000 ° C. to about 1300 ° C. over 〜9 hours. It takes about 20 to 24 hours to reach the maximum temperature after being placed in the kiln. When the temperature is controlled and the maximum temperature is reached at the above-described heating rate, the firing is substantially completed. Then, the temperature in the kiln is naturally cooled to about 100 ° C. or less, and the fired product in the kiln is taken out. In addition,
As the kiln, an electric kiln is preferable because temperature control is relatively easy.

【0008】上記放射線発生材料含有混合物を塗布する
ためのベースとなる素焼きは、その放射線発生材料の特
性を発揮させるための特定の用途に応じて適宜、形状、
大きさ等が決定される。この場合、セラミックベースの
表面に波形、あるいは凹凸を形成する等によって表面積
を極力大きくすることが望ましい。最終製品である放射
線発生セラミックスの効果が、その表面積に依存するか
らである。たとえば、本発明にかかる放射線発生セラミ
ックスに使用される薬石あるいは電気石は殺菌、抗菌力
を有することが知られている。したがって、放射線発生
セラミックスを飲料水を浄化するのに利用することがで
きる。この場合には、本発明にかかるセラミックスをフ
ィルターとして用いるようにすればよい。このために
は、水の浄化装置に適合するように適宜大きさ形状等を
設定する。この場合、流通する水との接触が均等にかつ
効率的に生じるように配置、形状、大きさが設定され
る。例えば円錐形状、パイプ形状等が所望のフィルター
機能を発揮することができる任意の形態に設定すること
ができる。
[0008] The unglazed base serving as a base for applying the above-mentioned mixture containing a radiation-generating material has a shape, an appropriate shape, depending on a specific use for exhibiting the characteristics of the radiation-generating material.
The size and the like are determined. In this case, it is desirable to increase the surface area as much as possible by forming corrugations or irregularities on the surface of the ceramic base. This is because the effect of the radiation-generating ceramic as the final product depends on its surface area. For example, it is known that the medicinal stone or tourmaline used in the radiation-generating ceramic according to the present invention has sterilizing and antibacterial activities. Therefore, the radiation-generating ceramic can be used for purifying drinking water. In this case, the ceramic according to the present invention may be used as a filter. For this purpose, the size, shape, and the like are appropriately set so as to be compatible with the water purification device. In this case, the arrangement, shape, and size are set so that contact with the flowing water occurs evenly and efficiently. For example, a conical shape, a pipe shape, or the like can be set to any form that can exhibit a desired filter function.

【0009】また、薬石、電気石による水のミネラル化
あるいは弱アルカリ化の促進効果にがあることは上記の
通りである。この目的のために使用する場合には、コッ
プあるいは湯飲み状に素焼きのセラミックスベースを焼
成し、この表面にセラミックス層を形成すればよい。さ
らに、血行促進等の効果は体の所定のつぼに当てること
によって、発揮させることができる。この目的のために
は、約20mmないし40mmの径を有し厚さが約2mmない
し7mm程度の円盤状の素焼きのセラミックスベースを形
成し、その表面に上記放射線発生材料含有混合物を塗布
するようにすればよい。
As described above, medicinal stone and tourmaline have an effect of promoting mineralization or weak alkalinization of water. When used for this purpose, the unglazed ceramic base may be fired in a cup or cup shape to form a ceramic layer on the surface. Further, effects such as blood circulation promotion can be exerted by applying the effect to a predetermined pot of the body. For this purpose, a disc-shaped unglazed ceramic base having a diameter of about 20 mm to 40 mm and a thickness of about 2 mm to 7 mm is formed, and the mixture containing the radiation generating material is applied to the surface thereof. do it.

【0010】[0010]

【実施例】以下、本発明の好ましい実施例について説明
する。本例は、体のつぼに当てて使用することによっ
て、血行促進、腰痛、肩凝り、睡眠不足、筋肉疲労など
を解消することができる放射線発生セラミックスチップ
を製造する場合に関する。本例において、まず、上記セ
ラミックスチップを製造するための素焼きのセラミック
ベースを製造する。このセラミックベースの製造手順に
ついて説明する。まず、陶土と長石粉または半磁器用材
料とを調合する。良く練り合わせて所望の形状に成形す
る。この場合、押し方成形が一定形状のもの容易に成形
できる点において、量産に適している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. The present example relates to a case of producing a radiation-generating ceramic chip capable of eliminating blood circulation promotion, low back pain, stiff shoulders, lack of sleep, muscular fatigue, and the like, by using it against a body pot. In this example, first, an unfired ceramic base for manufacturing the ceramic chip is manufactured. The procedure for manufacturing the ceramic base will be described. First, porcelain clay and feldspar powder or semi-porcelain material are prepared. It is kneaded well and formed into a desired shape. In this case, it is suitable for mass production in that the press forming can be easily performed in a fixed shape.

【0011】この場合、ひびの生じないように成形する
ことが重要である。成形後自然乾燥を行う。つぎに、約
30℃から100℃/時間程度の昇温速度で最高温度が
約750℃から800℃となるまで加熱し素焼きセラミ
ックベースを焼成する。つぎに放射線発生材料含有混合
物を調製する。この作業において、まず、薬石(多元素
共存特殊鉱石)あるいは電気石(トルマリン鉱石)等の
放射線を発生する特殊鉱石の微粉を形成する。この特殊
鉱石の分析値が図1ないし図2に示されている。上記原
料となる特殊鉱石を約1.8〜3.0μm程度の粒子径
となるように微粉化する。そして、上記の手順で成形し
た素焼きセラミックベース上に塗布する上記特殊鉱石微
粉末を主成分として、すなわち、約90重量パーセント
以上の前記微粉化材料、陶芸用化学のり、釉薬を含む混
合物を調製する。
[0011] In this case, it is important to perform molding so as not to cause cracks. After molding, air drying is performed. Next, the unfired ceramic base is fired at a heating rate of about 30 ° C. to 100 ° C./hour until the maximum temperature becomes about 750 ° C. to 800 ° C. Next, a mixture containing a radiation generating material is prepared. In this operation, first, fine powder of a special ore that generates radiation such as medicinal stone (multi-element coexisting special ore) or tourmaline (tourmaline ore) is formed. The analysis values of this special ore are shown in FIGS. The special ore used as the raw material is pulverized so as to have a particle size of about 1.8 to 3.0 μm. Then, a mixture containing the above-mentioned fine ore fine powder to be applied on the unglazed ceramic base formed by the above procedure as a main component, that is, about 90% by weight or more of the above-mentioned pulverized material, ceramic chemical paste, and glaze is prepared. .

【0012】この場合、陶芸用化学のり(CMC)は、
好ましくは、前記混合物の中に、約0.3重量パーセン
ト乃至0.5重量パーセント含まれる。また、前記釉薬
としては、透明釉薬が好ましく混合物中のほぼ10重量
パーセント程度含まれる。また釉薬として、金属を含有
したものは好ましくない。この混合物中に含まれる上記
特殊鉱石の微粉末が約90重量パーセントより少ない場
合には、特殊鉱石の有する効能が望ましいレベルで得ら
れなくなる。つぎに、上記混合物を水に溶かして、上記
素焼きのセラミックスベースの表面に塗布し、約0.5
〜1.0mm程度の厚さの層を形成する。上記水に溶かし
た混合物は好ましくは、みずのり程度の粘度を有するス
ラリー状に調製する。
In this case, the ceramic paste for ceramics (CMC) is
Preferably, about 0.3% to 0.5% by weight is included in the mixture. Further, as the glaze, a transparent glaze is preferably contained in about 10% by weight of the mixture. Also, glazes containing metal are not preferred. If the fine powder of the special ore contained in the mixture is less than about 90% by weight, the effect of the special ore cannot be obtained at a desired level. Next, the above mixture was dissolved in water, and applied to the surface of the unglazed ceramic base.
A layer having a thickness of about 1.0 mm is formed. The mixture dissolved in water is preferably prepared in the form of a slurry having a degree of viscosity of water.

【0013】そして、混合物を塗布した上記所望の厚さ
の放射線発生材料の層を表面に有するものを形成し、乾
燥する。つぎに、これを窯にいれて焼成する。この場
合、窯の温度は昇温を始めて約8〜9時間で約750℃
から800℃に達するような昇温速度を有するように窯
の加熱温度を制御する。そして、さらに昇温して、8〜
9時間かけて約1000℃から約1300℃の最高温度
を有するように窯を加熱する。全体として、窯に入れて
から該最高温度に達するまで、約20ないし24時間程
度となるように窯を加熱制御する。昇温速度が早すぎる
場合には、ひび割れが生じるので、注意を要する。特殊
鉱石が、薬石である場合には、窯内最高温度を約110
0℃乃至1300℃に制御し、電気石である場合には、
窯内最高温度を約950℃乃至1000℃程度に制御す
るのが好ましい。
Then, a material having a layer of the radiation generating material having the desired thickness to which the mixture is applied on the surface is formed and dried. Next, this is put in a kiln and fired. In this case, the temperature of the kiln is about 750 ° C in about 8 to 9 hours after the start of heating.
The heating temperature of the kiln is controlled so as to have a heating rate such that the temperature reaches from 800 ° C to 800 ° C. Then, raise the temperature further,
Heat the kiln to have a maximum temperature of about 1000 ° C. to about 1300 ° C. over 9 hours. As a whole, the heating of the kiln is controlled so that it takes about 20 to 24 hours from the time when the kiln is put in the kiln until the temperature reaches the maximum temperature. If the heating rate is too fast, care must be taken because cracks occur. When the special ore is medicinal, the maximum temperature in the kiln is about 110
If the temperature is controlled between 0 ° C and 1300 ° C and it is tourmaline,
It is preferable to control the maximum temperature in the kiln to about 950 ° C. to 1000 ° C.

【0014】窯の温度が上記の最高温度に到達した後、
窯を自然冷却する。窯内温度が約100℃以下になった
時点で内部の焼成物を取り出す。
After the temperature of the kiln reaches the above maximum temperature,
Cool the kiln naturally. When the temperature in the kiln becomes about 100 ° C. or less, the fired product inside is taken out.

【0015】[0015]

【発明の効果】上記したように、本発明によれば、簡単
な構成で、特殊鉱石の有するさまざまな効能を、その目
的用途に応じて有効に発揮させることができる。
As described above, according to the present invention, various effects possessed by special ores can be effectively exhibited with a simple structure according to the intended use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例にかかる特殊鉱石の成分表を
示す図、
FIG. 1 is a diagram showing a component table of a special ore according to one embodiment of the present invention;

【図2】本発明の他の例例にかかる特殊鉱石の成分表を
示す図である。
FIG. 2 is a diagram showing a component table of a special ore according to another example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】所定形状で焼成された素焼きで構成された
セラミックベースと、該セラミックベース上に塗布され
た放射線発生セラミックス層とからなることを特徴とす
る放射線発生セラミックス。
1. A radiation-generating ceramic comprising a ceramic base formed by unglazing fired in a predetermined shape, and a radiation-generating ceramic layer applied on the ceramic base.
【請求項2】放射線発生特性を有する材料を微粉化し、
90重量パーセント以上の前記微粉化材料、陶芸用化学
のり、および釉薬からなる混合物を水に溶かし、 水に溶かした状態の前記混合物を所定形状に焼成された
素焼きセラミックス上に塗布し、 約30℃〜100℃/時間の昇温速度で最高約900℃
から1300℃となるまで加熱して焼成することを特徴
とする放射線発生セラミックスの製造方法。
2. A material having radiation-generating properties is pulverized,
A mixture comprising 90% by weight or more of the above-mentioned pulverized material, pottery chemical paste, and glaze is dissolved in water, and the mixture in a state of being dissolved in water is applied on unfired ceramics fired in a predetermined shape, and is heated to about 30 ° C. Up to about 900 ° C at a heating rate of ~ 100 ° C / hour
A method for producing radiation-generating ceramics, comprising heating the mixture to a temperature of from 1300 ° C. to firing.
JP17302798A 1998-06-19 1998-06-19 Radiation generating ceramic and its production Pending JP2000007470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17302798A JP2000007470A (en) 1998-06-19 1998-06-19 Radiation generating ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17302798A JP2000007470A (en) 1998-06-19 1998-06-19 Radiation generating ceramic and its production

Publications (1)

Publication Number Publication Date
JP2000007470A true JP2000007470A (en) 2000-01-11

Family

ID=15952863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17302798A Pending JP2000007470A (en) 1998-06-19 1998-06-19 Radiation generating ceramic and its production

Country Status (1)

Country Link
JP (1) JP2000007470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103957A (en) * 2000-05-12 2001-11-24 김영준 A method of producing multiple functional anti-bacterial, deodorizing, anti-electrostatic urethane foam which emit negative ions as well as far-infrared ray, and articles produced using the same
WO2007051278A1 (en) 2005-11-03 2007-05-10 Zhilong Xu A medical device's manufacture and usage in alternative medicine for rehabilitation treatment of chronic diseases
JP2009514570A (en) * 2005-11-03 2009-04-09 シュイー,ツーロング Manufacture and use of medical devices for rehabilitation of chronic diseases in alternative therapies
CN106278152A (en) * 2016-08-12 2017-01-04 陈赛霞 A kind of preparation method of the heat-resisting cooking device of antibacterial boccaro
CN107352960A (en) * 2017-08-15 2017-11-17 深圳市前海智汇健康科技有限公司 A kind of new ceramics and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103957A (en) * 2000-05-12 2001-11-24 김영준 A method of producing multiple functional anti-bacterial, deodorizing, anti-electrostatic urethane foam which emit negative ions as well as far-infrared ray, and articles produced using the same
WO2007051278A1 (en) 2005-11-03 2007-05-10 Zhilong Xu A medical device's manufacture and usage in alternative medicine for rehabilitation treatment of chronic diseases
JP2009514570A (en) * 2005-11-03 2009-04-09 シュイー,ツーロング Manufacture and use of medical devices for rehabilitation of chronic diseases in alternative therapies
KR100961595B1 (en) 2005-11-03 2010-06-04 지롱 슈 A chip for use in alternative medical treatment and method of manufacturing the same
US8936815B2 (en) 2005-11-03 2015-01-20 Zhilong Xu Device for external use in alternative medicine applications
CN106278152A (en) * 2016-08-12 2017-01-04 陈赛霞 A kind of preparation method of the heat-resisting cooking device of antibacterial boccaro
CN107352960A (en) * 2017-08-15 2017-11-17 深圳市前海智汇健康科技有限公司 A kind of new ceramics and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2000007470A (en) Radiation generating ceramic and its production
KR102035426B1 (en) Manufacturing method of tea ceramics with fingerpressure function
JP2927415B1 (en) Diatomaceous earth fired product and its manufacturing method
JPS5945384B2 (en) Manufacturing method for high-strength biological components
KR100545046B1 (en) Functional ceramic product radiating negative ions and far infrared rays and manufacturing method of the same
CN105016786B (en) A kind of PTC thermistor ceramic post sintering saggar coating and its preparation and application
KR101301842B1 (en) Mat emitting anion and manufacturing method of it
JP3466969B2 (en) Manufacturing method of far infrared radiation ceramics
JP2001181021A5 (en)
JP2759147B2 (en) Method for producing porous ceramic body
CN1793003A (en) (Balx-ySrxYy) TiO3 based dielectrical ceramic material and preparation process thereof
JP2002128561A (en) Far infrared radiation ceramic ware
WO2003106371A8 (en) Drying ceramic articles during manufacture
KR970010301B1 (en) Process for the preparation of far-infrared radiator
JPH0321501B2 (en)
TW502008B (en) Method for forming a coating with a far IR radiation effect on a substrate
JP2004161587A (en) Radioactive ceramic board and its production method
KR102136027B1 (en) Moxa apparatus and manufacturing method
EP1341400A3 (en) Method for manufacturing ceramic heater
KR200185820Y1 (en) A ceramic tray for dental surgery
JP2004277196A (en) Smoked ceramic product
JP2004018316A (en) Process for manufacturing artificial pumice
JP2002249369A (en) Ceramic product including tourmaline and method for manufacturing it
JP2855471B2 (en) Silicate-bonded silicon carbide carrier and method for producing the same
JP2004035361A (en) Pottery